Skip to main content
Virologica Sinica logoLink to Virologica Sinica
. 2013 Nov 6;28(6):345–351. doi: 10.1007/s12250-013-3350-5

PNKP knockdown by RNA interference inhibits herpes simplex virus-1 replication in astrocytes

Lei Yue 1, Sujie Guo 1, Xia Cao 2, Ying Zhang 1, Le Sun 1, Longding Liu 1, Min Yan 1, Qihan Li 1,
PMCID: PMC8208462  PMID: 24213989

Abstract

Herpes simplex virus-1 (HSV-1) is a major pathogen that causes various central nervous system (CNS) diseases, including herpes simplex encephalitis and meningitis. According to recent studies, PNKP significantly affects the proliferation of HSV-1 in astrocytes. Here, we used viral proliferation curves to confirm the significant inhibitory effects of PNKP on HSV-1 proliferation. PNKP downregulation was also confirmed by analyzing the transcription of viral genes. We found that PNKP downregulation affects the viral DNA copy number. This study preliminarily confirms that PNKP affects viral proliferation by affecting HSV-1 genome cyclization. These results also suggest that astrocytes play a specific role in preventing HSV-1 infection.

Keywords: Herpes simplex virus I (HSV-1), Replication, PNKP, Cyclization, Primary culture, Monkey

