Skip to main content
Virologica Sinica logoLink to Virologica Sinica
. 2013 Sep 30;28(5):280–290. doi: 10.1007/s12250-013-3365-y

Viral metagenomics analysis of planktonic viruses in East Lake, Wuhan, China

Xingyi Ge 1, Yongquan Wu 1, Meiniang Wang 1, Jun Wang 1, Lijun Wu 1, Xinglou Yang 1, Yuji Zhang 1, Zhengli Shi 1,
PMCID: PMC8208453  PMID: 24132758

Abstract

East Lake (Lake Donghu), located in Wuhan, China, is a typical city freshwater lake that has been experiencing eutrophic conditions and algal blooming during recent years. Marine and fresh water are considered to contain a large number of viruses. However, little is known about their genetic diversity because of the limited techniques for culturing viruses. In this study, we conducted a viral metagenomic analysis using a high-throughput sequencing technique with samples collected from East Lake in Spring, Summer, Autumn, and Winter. The libraries from four samples each generated 234,669, 71,837, 12,820, and 34,236 contigs (> 90 bp each), respectively. The genetic structure of the viral community revealed a high genetic diversity covering 23 viral families, with the majority of contigs homologous to DNA viruses, including members of Myoviridae, Podoviridae, Siphoviridae, Phycodnaviridae, and Microviridae, which infect bacteria or algae, and members of Circoviridae, which infect invertebrates and vertebrates. The highest viral genetic diversity occurred in samples collected in August, then December and June, and the least diversity in March. Most contigs have low-sequence identities with known viruses. PCR detection targeting the conserved sequences of genes (g20, psbA, psbD, and DNApol) of cyanophages further confirmed that there are novel cyanophages in the East Lake. Our viral metagenomic data provide the first preliminary understanding of the virome in one freshwater lake in China and would be helpful for novel virus discovery and the control of algal blooming in the future.

Keywords: Viral metagenomics, East Lake, Solexa high-throughput sequencing, High-throughput sequencing (HTS), Cyanophage

