Abstract
目的
构建稳定过表达XAF1基因A2780卵巢癌细胞株,并观察XAF1基因对卵巢癌细胞增殖、凋亡、细胞周期及对紫杉醇敏感性的影响。
方法
分别将质粒pcDNA3.1(+)和pcDNA3.1(+)-XAF1转染至卵巢癌细胞A2780,通过质粒抗性标记(遗传霉素G418)筛选得到阴性对照细胞株(A2780/Negative control, A2780/NC)和稳定表达XAF1的细胞株(A2780/XAF1);通过行细胞克隆形成实验和CCK8实验检测细胞增殖及对紫杉醇的敏感性,流式细胞仪检测细胞周期及细胞凋亡。
结果
成功构建了稳定表达XAF1的卵巢癌细胞A2780/XAF1,细胞形态无明显变化;与A2780/NC相比,A2780/XAF1克隆形成能力能力更低(P= 0.0016),细胞贴壁后第1天和第3天增殖活性更低(P=0.009,0.0035),两组细胞的细胞周期分布差异存在统计学意义(P < 0.0001),两两比较结果显示A2780/XAF1组G2-M期细胞百分比显著增加(P < 0.001)。在无凋亡刺激、无血清培养及紫杉醇诱导下,A2780/XAF1的凋亡率均比A2780/NC更高(P < 0.001);在不同紫杉醇浓度作用下,A2780/XAF1的增殖活性均显著低于A2780/NC(P < 0.001),且A2780/XAF1的紫杉醇半数抑制浓度显著低于A2780/NC。
结论
成功构建稳定表达XAF1的卵巢癌细胞A2780/XAF1;XAF1调控卵巢癌细胞A2780的增殖、凋亡及细胞周期,并增加了卵巢癌对紫杉醇的敏感性。
Keywords: 卵巢癌, XAF1基因, 细胞增殖, 紫杉醇, 细胞凋亡, 细胞周期
Abstract
Objective
To construct an ovarian cancer cell line stably overexpressing XAF1 gene and observe the effects of XAF1 gene overexpression on proliferation, apoptosis, cell cycle and sensitivity to paclitaxel of the cells.
Methods
Ovarian cancer A2780 cells were transfected with the plasmids pcDNA3.1(+) or pcDNA3.1(+)-XAF1, and the cells stably Over expressing XAF1 (A2780/XAF1 cells) were screened using G418. Cell clone formation assay and CCK8 assay were used to evaluate the changes in proliferation and paclitaxel sensitivity of the transfected cells, and cell cycle and apoptosis of the cells were analyzed using flow cytometry.
Results
We successfully obtained A2780/XAF1 cells stably overexpressing XAF1, which exhibited no significant changes in cell morphology. Compared with the negative control cells (A2780/NC), A2780/XAF1 cells had lowered clone formation ability (P=0.0016) and attenuated proliferative activity on the first (P=0.009) and third (P=0.0035) days after cell adherence with also a significantly increased percentage of cells in G2-M phase (P < 0.001). A2780/XAF1 cells showed significantly higher apoptosis rates than A2780/NC cells in the absence of apoptotic stimulation, in serum-free culture or following paclitaxel induction (P < 0.001). The proliferative activity of A2780/XAF1 cells was significantly lower than that of A2780/NC cells after exposure to different paclitaxel concentrations (P < 0.001). The half inhibitory concentration of paclitaxel was significantly lower in A2780/XAF1 than in A2780/NC cells.
Conclusion
Overexpression of XAF1 significantly inhibits the proliferation, induces cell cycle arrest, promotes apoptosis, and increases paclitaxel sensitivity in ovarian cancer cells.