References

  1. Baringer J R. Herpes simplex infections of the nervous system. Neurol Clin. 2008;26:657–674. doi: 10.1016/j.ncl.2008.03.005. [DOI] [PubMed] [Google Scholar]
  2. Frangakis M V, Kimelberg H K. Dissociation of neonatal rat brain by dispase for preparation of primary astrocyte cultures. Neurochem Res. 1984;9:1689–1698. doi: 10.1007/BF00968079. [DOI] [PubMed] [Google Scholar]
  3. Garber D A, Beverley S M, Coen D M. Demonstration of circularization of herpes simplex virus DNA following infection using pulsed field gel electrophoresis. Virology. 1993;197:459–462. doi: 10.1006/viro.1993.1612. [DOI] [PubMed] [Google Scholar]
  4. Gorska P. Principles in laboratory animal research for experimental purposes. Med Sci Monit. 2000;6:171–180. [PubMed] [Google Scholar]
  5. Guo Y, Audry M, Ciancanelli M, Alsina L, Azevedo J, Herman M, Anguiano E, Sancho-Shimizu V, Lorenzo L, Pauwels E, Philippe P B, Perez de Diego R, Cardon A, Vogt G, Picard C, Andrianirina Z Z, Rozenberg F, Lebon P, Plancoulaine S, Tardieu M, Valerie D, Jouanguy E, Chaussabel D, Geissmann F, Abel L, Casanova J L, Zhang S Y. Herpes simplex virus encephalitis in a patient with complete TLR3 deficiency: TLR3 is otherwise redundant in protective immunity. J Exp Med. 2011;208:2083–2098. doi: 10.1084/jem.20101568. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Jilani A, Ramotar D, Slack C, Ong C, Yang X M, Scherer S W, Lasko D D. Molecular cloning of the human gene, PNKP, encoding a polynucleotide kinase 3′-phosphatase and evidence for its role in repair of DNA strand breaks caused by oxidative damage. J Biol Chem. 1999;274:24176–24186. doi: 10.1074/jbc.274.34.24176. [DOI] [PubMed] [Google Scholar]
  7. Kennedy P G, Chaudhuri A. Herpes simplex encephalitis. J Neurol Neurosurg Psychiatry. 2002;73:237–238. doi: 10.1136/jnnp.73.3.237. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Lehman I R, Boehmer P E. Replication of herpes simplex virus DNA. J Biol Chem. 1999;274:28059–28062. doi: 10.1074/jbc.274.40.28059. [DOI] [PubMed] [Google Scholar]
  9. Levison S W, McCarthy K D. Characterization and partial purification of AIM: a plasma protein that induces rat cerebral type 2 astroglia from bipotential glial progenitors. J Neurochem. 1991;57:782–794. doi: 10.1111/j.1471-4159.1991.tb08220.x. [DOI] [PubMed] [Google Scholar]
  10. Li J, Hu S, Zhou L, Ye L, Wang X, Ho J, Ho W. Interferon lambda inhibits herpes simplex virus type I infection of human astrocytes and neurons. Glia. 2011;59:58–67. doi: 10.1002/glia.21076. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Livingston C M, DeLuca N A, Wilkinson D E, Weller S K. Oligomerization of ICP4 and rearrangement of heat shock proteins may be important for herpes simplex virus type 1 prereplicative site formation. J Virol. 2008;82:6324–6336. doi: 10.1128/JVI.00455-08. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Muylaert I, Elias P. Knockdown of DNA ligase IV/XRCC4 by RNA interference inhibits herpes simplex virus type I DNA replication. J Biol Chem. 2007;282:10865–10872. doi: 10.1074/jbc.M611834200. [DOI] [PubMed] [Google Scholar]
  13. Muylaert I, Tang K W, Elias P. Replication and recombination of herpes simplex virus DNA. J Biol Chem. 2011;286:15619–15624. doi: 10.1074/jbc.R111.233981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Norton W T, Farooq M, Chiu F C, Bottenstein J E. Pure astrocyte cultures derived from cells isolated from mature brain. Glia. 1988;1:403–414. doi: 10.1002/glia.440010608. [DOI] [PubMed] [Google Scholar]
  15. Pasieka T J, Cilloniz C, Carter V S, Rosato P, Katze M G, Leib D A. Functional genomics reveals an essential and specific role for Stat1 in protection of the central nervous system following herpes simplex virus corneal infection. J Virol. 2011;85:12972–12981. doi: 10.1128/JVI.06032-11. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Reinert L S, Harder L, Holm C K, Iversen M B, Horan K A, Dagnaes-Hansen F, Ulhoi B P, Holm T H, Mogensen T H, Owens T, Nyengaard J R, Thomsen A R, Paludan S R. TLR3 deficiency renders astrocytes permissive to herpes simplex virus infection and facilitates establishment of CNS infection in mice. J Clin Invest. 2012;122:1368–1376. doi: 10.1172/JCI60893. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Selmaj K W, Farooq M, Norton W T, Raine C S, Brosnan C F. Proliferation of astrocytesin vitroin response to cytokines. A primary role for tumor necrosis factor. J Immunol. 1990;144:129–135. [PubMed] [Google Scholar]
  18. Strang B L, Stow N D. Circularization of the herpes simplex virus type 1 genome upon lytic infection. J Virol. 2005;79:12487–12494. doi: 10.1128/JVI.79.19.12487-12494.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Tabernero A, Orfao A, Medina J M. Astrocyte differentiation in primary culture followed by flow cytometry. Neurosci Res. 1996;24:131–138. doi: 10.1016/0168-0102(95)00981-7. [DOI] [PubMed] [Google Scholar]
  20. Weinfeld M, Mani R S, Abdou I, Aceytuno R D, Glover J N. Tidying up loose ends: the role of polynucleotide kinase/phosphatase in DNA strand break repair. Trends Biochem Sci. 2011;36:262–271. doi: 10.1016/j.tibs.2011.01.006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Wuest T R, Carr D J. The role of chemokines during herpes simplex virus-1 infection. Front Biosci. 2008;13:4862–4872. doi: 10.2741/3045. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Yu X, Liu L, Wu L, Wang L, Dong C, Li W, Li Q. Herpes simplex virus type 1 tegument protein VP22 is capable of modulating the transcription of viral TK and gC genes via interaction with viral ICP0. Biochimie. 2010;92:1024–1030. doi: 10.1016/j.biochi.2010.04.025. [DOI] [PubMed] [Google Scholar]
  23. Zolner A E, Abdou I, Ye R, Mani R S, Fanta M, Yu Y, Douglas P, Tahbaz N, Fang S, Dobbs T, Wang C, Morrice N, Hendzel M J, Weinfeld M, Lees-Miller S P. Phosphorylation of polynucleotide kinase/phosphatase by DNA-dependent protein kinase and ataxia-telangiectasia mutated regulates its association with sites of DNA damage. Nucleic Acids Res. 2011;39:9224–9237. doi: 10.1093/nar/gkr647. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Virologica Sinica are provided here courtesy of Wuhan Institute of Virology, Chinese Academy of Sciences

RESOURCES