References

  1. Abedon S T. Phage evolution and ecology. Adv Appl Microbiol. 2009;67:1–45. doi: 10.1016/S0065-2164(08)01001-0. [DOI] [PubMed] [Google Scholar]
  2. Ackermann H W. Tailed bacteriophages: the order caudovirales. Adv Virus Res. 1998;51:135–201. doi: 10.1016/S0065-3527(08)60785-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Angly F E, Felts B, Breitbart M, Salamon P, Edwards R A, Carlson C, Chan A M, Haynes M, Kelley S, Liu H, Mahaffy J M, Mueller J E, Nulton J, Olson R, Parsons R, Rayhawk S, Suttle C A, Rohwer F. The marine viromes of four oceanic regions. Plos Biology. 2006;4:2121–2131. doi: 10.1371/journal.pbio.0040368. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Benko M, Harrach B. Molecular evolution of adenoviruses. Curr Top Microbiol Immunol. 2003;272:3–35. doi: 10.1007/978-3-662-05597-7_1. [DOI] [PubMed] [Google Scholar]
  5. Cantalupo P G, Calgua B, Zhao G Y, Hundesa A, Wier A D, Katz J P, Grabe M, Hendrix R W, Girones R, Wang D, Pipas J M. Raw Sewage Harbors Diverse Viral Populations. Mbio. 2011;2(5):e00180–11. doi: 10.1128/mBio.00180-11. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Carmichael W W. Health effects of toxin-producing cyanobacteria: “The CyanoHABs”. Hum Ecol Risk Assess. 2001;7:1393–1407. doi: 10.1080/20018091095087. [DOI] [Google Scholar]
  7. Chenard C, Suttle C A. Phylogenetic diversity of sequences of cyanophage photosynthetic gene psbA in marine and freshwaters. Appl Environ Microbiol. 2008;74:5317–5324. doi: 10.1128/AEM.02480-07. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Claverie J M, Abergel C, Ogata H. Mimivirus. Curr Top Microbiol Immunol. 2009;328:89–121. doi: 10.1007/978-3-540-68618-7_3. [DOI] [PubMed] [Google Scholar]
  9. Davison A J. Evolution of the herpesviruses. Vet Microbiol. 2002;86:69–88. doi: 10.1016/S0378-1135(01)00492-8. [DOI] [PubMed] [Google Scholar]
  10. Delwart E, Li L L. Rapidly expanding genetic diversity and host range of the Circoviridae viral family and other Rep encoding small circular ssDNA genomes. Virus Res. 2012;164:114–121. doi: 10.1016/j.virusres.2011.11.021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Djikeng A, Kuzmickas R, Anderson N G, Spiro D J. Metagenomic analysis of RNA viruses in a fresh water lake. PLoS One. 2009;4:e7264. doi: 10.1371/journal.pone.0007264. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Escobedo-Bonilla C M, Alday-Sanz V, Wille M, Sorgeloos P, Pensaert M B, Nauwynck H J. A review on the morphology, molecular characterization, morphogenesis and pathogenesis of white spot syndrome virus. J Fish Dis. 2008;31:1–18. doi: 10.1111/j.1365-2761.2007.00877.x. [DOI] [PubMed] [Google Scholar]
  13. Federici B A, Bideshi D K, Tan Y, Spears T, Bigot Y. Ascoviruses: superb manipulators of apoptosis for viral replication and transmission. Curr Top Microbiol Immunol. 2009;328:171–196. doi: 10.1007/978-3-540-68618-7_5. [DOI] [PubMed] [Google Scholar]
  14. Fischer U R, Velimirov B. High control of bacterial production by viruses in a eutrophic oxbow lake. Aquat Microb Ecol. 2002;27:1–12. doi: 10.3354/ame027001. [DOI] [Google Scholar]
  15. Fitzgerald L A, Graves M V, Li X, Feldblyum T, Hartigan J, Van Etten J L. Sequence and annotation of the 314-kb MT325 and the 321-kb FR483 viruses that infect Chlorella Pbi. Virology. 2007;358:459–471. doi: 10.1016/j.virol.2006.08.034. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Gao E B, Gui J F, Zhang Q Y. A novel cyanophage with a cyanobacterial nonbleaching protein A gene in the genome. J Virol. 2012;86:236–245. doi: 10.1128/JVI.06282-11. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Ge X, Li Y, Yang X, Zhang H, Zhou P, Zhang Y, Shi Z. Metagenomic analysis of viruses from bat fecal samples reveals many novel viruses in insectivorous bats in China. J Virol. 