Keywords: ovarian cancer, XAF1 gene, cell proliferation, paclitaxel, cell apoptosis, cell cycle
卵巢癌具有早期诊断率低,复发率高,致死率高的特点,因其发病隐匿,约70%的卵巢癌患者诊断时已属晚期(FIGOⅢ~Ⅳ期),目前卵巢癌的治疗方案是手术辅以铂类联合紫杉烷类药物化疗[1-3]。通常初期行化疗的患者均有较好的疗效,但在后期仍有大量患者病情会发展到终末期,耐药随之出现[4]。癌细胞对凋亡的抵抗是导致多种化疗药产生耐药的重要因素,诱导肿瘤细胞凋亡有助于增加化疗药的效果,而XAF1在这个过程中起着重要作用[5-7]。
X-连锁凋亡抑制蛋白相关因子(XAF1)是XIAP的内源性抑制因子,XIAP是一种强烈的凋亡抑制蛋白,通过与Caspase3、7、9结合,阻止终末凋亡反应[8]。XAF1在正常细胞中广泛表达,然而在恶性肿瘤中包括卵巢癌[9-10]呈低表达或者缺失表达[11-13],主要原因是启动子的高甲基化[14-16]。XAF1低表达与恶性肿瘤细胞的过度增殖、Caspase活性增加以及多种凋亡诱导因子,恢复XAF1的表达可抑制肿瘤生长,促进凋亡发生并增加肿瘤对凋亡诱导因子的敏感性[17-18]。此外,XAF1可抑制肿瘤细胞的周期进展,包括诱导G0~G1期[9]、G1期[13]、G2-M期阻滞[19-21],促进有丝分裂灾难的发生[19-20]。在临床组织样本中,XAF1的表达量及甲基化状态与肿瘤分化程度[10, 22-24]、分期[21, 23]、耐药[10, 25]、生存期[21, 25-26]等相关,XAF1表达越低肿瘤预后越差[14, 21]。因此,XAF1在肿瘤的发生发展中发挥着重要作用,有望成为肿瘤治疗的新靶点。
卵巢癌易复发并伴随化疗耐药同时出现,寻找其治疗靶点已成为新的研究热点。曾有学者检测了上皮性卵巢癌中XAF1的表达发现XAF1呈低表达,并与卵巢癌的分化程度及预后相关,稳定过表达XAF1后抑制卵巢癌细胞SKOV3增殖,通过诱导XIAP失活、caspase-3及细胞色素c激活促进凋亡发生发生进而增加SKOV3细胞对顺铂的敏感性[10]。进一步,ZHAO等通过质粒转染技术增加了卵巢癌细胞SKOV3及其顺铂耐药株SKOV3/DDP中XAF1的表达,发现XAF1有较强的抗侵袭作用,通过抑制XIAP表达、激活caspase3、9促进SKOV3和SKOV3/DDP凋亡,增加了对顺铂的敏感性,此外XAF1诱导SKOV3和SKOV3/DDP细胞G0/G1阻滞[9]。综合以上研究说明XAF1可能是抑制卵巢癌生长的重要基因,并且增加了卵巢癌对顺铂的敏感性。因研究数目少,且均只用了一种卵巢癌细胞株即SKOV3进行实验, 故进一步采用不同的卵巢癌细胞株对XAF1在卵巢癌中的作用进行验证是极其必要的。除此之外,紫杉醇作为卵巢癌化疗的重要组成部分,其耐药已成为影响卵巢癌预后的主要因素之一,寻找紫杉醇增敏剂对于提高卵巢癌疗效尤其重要。与顺铂诱导细胞DNA损伤不同,紫杉醇通过抑制细胞有丝分裂,诱导细胞G2-M期阻滞进而杀死肿瘤细胞,而目前XAF1与卵巢癌紫杉醇增敏的相关研究仍未见报道。
本研究采用卵巢癌细胞A2780构建XAF1稳定过表达模型,研究XAF1基因对卵巢癌细胞的增殖、凋亡、细胞周期及紫杉醇敏感性的影响,旨在探究XAF1在卵巢癌发生发展中的作用提供新的更稳定的实验模型,并为卵巢癌患者靶向治疗提供新的靶点思路。
1. 材料和方法
1.1. 细胞及主要试剂仪器
人卵巢癌细胞株A2780(ECACC catalogue no.93112519)来源于本实验室;pcDNA3.1(+)-XAF1重组载体及阴性对照pcDNA3.1(+)载体构建于天津赛尔技术有限公司;转染试剂LipofectamineTM2000(invitrogen);RP1640培养基(Gibco);胎牛血清(杭州四季青生物工程材料有限公司);TRIzol、逆转录试剂盒、2×PCR master mix(南京诺唯赞生物科技股份有限公司),主要PCR仪(Bio-Rad)型号为CFX96;CCK8试剂盒(Biosharp);流式细胞仪型号为Millipore Guava;酶标仪型号为CMax plus。
1.2. 细胞培养
人卵巢癌细胞株A2780被培养于含10%的胎牛血清、青霉素和链霉素(1∶100)的RPMI 1640培养基中,置于37 ℃,5% CO2及90%相对湿度的细胞培养孵箱中。细胞单层贴壁生长,呈上皮细胞形态,扁平椭圆,每2~3 d传代1次。
1.3. A2780细胞的G418筛选最佳浓度确定
pcDNA3.1(+)载体在真核细胞中表达neo基因,即带有遗传霉素(G418)抗性,首先确定A2780细胞本身对G418的耐受程度,即确定最佳筛选浓度。取对数生长期A2780细胞接种于24孔板,细胞密度1.0×105/mL,每孔G418浓度分别为50、100、200、400、600、800、1000、1100 μg/mL,培养至第6天1100 μg/mL筛选的卵巢癌A2780细胞全部死亡,因此选择1100 μg/mL作为最佳筛选浓度。
1.4. 细胞转染和稳定转染细胞的筛选
