Abstract
Japanese encephalitis virus (JEV) is a mosquito-borne flavivirus closely related to the human pathogens including yellow fever virus, dengue virus and West Nile virus. There are currently no effective antiviral therapies for all of the flavivirus and only a few highly effective vaccines are licensed for human use. In this paper, the E protein domain III (DIII) of six heterologous flaviviruses (DENV1-4, WNV and JEV) was expressed in Escherichia coli successfully. The proteins were purified after a solubilization and refolding procedure, characterized by SDS-PAGE and Western blotting. Competitive inhibition showed that all recombinant flavivirus DIII proteins blocked the entry of JEV into BHK-21 cells. Further studies indicated that antibodies induced by the soluble recombinant flavivirus DIII partially protected mice against lethal JEV challenge. These results demonstrated that recombinant flavivirus DIII proteins could inhibit JEV infection competitively, and immunization with proper folding flavivirus DIII induced cross-protection against JEV infection in mice, implying a possible role of DIII for the cross-protection among flavivirus as well as its use in antigens for immunization in animal models.
Keywords: Japanese encephalitis virus, E protein domain III, Cross-protection, Antibody
References
- Appaiahgari M B, Vrati S. IMOJEV (R): a Yellow fever virus-based novel Japanese encephalitis vaccine. Expert Review of Vaccines. 2010;9:1371–1384. doi: 10.1586/erv.10.139. [DOI] [PubMed] [Google Scholar]
- Calisher C H, Karabatsos N, Dalrymple J M, Shope R E, Porterfield J S, Westaway E G, Brandt W E. Antigenic Relationships between Flaviviruses as Determined by Cross-Neutralization Tests with Polyclonal Antisera. Journal of General Virology. 1989;70:37–43. doi: 10.1099/0022-1317-70-1-37. [DOI] [PubMed] [Google Scholar]
- Campbell GL, Hills SL, Fischer M, Jacobson JA, Hoke CH, et al. Estimated global incidence of Japanese encephalitis: a systematic review. Bull World Health Organ. 2011;89:766–774. doi: 10.2471/BLT.10.085233. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chavez J H, Silva J R, Amarilla A A, Moraes Figueiredo L T. Domain III peptides from flavivirus envelope protein are useful antigens for serologic diagnosis and targets for immunization. Biologicals. 2010;38:613–618. doi: 10.1016/j.biologicals.2010.07.004. [DOI] [PubMed] [Google Scholar]
- Chien Y J, Chen W J, Hsu W L, Chiou S S. Bovine lactoferrin inhibits Japanese encephalitis virus by binding to heparan sulfate and receptor for low density lipoprotein. Virology. 2008;379:143–151. doi: 10.1016/j.virol.2008.06.017. [DOI] [PubMed] [Google Scholar]
- Chow L, Sun H C, Chen H Y, Lin S Y, Wu J S. Detection and differentiation of dengue-1 from Japanese encephalitis virus infections by ABC MAC-ELISA. Zhonghua Min Guo Wei Sheng Wu Ji Mian Yi Xue Za Zhi. 1992;25:172–180. [PubMed] [Google Scholar]
- Chu J H, Chiang C C, Ng M L. Immunization of flavivirus West Nile recombinant envelope domain III protein induced specific immune response and protection against West Nile virus infection. J Immunol. 2007;178:2699–2705. doi: 10.4049/jimmunol.178.5.2699. [DOI] [PubMed] [Google Scholar]
- Chu J J H, Rajamanonmani R, Li J, Bhuvanakantham R, Lescar J, Ng M L. Inhibition of West Nile virus entry by using a recombinant domain III from the envelope glycoprotein. Journal of General Virology. 2005;86:405–412. doi: 10.1099/vir.0.80411-0. [DOI] [PubMed] [Google Scholar]