2012;86:4620–4630. doi: 10.1128/JVI.06671-11. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Grigoras I, Timchenko T, Grande-Perez A, Katul L, Vetten H J, Gronenborn B. High variability and rapid evolution of a nanovirus. J Virol. 2012;84:9105–9117. doi: 10.1128/JVI.00607-10. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Hueffer K, Parrish C R. Parvovirus host range, cell tropism and evolution. Curr Opin Microbiol. 2003;6:392–398. doi: 10.1016/S1369-5274(03)00083-3. [DOI] [PubMed] [Google Scholar]
  20. Hughes A L, Irausquin S, Friedman R. The evolutionary biology of poxviruses. Infect Genet Evol. 2010;10:50–59. doi: 10.1016/j.meegid.2009.10.001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kelly B J, King L A, Possee R D. Introduction to baculovirus molecular biology. Methods Mol Biol. 2007;388:25–54. doi: 10.1007/978-1-59745-457-5_2. [DOI] [PubMed] [Google Scholar]
  22. Labrie S J, Frois-Moniz K, Osburne M S, Kelly L, Roggensack S E, Sullivan M B, Gearin G, Zeng Q, Fitzgerald M, Henn M R, Chisholm S W. Genomes of marine cyanopodoviruses reveal multiple origins of diversity. Environ Microbiol. 2013;15:1356–1376. doi: 10.1111/1462-2920.12053. [DOI] [PubMed] [Google Scholar]
  23. Larsen J B, Larsen A, Bratbak G, Sandaa R A. Phylogenetic analysis of members of the Phycodnaviridae virus family, using amplified fragments of the major capsid protein gene. Appl Environ Microbiol. 2008;74:3048–3057. doi: 10.1128/AEM.02548-07. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Liu Y M, Zhang Q Y, Yuan X P. Abundance and diversity of virioplankton in Lake Donghu, Wuhan. Acta Hydrobiology Sinica. 2005;29:1–6. [Google Scholar]
  25. Liu Y M, Zhang Q Y, Yuan X P, Li Z Q, Gui J F. Seasonal variation of virioplankton in a eutrophic shallow lake. Hydrobiologia. 2006;560:323–334. doi: 10.1007/s10750-005-1280-4. [DOI] [Google Scholar]
  26. Lopez-Bueno A, Tamames J, Velazquez D, Moya A, Quesada A, Alcami A. High diversity of the viral community from an Antarctic lake. Science. 2009;326:858–861. doi: 10.1126/science.1179287. [DOI] [PubMed] [Google Scholar]
  27. Lu J, Chen F, Hodson R E. Distribution, isolation, host specificity, and diversity of cyanophages infecting marine Synechococcus spp. in river estuaries. Appl Environ Microbiol. 2001;67:3285–3290. doi: 10.1128/AEM.67.7.3285-3290.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Maranger R, Bird D F. Viral Abundance in Aquatic Systems — a Comparison between Marine and Fresh-Waters. Mar Ecol Prog Ser. 1995;121:217–226. doi: 10.3354/meps121217. [DOI] [Google Scholar]
  29. Marston M F, Pierciey F J, Jr., Shepard A, Gearin G, Qi J, Yandava C, Schuster S C, Henn M R, Martiny J B. Rapid diversification of coevolving marine Synechococcus and a virus. Proc Natl Acad Sci U S A. 2012;109:4544–4549. doi: 10.1073/pnas.1120310109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Marvin D A. Model-Building Studies of Inovirus — Genetic Variations on a Geometric Theme. Int J Biol Macromol. 1990;12:125–138. doi: 10.1016/0141-8130(90)90064-H. [DOI] [PubMed] [Google Scholar]
  31. Muhire B, Martin D P, Brown J K, Navas-Castillo J, Moriones E, Zerbini F M, Rivera-Bustamante R, Malathi V G, Briddon R W, Varsani A. A genome-wide pairwise-identity-based proposal for the classification of viruses in the genus Mastrevirus (family Geminiviridae) Arch Virol. 2013;158(6):1411–24. doi: 10.1007/s00705-012-1601-7. [DOI] [PubMed] [Google Scholar]
  32. Peng L, Liu Y, Chen W, Liu L, Kent M, Song L. Health risks associated with consumption of microcystin-contaminated fish and shellfish in three Chinese lakes: significance for freshwater aquacultures. Ecotoxicol Environ Saf. 2010;73:1804–1811. doi: 10.1016/j.ecoenv.2010.07.043. [DOI] [PubMed] [Google Scholar]