取对数生长期A2780细胞接种于6孔板,设置空白对照孔,细胞密度1.5×105/mL,当细胞融合度至70%时,换为无血清培养基,3 h后,用LipofectamineTM2000转染试剂将,pcDNA3.1(+)-XAF1重组载体及阴性对照pcDNA3.1(+)分别转染进A2780细胞中,6~8 h后换为含血清培养基,转染后72 h传代至6孔板,在含有G4181100 μg/mL培养基中连续筛选18 d,细胞克隆集落形成,生长状态良好,验证XAF1的表达并保种,分别命名为A2780/XAF1和A2780/NC。
1.5. RNA提取及实时荧光定量PCR验证XAF1的表达
复苏保种的A2780/XAF1和A2780/NC,在含有G418(550 μg/mL)的培养基中维持培养,传代2次后,收集对数生长期的细胞,采用TRIzol法提取总RNA,按试剂盒说明书进行逆转录合成cDNA。在NCBI人类基因组数据库设计引物,人XAF1基因上下游引物序列分别为5'-GATGTCTGTCGCAGTGAA-3'和5'-TCTTGGT GCTTTCTTTGA-3',人β-Actin内参基因上下游引物序列为5'-GCACCACACCTTCTACAATGAG-3' 和5'- ACAGCCTGGATGGCTACGT-3',将引物、cDNA及PCR master mix分别加入PCR反应管,加入ddH2O至20 μL,反应条件:95.0 ℃,30 s预变性,热循环参数:95.0 ℃,10 s,60.0 ℃,30 s,40个循环,绘制融解曲线,每组重复3次,实验结果以2-ΔCt表示,以对照组值为1,计算A2780/XAF1的mRNA相对表达量[27]。
1.6. 克隆形成实验检测细胞增殖及群体依赖性
取对数生长期的A2780/XAF1(实验组)和A2780/NC(对照组)进行计数,每组细胞分别以每皿50、100、200细胞的梯度密度分别均匀接种于含培养基的6 cm培养皿中,置于37 ℃,5% CO2及饱和湿度的细胞培养箱中培养1周。待培养皿中出现肉眼可见的克隆时,弃去上清,PBS浸洗2次,各加入500 μL,0.1%结晶紫染液,染色3 h后撤除染液,用PBS洗3遍,晾干后拍照,计数肉眼可见的克隆。
1.7. CCK8实验检测A2780/XAF1和A2780/NC的增殖活性及对紫杉醇的敏感性
取对数生长期A2780/XAF1和A2780/NC,按照2×104/mL的密度接种于96孔板,每孔200 μL,每组复5孔,分别于细胞贴壁后1、3 d加入CCK8,每孔10 μL,37 ℃孵育2 h后,用酶标仪测量450 nm处吸光值(A450nm),细胞增殖活性用吸光值表示。
取对数生长期的A2780/XAF1和A2780/NC,按照5×104/mL的密度接种于96孔板中,100 μL/孔。过夜贴壁后,取出孔板内培养液,按0,40,80,160,320 ng/mL的紫杉醇浓度梯度配置培养液,加入96孔板,每组复5孔。继续培养48 h后,加入CCK8,10 μL/孔,37 ℃孵育2 h。用酶标仪测吸光值A450 nm,存活率(%)=A实验组/A对照组× 100%,半数抑制浓度即IC50用GraphPad Prism8.3.0计算。
1.8. 流式细胞技术检测细胞凋亡
取对数生长期的A2780/XAF1和A2780/NC, 按照1.5×105/mL的密度接种于6孔板中。过夜贴壁后,给予不同处理作用24 h后,用不含EDTA的胰酶消化收集各组细胞(包括漂浮细胞),PBS冲洗2遍,按照AnnexinVFITC/PI双染凋亡检测试剂盒(Cat NO: KGA108)说明书进行染色15 min后,于流式细胞仪(型号:Millipore Guava)检测细胞凋亡率。
1.9. 流式细胞仪检测细胞周期
取对数生长期A2780/XAF1和A2780/NC,1.5 × 105/mL的密度接种于六孔板中,过夜贴壁后,消化细胞,PBS冲洗2遍,用75%乙醇固定,冻于-20 ℃过夜。离心后弃乙醇,PBS洗涤后,按照凋亡周期检测试剂盒说明书测量细胞周期。
1.10. 统计学分析
采用SPSS 19.0及GraphPad8.0软件进行统计分析及作图。计量资料以均数±标准差表示,采用非配对t检验,计数资料以率表示,无序多分类行列表采用χ2检验,行Bonferroni校正卡方检验进行两两比较。P < 0.05为差异有统计学意义。
2. 结果
2.1. 成功构建稳定表达XAF1的卵巢癌细胞A2780/XAF1
未转染A2780空白对照组与转染质粒的细胞同步进行G418筛选,第8天,空白对照组细胞全部死亡(图 1A),第18天,A2780/NC和A2780/XAF1克隆集落形成(图 1B、C),细胞形态无明显改变。qPCR实验显示,结果以2-ΔCt表示,以对照组值为1,A2780/XAF1细胞的XAF1mRNA表达量是A2780/NC的658倍(0.075± 0.04951 vs 0.0001 ± 0.00009,P < 0.05)。A2780/NC和A2780/XAF1均能在500 μg/mL G418中维持生长,且A2780/XAF1的XAF1mRNA表达量增高,稳定表达XAF1的卵巢癌细胞A2780构建成功。
1.
A2780/NC和A2780/XAF1克隆集落形成
Clonal colony formation of A2780/NC and A2780/XAF1 cells (Original magnification: ×100). A: A2780 blank control cells. B: A2780/NC cells. C: A2780/XAF1 cells.
