Skip to main content
Virologica Sinica logoLink to Virologica Sinica
. 2013 Nov 6;28(6):318–325. doi: 10.1007/s12250-013-3341-6

High-resolution 3D structures reveal the biological functions of reoviruses

Xiaoming Li 1,2, Qin Fang 1,
PMCID: PMC8208461  PMID: 24254888

Abstract

Viruses in the family Reoviridae are non-enveloped particles comprising a segmented double-stranded RNA genome surrounded by a two-layered or multi-layered icosahedral protein capsid. These viruses are classified into two sub-families based on their particle structural organization. Recent studies have focused on high-resolution three-dimensional structures of reovirus particles by using cryo-electron microscopy (cryo-EM) to approach the resolutions seen in X-ray crystallographic structures. The results of cryo-EM image reconstructions allow tracing of most of the protein side chains, and thus permit integration of structural and functional information into a coherent mechanism for reovirus assembly and entry.

Keywords: Non-enveloped virus, Reoviruses, Structural basis, Assembly, Cell entry

References

  1. Agosto MA, Myers KS, Ivanovic T, Nibert ML. A positive feedback mechanism promotes reovirus particle conversion to the intermediate associated with membrane penetration. Proc. Natl. Acad. Sci. USA. 2008;105:10571–10576. doi: 10.1073/pnas.0802039105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Aoki S T, Settembre E C, Trask S D, Greenberg H B, Harrison S C, Dormitzer P R. Structure of rotavirus outer-layer protein VP7 bound with a neutralizing Fab. Science. 2009;3(24):1444–1447. doi: 10.1126/science.1170481. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chandran K, Farsetta D L, Nibert M L. Strategy for nonenveloped virus entry: a hydrophobic conformer of the reovirus membrane penetration protein micro 1 mediates membrane disruption. J Virol. 2002;76:9920–9933. doi: 10.1128/JVI.76.19.9920-9933.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chandran K, Parker J S, Ehrlich M, Kirchhausen T, Nibert M L. The delta region of outer-capsid protein micro 1 undergoes conformational change and release from reovirus particles during cell entry. J Virol. 2003;77:13361–13375. doi: 10.1128/JVI.77.24.13361-13375.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chen J Z, Settembre E C, Aoki S T, Zhang X, Bellamy A R, Dormitzer P R, Harrison S C, Grigorieff N. Molecular interactions in rotavirus assembly and uncoating seen by high-resolution cryo-EM. Proc Natl Acad Sci USA. 2009;106:10644–10648. doi: 10.1073/pnas.0904024106. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cheng L P, Fang Q, Shah S, Atanasov I C, Zhou Z H. Subnanometer-resolution structures of the grass carp reovirus core and virion. J Mol Biol. 2008;382:213–222. doi: 10.1016/j.jmb.2008.06.075. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cheng L P, Zhu J, Hui W H, Zhang X, Honig B, Fang Q, Zhou Z H. Backbone model of an aquareovirus virion by cryo-electron microscopy and bioinformatics. J Mol Biol. 2010;397:852–863. doi: 10.1016/j.jmb.2009.12.027. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dormitzer P R, Nason E B, Prasad B V, Harrison S C. Structural rearrangements in the membrane penetration protein of a nonenveloped virus. Nature. 2004;430:1053–1058. doi: 10.1038/nature02836. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Dryden K A, Wang G, Yeager M, Nibert M L, Coombs K M, Furlong D B, Fields B N, Baker T S. Early steps in reovirus infection are associated with dramatic changes in supramolecular structure and protein conformation: analysis of virions and subviral particles by cryoelectron microscopy and image reconstruction. J Cell Biol. 1993;122:1023–1041. doi: 10.1083/jcb.122.5.1023. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Estes M K, Kapikian A Z. Rotaviruses. In: Knipe DM, Howley PM, editors. Fields Virology. 5th edn. Philadelphia: Lippincott, Williams & Wilkins; 2007. pp. 1918–1974. [Google Scholar]
  11. Fang Q, Shah S, Liang Y, Zhou Z H. 3D reconstruction and capsid protein character-ization of grass carp reovirus. Sci China C Life Sci. 2005;48:593–600. doi: 10.1360/062004-105. [DOI] [PubMed] [Google Scholar]
  12. Hewat E A, Booth T F, Loudon P T, Roy P. Three-dimensional reconstruction of baculovirus expressed bluetongue virus core-like particles by cryo-electron microscopy. Virology. 1992;189:10–20. doi: 10.1016/0042-6822(92)90676-G. [DOI] [PubMed] [Google Scholar]