  33. Phan T G, Kapusinszky B, Wang C, Rose R K, Lipton H L, Delwart E L. The fecal viral flora of wild rodents. PLoS Pathog. 2011;7:e1002218. doi: 10.1371/journal.ppat.1002218. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Prangishvili D, Garrett R A. Exceptionally diverse morphotypes and genomes of crenarchaeal hyperthermophilic viruses. Biochem Soc Trans. 2004;32:204–208. doi: 10.1042/BST0320204. [DOI] [PubMed] [Google Scholar]
  35. Proctor L M, Fuhrman J A. Viral Mortality of Marine-Bacteria and Cyanobacteria. Nature. 1990;343:60–62. doi: 10.1038/343060a0. [DOI] [Google Scholar]
  36. Qin B. Approaches to mechanisms and control of eutrophication of shallow lakes. in the middle and lower reaches of the Yangze River. Hupo Kexue. 2002;14:193–202. [Google Scholar]
  37. Raytcheva D A, Haase-Pettingell C, Piret J M, King J A. Intracellular Assembly of Cyanophage Syn5 Proceeds through a Scaffold-Containing Procapsid. J Virol. 2011;85:2406–2415. doi: 10.1128/JVI.01601-10. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Roux S, Krupovic M, Poulet A, Debroas D, and Enault F. 2012. Evolution and Diversity of the Microviridae Viral Family through a Collection of 81 New Complete Genomes Assembled from Virome Reads. Plos One, 7. [DOI] [PMC free article] [PubMed]
  39. Short C M, Suttle C A. Nearly identical bacteriophage structural gene sequences are widely distributed in both marine and freshwater environments. Appl Environ Microbiol. 2005;71:480–486. doi: 10.1128/AEM.71.1.480-486.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Song L, Chen W, Peng L, Wan N, Gan N, Zhang X. Distribution and bioaccumulation of microcystins in water columns: a systematic investigation into the environmental fate and the risks associated with microcystins in Meiliang Bay, Lake Taihu. Water Res. 2007;41:2853–2864. doi: 10.1016/j.watres.2007.02.013. [DOI] [PubMed] [Google Scholar]
  41. Sullivan M B, Waterbury J B, Chisholm S W. Cyanophages infecting the oceanic cyanobacterium Prochlorococcus. Nature. 2003;424:1047–1051. doi: 10.1038/nature01929. [DOI] [PubMed] [Google Scholar]
  42. Sullivan M B, Lindell D, Lee J A, Thompson L R, Bielawski J P, Chisholm S W. Prevalence and evolution of core photosystem II genes in marine cyanobacterial viruses and their hosts. PLoS Biol. 2006;4:e234. doi: 10.1371/journal.pbio.0040234. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Sullivan M B, Coleman M L, Quinlivan V, Rosenkrantz J E, DeFrancesco A S, Tan G, Fu R, Lee J A, Waterbury J B, Bielawski J P, Chisholm S W. Portal protein diversity and phage ecology. Environ Microbiol. 2008;10:2810–2823. doi: 10.1111/j.1462-2920.2008.01702.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Sullivan M B, Huang K H, Ignacio-Espinoza J C, Berlin A M, Kelly L, Weigele P R, DeFrancesco A S, Kern S E, Thompson L R, Young S, Yandava C, Fu R, Krastins B, Chase M, Sarracino D, Osburne M S, Henn M R, Chisholm S W. Genomic analysis of oceanic cyanobacterial myoviruses compared with T4-like myoviruses from diverse hosts and environments. Environ Microbiol. 2010;12:3035–3056. doi: 10.1111/j.1462-2920.2010.02280.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Suttle C A. Viruses in the sea. Nature. 2005;437:356–361. doi: 10.1038/nature04160. [DOI] [PubMed] [Google Scholar]
  46. Suttle C A, Chan A M. Dynamics and Distribution of Cyanophages and Their Effect on Marine Synechococcus Spp. Appl Environ Microbiol. 1994;60:3167–3174. doi: 10.1128/aem.60.9.3167-3174.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Thurber R V, Haynes M, Breitbart M, Wegley L, Rohwer F. Laboratory procedures to generate viral metagenomes. Nature Protocols. 2009;4:470–483. doi: 10.1038/nprot.2009.10. [DOI] [PubMed] [Google Scholar]