2.2. XAF1抑制卵巢癌细胞A2780的增殖
经肉眼计数,A2780/NC的克隆形成率分别64%(32/50)、52%(52/100)及56%(112/200),A2780/XAF1的克隆形成率分别为16%(8/50)、20%(40/100)及20.5%(41/200)。计算两种细胞的平均克隆形成率,进行差异性检验,发现A2780/NC与A2780/XAF1的克隆形成能力差异有统计学意义(图 2A,P=0.0016)。
2.
A2780/NC和A2780/XAF1的增殖活性比较
Comparison of proliferative activity between A2780/NC and A2780/XAF1 cells. A: Clonal formation rate. B: CCK8 proliferative activity (Optical density at 450 nm).
在细胞接种贴壁后第1、3天,A2780/XAF1的增殖活性均比A2780/NC低,差异有统计学意义(图 2B),进一步分别计算两种细胞的增殖速度,发现A2780/XAF1的增殖速度比A2780/NC低。
2.3. XAF1诱导卵巢癌细胞A2780的G2-M期阻滞
我们采用流式细胞仪检测了A2780/NC和A2780/XAF1处于不同细胞周期的比例。统计学分析发现,A2780/NC和A2780/XAF1的细胞周期分布差异存在统计学意义(χ2=150.386,P < 0.001),两两比较结果显示,A2780/NC和A2780/XAF1处于G0~G1期、S期的细胞比例差异无统计学意义(χ2=3.888,P>0.05);两组细胞在G0~G1期、G2- M期的分布差异有统计学意义(χ2= 135.775,P < 0.001),A2780/XAF1组G2-M期细胞百分比更高;两组细胞在S期、G2-M期的分布差异有统计学意义(χ2=66.41,P < 0.001),A2780/XAF1组G2-M期细胞百分比更高(图 3)。
3.
A2780/NC和A2780/XAF1的细胞周期分布
Cell cycle distribution ofA2780/NC (A) andA2780/XAF1 (B) cells.
2.4. XAF1不仅单独诱发凋亡发生,且促进无血清及紫杉醇诱导的凋亡反应
在缺乏凋亡诱导因子的作用下,A2780/NC和A2780/XAF1的总凋亡率分别为3.83%、5.39%,早期凋亡率分别为1.64%、2.97%,差异均有统计学意义(P < 0.001);在无血清刺激作用后,总凋亡率分别为6.36%、8.13%(P < 0.001),早期凋亡率分别为3.14%、4.82%(P < 0.001);在紫杉醇80 ng/mL作用下,总凋亡率分别为6.91%、12.67%(P < 0.001),早期凋亡率分别为3.75%、5.95%(P < 0.001、图 4)。
4.
A2780/NC和A2780/XAF1在无凋亡刺激、无血清刺激、紫杉醇作用下的凋亡情况
Apoptosis of A2780/NC and A2780/XAF1 cells in the absence of apoptosis stimulation, in serum-free culture and following paclitaxel treatment. A: Dual-channel staining of apoptotic A2780/NC cells. B: Dual-channel staining of apoptoticA2780/XAF1 cells.
2.5. XAF1增加了卵巢癌细胞对紫杉醇的敏感性。
不同紫杉醇浓度下相对于无紫杉醇作用下的卵巢癌细胞A2780相对存活率被计算,结果显示,相对于A2780/NC组,A2780/XAF1细胞存活率更低,差异有统计学意义(P < 0.001,图 5)。A2780/NC及A2780/XAF1在紫杉醇作用下的半数抑制浓度即IC50分别为896.1 ng/mL(95% CI:530.1~2425 ng/mL)和11.66 ng/mL(95% CI:2.54~22.95 ng/mL)。两因素方差分析结果显示,XAF1与紫杉醇联合对于抑制卵巢癌生长存在协同作用(P < 0.001)。
5.
XAF1增加卵巢癌对紫杉醇的敏感性
XAF1 increases the sensitivity of ovarian cancer cells to paclitaxel. ***P<0.001 vs A2780/NC.