- Crill W D, Roehrig J T. Monoclonal antibodies that bind to domain III of dengue virus E glycoprotein are the most efficient blockers of virus adsorption to Vero cells. Journal of Virology. 2001;75:7769–7773. doi: 10.1128/JVI.75.16.7769-7773.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dou J L, Jing T, Fan JJ, Yuan ZM. Surface display of domain III of Japanese encephalitis virus E protein onSalmonella typhimuriumby using an ice nucleation protein. Virol Sin. 2011;26:409–417. doi: 10.1007/s12250-011-3216-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eder S, Dubischar-Kastner K, Firbas C, Jelinek T, Jilma B, Kaltenboeck A, Knappik M, Kollaritsch H, Kundi M, Paulke-Korinek M, Schuller E, Klade C S. Long term immunity following a booster dose of the inactivated Japanese Encephalitis vaccine IXIARO (R), IC51. Vaccine. 2011;29:2607–2612. doi: 10.1016/j.vaccine.2011.01.058. [DOI] [PubMed] [Google Scholar]
- Ghosh D, Basu A. Plos Neglected Tropical Diseases. 2009. Japanese Encephalitis — A Pathological and Clinical Perspective; p. 3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Heinz F X, Stiasny K, Puschnerauer G, Holzmann H, Allison S L, Mandl C W, Kunz C. Structural-Changes and Functional Control of the Tick-Borne Encephalitis-Virus Glycoprotein-E by the Heterodimeric Association with Protein Prm. Virology. 1994;198:109–117. doi: 10.1006/viro.1994.1013. [DOI] [PubMed] [Google Scholar]
- Hennessy S, Liu Z L, Tsai T F, Strom B L, Wan C M, Liu H L, Wu T X, Yu H J, Liu Q M, Karabatsos N, Bilker W B, Halstead S B. Effectiveness of live-attenuated Japanese encephalitis vaccine (SA14-14-2): A case-control study. Lancet. 1996;347:1583–1586. doi: 10.1016/S0140-6736(96)91075-2. [DOI] [PubMed] [Google Scholar]
- Hoke C H, Nisalak A, Sangawhipa N, Jatanasen S, Laorakapongse T, Innis B L, Kotchasenee S O, Gingrich J B, Latendresse J, Fukai K, Burke D S. Protection against Japanese Encephalitis by Inactivated Vaccines. New England Journal of Medicine. 1988;319:608–614. doi: 10.1056/NEJM198809083191004. [DOI] [PubMed] [Google Scholar]
- Jones C T, Ma L, Burgner J W, Groesch T D, Post C B, Kuhn R J. Flavivirus capsid is a dimeric alpha-helical protein. J Virol. 2003;77:7143–7149. doi: 10.1128/JVI.77.12.7143-7149.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kanai R, Kar K, Anthony K, Gould L H, Ledizet M, Fikrig E, Marasco W A, Koski R A, Modis Y. Crystal structure of West Nile virus envelope glycoprotein reveals viral surface epitopes. J Virol. 2006;80:11000–11008. doi: 10.1128/JVI.01735-06. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Konno J, Endo K, Agatsuma H, Ishida N. Cyclic Outbreaks ofJapanese Encephalitisamong Pigs and Humans. American Journal of Epidemiology. 1966;84:292–&. doi: 10.1093/oxfordjournals.aje.a120643. [DOI] [PubMed] [Google Scholar]
- Kuhn R J, Zhang W, Rossmann M G, Pletnev S V, Corver J, Lenches E, Jones C T, Mukhopadhyay S, Chipman P R, Strauss E G, Baker T S, Strauss J H. Structure of dengue virus: Implications for flavivirus organization, maturation, and fusion. Cell. 2002;108:717–725. doi: 10.1016/S0092-8674(02)00660-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Li S H, Li X F, Zhao H, Jiang T, Deng Y Q, Yu X D, Zhu Q Y, Qin E D, Qin C F. Cross protection against lethal West Nile virus challenge in mice immunized with recombinant E protein domain III of Japanese encephalitis virus. Immunol Lett. 2011;138:156–160. doi: 10.1016/j.imlet.2011.04.003. [DOI] [PubMed] [Google Scholar]
- Lindenbach B D, Thiel H J, Rice C M. Flaviviridae: the virus and their replication. In: Howley D M K a P M., editor. Fields virology. 5th ed. Philadelphia, Pa: Lippincott-Raven; 2007. [Google Scholar]
- Lozach P Y, Burleigh L, Staropoli I, Navarro-Sanchez E, Harriague J, Virelizier J L, Rey F A, Despres P, Arenzana-Seisdedos F, Amara A. Dendritic cell-specific intercellular adhesion molecule 3-grabbing non-integrin (DC-SIGN)-mediated enhancement of dengue virus infection is independent of DC-SIGN internalization signals. J Biol Chem. 2005;280:23698–23708. doi: 10.1074/jbc.M504337200. [DOI] [PubMed] [Google Scholar]