  48. Turnbull M, Webb B. Perspectives on polydnavirus origins and evolution. Adv Virus Res. 2002;58:203–254. doi: 10.1016/S0065-3527(02)58006-4. [DOI] [PubMed] [Google Scholar]
  49. Van Duin J T N. The bacteriophages. 2nd ed. New York: Oxford University Press; 2006. [Google Scholar]
  50. Waltzek T B, Kelley G O, Alfaro M E, Kurobe T, Davison A J, Hedrick R P. Phylogenetic relationships in the family Alloherpesviridae. Dis Aquat Organ. 2009;84:179–194. doi: 10.3354/dao02023. [DOI] [PubMed] [Google Scholar]
  51. Wang K, Chen F. Genetic diversity and population dynamics of cyanophage communities in the Chesapeake Bay. Aquat Microb Ecol. 2004;34:105–116. doi: 10.3354/ame034105. [DOI] [Google Scholar]
  52. Weinbauer M G, Hofle M G. Significance of viral lysis and flagellate grazing as factors controlling bacterioplankton production in a eutrophic lake. Appl Environ Microbiol. 1998;64:431–438. doi: 10.1128/aem.64.2.431-438.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Williams T, Barbosa-Solomieu V, Chinchar V G. A decade of advances in iridovirus research. Adv Virus Res. 2005;65:173–248. doi: 10.1016/S0065-3527(05)65006-3. [DOI] [PubMed] [Google Scholar]
  54. Williamson S J, Rusch D B, Yooseph S, Halpern A L, Heidelberg K B, Glass J I, Andrews-Pfannkoch C, Fadrosh D, Miller C S, Sutton G, Frazier M, Venter J C. The Sorcerer II Global Ocean Sampling Expedition: Metagenomic Characterization of Viruses within Aquatic Microbial Samples. Plos One. 2008;3(1):e1456. doi: 10.1371/journal.pone.0001456. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Wilson W H, Etten J L V, Schroeder D S, Nagasaki K, Brussaard C, Delaroque N, Bratbak G, Suttle C. Phycodnaviridae, vol. Eighth Report of the International Committee of the Taxonomy of Viruses. San Diego: Elsevier Academic Press; 2005. [Google Scholar]
  56. Yamada T, Onimatsu H, Van Etten J L. Chlorella viruses. Adv Virus Res. 2006;66:293–336. doi: 10.1016/S0065-3527(06)66006-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Yanai-Balser G M, Duncan G A, Eudy J D, Wang D, Li X, Agarkova I V, Dunigan D D, Van Etten J L. Microarray analysis of Paramecium bursaria chlorella virus 1 transcription. J Virol. 2010;84:532–542. doi: 10.1128/JVI.01698-09. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Yoshida T, Takashima Y, Tomaru Y, Shirai Y, Takao Y, Hiroishi S, Nagasaki K. Isolation and characterization of a cyanophage infecting the toxic cyanobacterium Microcystis aeruginosa. Appl Environ Microbiol. 2006;72:1239–1247. doi: 10.1128/AEM.72.2.1239-1247.2006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Zhang T, Breitbart M, Lee W H, Run J Q, Wei C L, Soh S W, Hibberd M L, Liu E T, Rohwer F, Ruan Y. RNA viral community in human feces: prevalence of plant pathogenic viruses. PLoS Biol. 2006;4:e3. doi: 10.1371/journal.pbio.0040003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Zhong Y, Chen F, Wilhelm S W, Poorvin L, Hodson R E. Phylogenetic diversity of marine cyanophage isolates and natural virus communities as revealed by sequences of viral capsid assembly protein gene g20. Appl Environ Microbiol. 2002;68:1576–1584. doi: 10.1128/AEM.68.4.1576-1584.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Zhou J Z C, Wang L L. Study on characteristic of algae growth in Tai Lake based on nonlinear dynamic analysis. Acta Hydrobiologica Sinica. 2009;33(5):931–936. doi: 10.3724/SP.J.1035.2009.50931. [DOI] [Google Scholar]

Articles from Virologica Sinica are provided here courtesy of Wuhan Institute of Virology, Chinese Academy of Sciences

RESOURCES