3. 讨论
本研究采用脂质体转染法将真核表达载体pcDNA3.1(+)及其XAF1重组载体分别转染至A2780,通过抗性标记筛选使得A2780/NC与A2780/XAF1均能在G418中维持生长,经qPCR鉴定A2780/XAF1的XAF1mRNA显著增高,说明模型构建成功。该细胞模型易培养,基因表达稳定,实验重复性好,不仅为进一步体外研究卵巢癌中XAF1的相关信号通路提供了便利,还为研究XAF1在复杂多变的在体环境中的作用机制提供了实验工具。同时,我们进一步检测了XAF1基因对卵巢癌细胞增殖、凋亡、细胞周期的影响,结果显示XAF1明显抑制了卵巢癌细胞的生长,促进其凋亡。这一结果从功能层次上说明XAF1基因在卵巢癌的发生发展中起到了抑癌基因的作用,与其他研究结果一致[15]。此外,在细胞周期方面,本研究结果显示XAF1诱导了卵巢癌细胞G2-M期阻滞。这与部分为胃腺癌细胞中的研究结果一致[17, 19]。但是,另一项关于人胚肺成纤维细胞研究则发现XAF1稳定过表达则产生与p53一样的G1期阻滞效应,采用同样的研究方法表明XAF1并不影响宫颈癌细胞的周期分布,有研究分析这一差异是由两种细胞的转化程度不同所致,恶性程度更高、生存能力更强的Hela细胞基因组阻止了XAF1对细胞周期分布的影响[13]。在卵巢癌细胞中,有研究采用重组载体瞬时转染的方式提高SKOV3细胞株中XAF1的表达,发现XAF1诱导了SKOV3卵巢癌细胞G0~G1期细胞阻滞[9]。不同类型细胞基因组不同,故XAF1对其细胞周期的影响有所差异。A2780卵巢癌细胞来源于子宫内膜样卵巢腺癌患者,而SKOV3卵巢癌细胞来源于浆液性卵巢腺癌,COSMIC数据库显示两种组织型别p53突变频率分别为73%、51%[28],p53的突变状态可能是XAF1对细胞周期分布影响结果不一致的原因。最后,我们用CCK8实验探究了XAF1联合紫杉醇对卵巢癌细胞生长的影响,结果显示XAF1提升了卵巢癌对紫杉醇的敏感性,两者之间存在协同作用,是卵巢癌化疗和靶向治疗的潜在增敏靶点。我们前期研究发现下调XIAP可诱导耐紫杉醇卵巢癌细胞凋亡,逆转紫杉醇耐药[29-30],而XAF1是XIAP的内源性抑制因子,故本次研究再次证实了前期研究结果。
近年来,因卵巢癌化疗耐药及复发的频繁出现,其靶向治疗已经成为众多学者的研究的热点。卵巢癌凋亡调节相关靶向治疗研究包括bcl2家族蛋白和酪氨酸蛋白激酶及凋亡抑制蛋白(IAPs),其中IAPs家族蛋白在抑制内源性和外源性凋亡通路均具有重要作用[31],一项有关多种恶性肿瘤细胞(包括卵巢癌细胞)的研究发现XAF1蛋白一方面可与除Survivin以外的所有IAPs家族蛋白直接相互作用促进凋亡,另一方面通过激活XIAP-RING结构域的E3泛素连接酶促进Survivin的降解,表现为促进凋亡和有丝分裂灾难的双重作用[32]。本研究也存在一定局限性,如未探讨XAF1基因的上下游分子变化,未明确其抑癌作用具体机制,这也将是我们下一阶段研究工作的重点。
综上所述,XAF1基因是卵巢癌发生发展过程中的关键基因,其功能缺失影响相关上下游基因的表达,进而影响卵巢癌细胞的生物学功能。XAF1基因过表达稳定转染细胞株的建立将有利于研究XAF1基因对卵巢癌的作用机制,发现其上下游基因的一系列变化,对卵巢癌发生发展的具体分子生物学机制进行更深入的探讨,并可能为卵巢癌的分子靶向治疗提供新的作用靶点。
Biography
刘娟,硕士,住院医师,E-mail: hx2ylj@163.com
Funding Statement
四川省科技厅科技支撑计划项目(2018SZ0164)
Contributor Information
刘 娟 (Juan LIU), Email: hx2ylj@163.com.
刘 辉 (Hui LIU), Email: lh666888@163.com.
References
- 1.Momenimovahed Z, Tiznobaik A, Taheri S, et al. Ovarian cancer in the world: epidemiology and risk factors. Int J Womens Health. 2019;11:287–99. doi: 10.2147/IJWH.S197604. [Momenimovahed Z, Tiznobaik A, Taheri S, et al. Ovarian cancer in the world: epidemiology and risk factors[J]. Int J Womens Health, 2019, 11: 287-99.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 2.Gascoigne KE, Taylor SS. Cancer cells display profound intra- and interline variation following prolonged exposure to antimitotic drugs. Cancer Cell. 2008;14(2):111–22. doi: 10.1016/j.ccr.2008.07.002. [Gascoigne KE, Taylor SS. Cancer cells display profound intra- and interline variation following prolonged exposure to antimitotic drugs [J]. Cancer Cell, 2008, 14(2): 111-22.] [DOI] [PubMed] [Google Scholar]
- 3.Berek JS, Kehoe ST, Kumar L, et al. Cancer of the ovary, fallopian tube, and peritoneum. Int J Gynaecol Obstet. 2018;143(Suppl 2):59–78. doi: 10.1002/ijgo.12614. [Berek JS, Kehoe ST, Kumar L, et al. Cancer of the ovary, fallopian tube, and peritoneum[J]. Int J Gynaecol Obstet, 2018, 143(Suppl 2): 59-78.] [DOI] [PubMed] [Google Scholar]
- 4.Xu Y, Wang S, Chan HF, et al. Dihydromyricetin induces apoptosis and reverses drug resistance in ovarian cancer cells by p53-mediated downregulation of survivin. Sci Rep. 2017;7:46060–9. doi: 10.1038/srep46060. [Xu Y, Wang S, Chan HF, et al. Dihydromyricetin induces apoptosis and reverses drug resistance in ovarian cancer cells by p53-mediated downregulation of survivin[J]. Sci Rep, 2017, 7: 46060-9.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 5.Yang L, Cao Z, Yan H, et al. Coexistence of high levels of apoptotic signaling and inhibitor of apoptosis proteins in human tumor cells: implication for cancer specific therapy. http://www.tandfonline.com/servlet/linkout?suffix=CIT0009&dbid=8&doi=10.1517%2F13543776.2015.1041922&key=14583479. Cancer Res. 2003;63(20):6815–24. [Yang L, Cao Z, Yan H, et al. Coexistence of high levels of apoptotic signaling and inhibitor of apoptosis proteins in human tumor cells: implication for cancer specific therapy[J]. Cancer Res, 2003, 63 (20): 6815-24.] [PubMed] [Google Scholar]