  13. Ivanovic T, Agosto M A, Zhang L, Chandran K, Harrison S C, Nibert M L. Peptides released from reovirus outer capsid form membrane pores that recruit virus particles. EMBO J. 2008;27:1289–1298. doi: 10.1038/emboj.2008.60. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kim J, Zhang X, Centonze V E, Bowman V D, Noble S, Baker T S, Nibert M L. The hydrophilic amino-terminal arm of reovirus core-shell protein λ1 is dispensable for particle assembly. J Virol. 2002;76:12211–12222. doi: 10.1128/JVI.76.23.12211-12222.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Labbé M, Charpilienne A, Crawford S E, Estes M K, Cohen J. Expression of rotavirus VP2 produces empty corelike particles. J Virol. 1991;65:2946–2952. doi: 10.1128/jvi.65.6.2946-2952.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Liemann S, Chandran K, Baker T S, Nibert M L, Harrison S C. Structure of the reovirus membrane-penetration protein, Mu1, in a complex with is protector protein, Sigma3. Cell. 2002;108:283–295. doi: 10.1016/S0092-8674(02)00612-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Makkay A, Noordeloos A A, Mertens P P C, Attoui H, Duncan R, Dermody T S. Reoviridae. In: King A MQ, Adams M J, Carstens E B, Lefkowitz E J, editors. Virus Taxonomy. Oxford: Elsevier; 2011. pp. 541–638. [Google Scholar]
  18. McClain B, Settembre E, Temple B R, Bellamy A R, Harrison SC. X-ray crystal structure of the rotavirus inner capsid particle at 3.8A° resolution. J Mol Biol. 2010;397:587–599. doi: 10.1016/j.jmb.2010.01.055. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Odegard A L, Chandran K, Zhang X, Parker J S, Baker T S, Nibert M L. Putative autocleavage of outer capsid protein micro1, allowing release of myristoylated peptide micro1N during particle uncoating, is critical for cell entry by reovirus. J Virol. 2004;78:8732–8745. doi: 10.1128/JVI.78.16.8732-8745.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Reinisch K M, Nibert M L, Harrison S C. Structure of the reovirus core at 3.6 angstrom resolution. Nature. 2000;404(6781):960–967. doi: 10.1038/35010041. [DOI] [PubMed] [Google Scholar]
  21. Settembre E C, Chen J Z, Dormitzer P R, Grigorieff N, Harrison S C. Atomic model of an infectious rotavirus particle. EMBO J. 2011;30:408–416. doi: 10.1038/emboj.2010.322. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Yu X, Jin L, Zhou Z H. 3.88 Å structure of cytoplasmic polyhedrosis virus by cryo-electron microscopy. Nature. 2008;453:415–419. doi: 10.1038/nature06893. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Zhang L, Agosto M A, Ivanovic T, King D S, Nibert M L, Harrison S C. Requirements for the formation of membrane pores by the reovirus myristoylated m1N peptide. J Virol. 2009;83:7004–7014. doi: 10.1128/JVI.00377-09. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Zhang L, Chandran K, Nibert M L, Harrison S C. Reovirus m1 structural rearrangements that mediate membrane penetration. J Virol. 2006;80:12367–12376. doi: 10.1128/JVI.01343-06. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Zhang L, Agosto M A, Ivanovic T, King D S, Nibert M L, Harrison S C. Requirements for the formation of membrane pores by the reovirus myristoylated micro1N peptide. J Virol. 2009;83:7004–7014. doi: 10.1128/JVI.00377-09. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Zhang X, Tang J G, Walker S B, O’Harac D, Nibertd M L, Duncanc R, Bakera T. Structure of avian orthoreovirus virion by electron cryomicroscopy and image reconstruction. Virology. 2005;343:25–35. doi: 10.1016/j.virol.2005.08.002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Zhang X, Settembre E, Xu C, Dormitzer PR, Bellamy R, Harrison SC, Grigorieff N. Near-atomic resolution using electron cryomicroscopy and single-particle reconstruction. Proc Natl Acad Sci USA. 2008;105:1867–1872. doi: 10.1073/pnas.0711623105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Zhang X, Boyce M, Bhattacharya B, Schein S, Roy P, Zhou Z H. Bluetongue virus coat protein VP2 contains sialic acidbinding domains, and VP5 resembles enveloped virus fusion proteins. Proc Natl Acad Sci USA. 2010;107:6292–6297. doi: 10.1073/pnas.0913403107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Zhang X, Jin L, Fang Q, Hui W H, Zhou Z H. 3.3 Å cryo-EM structure of a nonenveloped virus reveals a priming mechanism for cell entry. Cell. 2010;141:472–482. doi: 10.1016/j.cell.2010.03.041. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Virologica Sinica are provided here courtesy of Wuhan Institute of Virology, Chinese Academy of Sciences

RESOURCES