- Luca V C, AbiMansour J, Nelson C A, Fremont D H. Crystal structure of the Japanese encephalitis virus envelope protein. J Virol. 2012;86:2337–2346. doi: 10.1128/JVI.06072-11. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Miller J L, de Wet B J, Martinez-Pomares L, Radcliffe C M, Dwek R A, Rudd P M, Gordon S. The mannose receptor mediates dengue virus infection of macrophages. PLoS Pathog. 2008;4:e17. doi: 10.1371/journal.ppat.0040017. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Modis Y, Ogata S, Clements D, Harrison S C. A ligand-binding pocket in the dengue virus envelope glycoprotein. Proc Natl Acad Sci U S A. 2003;100:6986–6991. doi: 10.1073/pnas.0832193100. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nothdurft H D, Jelinek T, Marschang A, Maiwald H, Kapaun A, Loscher T. Adverse reactions to Japanese encephalitis vaccine in travellers. J Infect. 1996;32:119–122. doi: 10.1016/S0163-4453(96)91281-5. [DOI] [PubMed] [Google Scholar]
- Nybakken G E, Oliphant T, Johnson S, Burke S, Diamond M S, Fremont D H. Structural basis of West Nile virus neutralization by a therapeutic antibody. Nature. 2005;437:764–769. doi: 10.1038/nature03956. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Plesner A M, Arlien-Soborg P, Herning M. Neurological complications to vaccination against Japanese encephalitis. the official journal of the European Federation of Neurological Societies. 1998;5:479–485. doi: 10.1046/j.1468-1331.1998.550479.x. [DOI] [PubMed] [Google Scholar]
- Rajamanonmani R, Nkenfou C, Clancy P, Yau Y H, Shochat S G, Sukupolvi-Petty S, Schul W, Diamond M S, Vasudevan S G, Lescar J. On a mouse monoclonal antibody that neutralizes all four dengue virus serotypes. Journal of General Virology. 2009;90:799–809. doi: 10.1099/vir.0.006874-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rey F A, Heinz F X, Mandl C, Kunz C, Harrison S C. The envelope glycoprotein from tick-borne encephalitis virus at 2 A resolution. Nature. 1995;375:291–298. doi: 10.1038/375291a0. [DOI] [PubMed] [Google Scholar]
- Schioler K L, Samuel M, Wai K L. Cochrane Database Syst Rev. 2007. Vaccines for preventing Japanese encephalitis; p. CD004263. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Song B H, Yun G N, Kim J K, Yun S I, Lee Y M. Biological and genetic properties of SA(14)-14-2, a live-attenuated Japanese encephalitis vaccine that is currently available for humans. Journal of Microbiology. 2012;50:698–706. doi: 10.1007/s12275-012-2336-6. [DOI] [PubMed] [Google Scholar]
- Tesh R B, da Rosa A P A T, Guzman H, Araujo T P, Xiao S Y. Immunization with heterologous flaviviruses protective against fatal West Nile encephalitis. Emerging Infectious Diseases. 2002;8:245–251. doi: 10.3201/eid0803.010238. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wu K P, Wu C W, Tsao Y P, Kuo T W, Lou Y C, Lin C W, Wu S C, Cheng J W. Structural basis of a flavivirus recognized by its neutralizing antibody — Solution structure of the domain III of the Japanese encephalitis virus envelope protein. Journal of Biological Chemistry. 2003;278:46007–46013. doi: 10.1074/jbc.M307776200. [DOI] [PubMed] [Google Scholar]
- Yu I M, Zhang W, Holdaway H A, Li L, Kostyuchenko V A, Chipman P R, Kuhn R J, Rossmann M G, Chen J. Structure of the immature dengue virus at low pH primes proteolytic maturation. Science. 2008;319:1834–1837. doi: 10.1126/science.1153264. [DOI] [PubMed] [Google Scholar]
- Zaitseva E, Yang S T, Melikov K, Pourmal S, Chernomordik L V. PLoS Pathog. 2010. Dengue Virus Ensures Its Fusion in Late Endosomes Using Compartment-Specific Lipids; p. 6. [DOI] [PMC free article] [PubMed] [Google Scholar]