- 6.Mohamed MS, Bishr MK, Almutairi FM, et al. Inhibitors of apoptosis: clinical implications in cancer. Apoptosis. 2017;22(12):1487–509. doi: 10.1007/s10495-017-1429-4. [Mohamed MS, Bishr MK, Almutairi FM, et al. Inhibitors of apoptosis: clinical implications in cancer[J]. Apoptosis, 2017, 22(12): 1487-509.] [DOI] [PubMed] [Google Scholar]
- 7.Rathore R, McCallum JE, Varghese E, et al. Overcoming chemotherapy drug resistance by targeting inhibitors of apoptosis proteins (IAPs) Apoptosis. 2017;22(7):898–919. doi: 10.1007/s10495-017-1375-1. [Rathore R, McCallum JE, Varghese E, et al. Overcoming chemotherapy drug resistance by targeting inhibitors of apoptosis proteins (IAPs)[J]. Apoptosis, 2017, 22(7): 898-919.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 8.Liston P, Fong WG, Kelly NL, et al. Identification of XAF1 as an antagonist of XIAP anti-caspase activity. Nat Cell Biol. 2001;3(2):128–33. doi: 10.1038/35055027. [Liston P, Fong WG, Kelly NL, et al. Identification of XAF1 as an antagonist of XIAP anti-caspase activity[J]. Nat Cell Biol, 2001, 3 (2): 128-33.] [DOI] [PubMed] [Google Scholar]
- 9.Zhao WJ, Deng BY, Wang XM, et al. XIAP associated factor 1 (XAF1) represses expression of X-linked inhibitor of apoptosis protein (XIAP) and regulates invasion, cell cycle, apoptosis, and cisplatin sensitivity of ovarian carcinoma cells. Asian Pac J Cancer Prev. 2015;16(6):2453–8. doi: 10.7314/APJCP.2015.16.6.2453. [Zhao WJ, Deng BY, Wang XM, et al. XIAP associated factor 1 (XAF1) represses expression of X-linked inhibitor of apoptosis protein (XIAP) and regulates invasion, cell cycle, apoptosis, and cisplatin sensitivity of ovarian carcinoma cells[J]. Asian Pac J Cancer Prev, 2015, 16(6): 2453-8.] [DOI] [PubMed] [Google Scholar]
- 10.Wang YX, Mao HL, Hao QZ, et al. Association of expression of XIAP-associated factor 1 (XAF1) with clinicopathologic factors, overall survival, microvessel density and cisplatin-resistance in ovarian cancer. http://www.sciencedirect.com/science/article/pii/S0167011512001905. Regul Pept. 2012;178(1/2):36–42. doi: 10.1016/j.regpep.2012.06.005. [Wang YX, Mao HL, Hao QZ, et al. Association of expression of XIAP-associated factor 1 (XAF1) with clinicopathologic factors, overall survival, microvessel density and cisplatin-resistance in ovarian cancer[J]. Regul Pept, 2012, 178(1/2): 36-42.] [DOI] [PubMed] [Google Scholar]
- 11.Kim MA, Lee HE, Lee HS, et al. Expression of apoptosis-related proteins and its clinical implication in surgically resected gastric carcinoma. VirchowsArch. 2011;459(5):503–10. doi: 10.1007/s00428-011-1150-6. [Kim MA, Lee HE, Lee HS, et al. Expression of apoptosis-related proteins and its clinical implication in surgically resected gastric carcinoma[J]. VirchowsArch, 2011, 459(5): 503-10.] [DOI] [PubMed] [Google Scholar]
- 12.Jang JY, Kim HJ, Chi SG, et al. Frequent epigenetic inactivation of XAF1 by promotor hypermethylation in human colon cancers. http://europepmc.org/abstract/MED/15843754. Korean J Gastroenterol. 2005;45(4):285–93. [Jang JY, Kim HJ, Chi SG, et al. Frequent epigenetic inactivation of XAF1 by promotor hypermethylation in human colon cancers[J]. Korean J Gastroenterol, 2005, 45(4): 285-93.] [PubMed] [Google Scholar]
- 13.Fong WG. The candidate tumour suppressor, XIAP associated factor 1 (XAF1), directly inhibits XIAP activity and induces G1 phase cell cycle arrest[D]. Ottawa, University of Ottawa, 2003.
- 14.Reich TR, Switzeny OJ, Renovanz M, et al. Epigenetic silencing of XAF1 in high-grade gliomas is associated with IDH1 status and improved clinical outcome. Oncotarget. 2017;8(9):15071–84. doi: 10.18632/oncotarget.14748. [Reich TR, Switzeny OJ, Renovanz M, et al. Epigenetic silencing of XAF1 in high-grade gliomas is associated with IDH1 status and improved clinical outcome[J]. Oncotarget, 2017, 8(9): 15071-84.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 15.Jeong SI, Kim JW, Ko KP, et al. XAF1 forms a positive feedback loop with IRF-1 to drive apoptotic stress response and suppress tumorigenesis. Cell Death Dis. 2018;9(8):806–15. doi: 10.1038/s41419-018-0867-4. [Jeong SI, Kim JW, Ko KP, et al. XAF1 forms a positive feedback loop with IRF-1 to drive apoptotic stress response and suppress tumorigenesis[J]. Cell Death Dis, 2018, 9(8): 806-15.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 16.Micali OC, Cheung HH, Plenchette S, et al. Silencing of the XAF1 gene by promoter hypermethylation in cancer cells and reactivation to TRAIL-sensitization by IFN-beta. BMC Cancer. 2007;7:52–9. doi: 10.1186/1471-2407-7-52. [Micali OC, Cheung HH, Plenchette S, et al. Silencing of the XAF1 gene by promoter hypermethylation in cancer cells and reactivation to TRAIL-sensitization by IFN-beta[J]. BMC Cancer, 2007, 7: 52-9.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 17.Tu SP, Liston M, Cui JT, et al. Restoration of XAF1 expression induces apoptosis and inhibits tumor growth in gastric cancer. Int J Cancer. 2009;125(3):688–97. doi: 10.1002/ijc.24282. [Tu SP, Liston M, Cui JT, et al. Restoration of XAF1 expression induces apoptosis and inhibits tumor growth in gastric cancer[J]. Int J Cancer, 2009, 125(3): 688-97.] [DOI] [PubMed] [Google Scholar]
- 18.Zhu LM, Shi DM, Dai Q, et al. Tumor suppressor XAF1 induces apoptosis, inhibits angiogenesis and inhibits tumor growth in hepatocellular carcinoma. Oncotarget. 2014;5(14):5403–15. doi: 10.18632/oncotarget.2114. [Zhu LM, Shi DM, Dai Q, et al. Tumor suppressor XAF1 induces apoptosis, inhibits angiogenesis and inhibits tumor growth in hepatocellular carcinoma[J]. Oncotarget, 2014, 5(14): 5403-15.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 19.Wang J, Gu Q, Li M, et al. Identification of XAF1 as a novel cell cycle regulator through modulating G(2)/M checkpoint and interaction with checkpoint kinase 1 in gastrointestinal cancer. Carcinogenesis. 2009;30(9):1507–16. doi: 10.1093/carcin/bgp155. [Wang J, Gu Q, Li M, et al. Identification of XAF1 as a novel cell cycle regulator through modulating G(2)/M checkpoint and interaction with checkpoint kinase 1 in gastrointestinal cancer[J]. Carcinogenesis, 2009, 30(9): 1507-16.] [DOI] [PubMed] [Google Scholar]
- 20.Kim KS, Heo JI, Choi KJ, et al. Enhancement of cellular radiation sensitivity through degradation of Chk1 by the XIAP-XAF1 complex. Cancer Biol Ther. 2014;15(12):1622–34. doi: 10.4161/15384047.2014.962305. [Kim KS, Heo JI, Choi KJ, et al. Enhancement of cellular radiation sensitivity through degradation of Chk1 by the XIAP-XAF1 complex [J]. Cancer Biol Ther, 2014, 15(12): 1622-34.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 21.Huang J, Yao WY, Zhu Q, et al. XAF1 as a prognostic biomarker and therapeutic target in pancreatic cancer. Cancer Sci. 2010;101(2):559–67. doi: 10.1111/j.1349-7006.2009.01396.x. [Huang J, Yao WY, Zhu Q, et al. XAF1 as a prognostic biomarker and therapeutic target in pancreatic cancer[J]. Cancer Sci, 2010, 101(2): 559-67.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 22.Schluck L, Aran V, De Moraes J, et al. XAF1 expression levels in a non-small cell lung cancer cohort and its potential association with carcinogenesis. Oncol Rep. 2017;38(1):402–10. doi: 10.3892/or.2017.5680. [Schluck L, Aran V, De Moraes J, et al. XAF1 expression levels in a non-small cell lung cancer cohort and its potential association with carcinogenesis[J]. Oncol Rep, 2017, 38(1): 402-10.] [DOI] [PubMed] [Google Scholar]
- 23.Lee MG, Huh JS, Chung SK, et al. Promoter CpG hypermethylation and downregulation of XAF1 expression in human urogenital malignancies: implication for attenuated p53 response to apoptotic stresses. Oncogene. 2006;25(42):5807–22. doi: 10.1038/sj.onc.1209867. [Lee MG, Huh JS, Chung SK, et al. Promoter CpG hypermethylation and downregulation of XAF1 expression in human urogenital malignancies: implication for attenuated p53 response to apoptotic stresses[J]. Oncogene, 2006, 25(42): 5807-22.] [DOI] [PubMed] [Google Scholar]
- 24.Sakemi R, Yano H, Ogasawara S, et al. X-linked inhibitor of apoptosis (XIAP) and XIAP-associated factor-1 expressions and their relationship to apoptosis in human hepatocellular carcinoma and non-cancerous liver tissues. http://www.ncbi.nlm.nih.gov/pubmed/17549347. Oncol Rep. 2007;18(1):65–70. [Sakemi R, Yano H, Ogasawara S, et al. X-linked inhibitor of apoptosis (XIAP) and XIAP-associated factor-1 expressions and their relationship to apoptosis in human hepatocellular carcinoma and non-cancerous liver tissues[J]. Oncol Rep, 2007, 18(1): 65-70.] [PubMed] [Google Scholar]
- 25.Ren M, Wang Z, Gao G, et al. Impact of X-linked inhibitor of apoptosis protein on survival of nasopharyngeal carcinoma patients following radiotherapy. Tumour Biol. 2016;37(9):11825–33. doi: 10.1007/s13277-016-5029-7. [Ren M, Wang Z, Gao G, et al. Impact of X-linked inhibitor of apoptosis protein on survival of nasopharyngeal carcinoma patients following radiotherapy[J]. Tumour Biol, 2016, 37(9): 11825-33.] [DOI] [PubMed] [Google Scholar]
- 26.Pinho MB, Costas F, Sello J, et al. XAF1 mRNA expression improves progression-free and overall survival for patients with advanced bladder cancer treated with neoadjuvant chemotherapy. Urol Oncol. 2009;27(4):382–90. doi: 10.1016/j.urolonc.2008.03.016. [Pinho MB, Costas F, Sello J, et al. XAF1 mRNA expression improves progression-free and overall survival for patients with advanced bladder cancer treated with neoadjuvant chemotherapy[J]. Urol Oncol, 2009, 27(4): 382-90.] [DOI] [PubMed] [Google Scholar]
- 27.Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc. 2008;3(6):1101–8. doi: 10.1038/nprot.2008.73. [Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative C(T) method[J]. Nat Protoc, 2008, 3(6): 1101-8.] [DOI] [PubMed] [Google Scholar]
- 28.Bamford S, Dawson E, Forbes S, et al. The COSMIC (catalogue of somatic mutations in cancer) database and website. Br J Cancer. 2004;91(2):355–8. doi: 10.1038/sj.bjc.6601894. [Bamford S, Dawson E, Forbes S, et al. The COSMIC (catalogue of somatic mutations in cancer) database and website[J]. Br J Cancer, 2004, 91(2): 355-8.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 29.岳 驰, 李 冉红, 陈 晨, et al. XIAP基因与耐紫杉醇卵巢癌细胞A2780/Taxol耐药关系的研究. https://www.cnki.com.cn/Article/CJFDTOTAL-HXYK201803004.htm. 四川大学学报: 医学版. 2018;49(3):337–41. [岳驰, 李冉红, 陈晨, 等. XIAP基因与耐紫杉醇卵巢癌细胞A2780/Taxol耐药关系的研究[J]. 四川大学学报: 医学版, 2018, 49(3): 337-41.] [PubMed] [Google Scholar]
- 30.刘 辉, 李 冉红, 岳 驰, et al. SiRNA干扰XIAP基因表达对逆转耐紫杉醇卵巢癌细胞的耐药性的体内研究. 四川大学学报(医学版) 2020;51(10):1–5. [刘辉, 李冉红, 岳驰, 等. SiRNA干扰XIAP基因表达对逆转耐紫杉醇卵巢癌细胞的耐药性的体内研究[J]. 四川大学学报(医学版), 2020, 51(10): 1-5.] [Google Scholar]
- 31.Chandra A, Pius C, Nabeel M, et al. Ovarian cancer: Current status and strategies for improving therapeutic outcomes. Cancer Med. 2019;8(16):7018–31. doi: 10.1002/cam4.2560. [Chandra A, Pius C, Nabeel M, et al. Ovarian cancer: Current status and strategies for improving therapeutic outcomes[J]. Cancer Med, 2019, 8(16): 7018-31.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 32.Arora V, Cheung HH, Plenchette S, et al. Degradation of survivin by the X-linked inhibitor of apoptosis (XIAP)-XAF1 complex. J Biol Chem. 2007;282(36):26202–9. doi: 10.1074/jbc.M700776200. [Arora V, Cheung HH, Plenchette S, et al. Degradation of survivin by the X-linked inhibitor of apoptosis (XIAP)-XAF1 complex[J]. J Biol Chem, 2007, 282(36): 26202-9.] [DOI] [PubMed] [Google Scholar]