Skip to main content
Journal of Southern Medical University logoLink to Journal of Southern Medical University
. 2021 May 20;41(5):747–753. [Article in Chinese] doi: 10.12122/j.issn.1673-4254.2021.05.16

沉默FASN基因对肝母细胞瘤HepG2细胞的脂质代谢及增殖、迁移和凋亡的影响

Effect of fatty acid synthase gene silencing on lipid metabolism and biological behaviors of human hepatoblastoma HepG2 cells

黄 慧敏 1, 魏 英 1, 王 靳琎 1, 冉 凤英 1, 陈 琴华 1,*
PMCID: PMC8214973  PMID: 34134963

Abstract

目的

研究FASN基因沉默对肝母细胞瘤HepG2细胞脂质代谢及生物学行为的影响。

方法

以脂质体包裹siRNA的方法沉默FASN基因,实验分为Control组、NC-siRNA组和FASN-siRNA组,FASN-siRNA组转染75 nmol/L的FASN-siRNA片段,NC-siRNA组转染等剂量的NC-siRNA片段,Control组只加入等体积的转染试剂。通过实时荧光定量PCR和Western blot法检测FASN基因和蛋白水平的相对表达;通过酶联免疫吸附法检测HepG2细胞甘油三酯水平;通过油红O染色法检测细胞内脂滴数目;利用CCK-8实验检测HepG2细胞增殖活性的改变;通过annexinV-FITC/PI双染色法检测HepG2细胞凋亡情况;采用划痕愈合实验及transwell实验检测HepG2细胞迁移能力的改变。

结果

FASN-siRNA组的FASN基因表达、蛋白表达低于NC-siRNA组(P < 0.001)。油红O染色显示,FASN-siRNA组细胞内脂滴较NC-siRNA组减少(P < 0.001)、甘油三酯水平降低(P < 0.01);CCK-8实验、annexinV-FITC/PI双染实验及划痕愈合实验结果显示,转染48、72、96 h后,FASN-siRNA组HepG2细胞增殖被显著抑制,FASN-siRNA组细胞总凋亡率与NC-siRNA组相比增加、FASN-siRNA组发生迁移的HepG2细胞数量低于NC-siRNA组(P < 0.001)。

结论

沉默FASN基因可抑制肝母细胞瘤HepG2细胞的增殖及迁移,并诱导HepG2细胞凋亡,该作用可能与FASN基因抑制后HepG2细胞内脂质合成降低有关。

Keywords: 脂肪酸合成酶, 肝母细胞瘤, HepG2细胞, RNA干扰, 脂质代谢, 生物学行为


肝母细胞瘤(HB)是儿童期最常见的肝脏恶性肿瘤,90%发生于5岁以内,具有恶性程度高、瘤体生长迅速、预后差的特点[1-2]。肝母细胞瘤作为一种恶性胚胎性肿瘤,其病因及发生发展机制仍不明确。肝母细胞瘤早期多无症状,病情进展迅速,约20%的患儿在诊断时已发生远处转移[3]。手术联合化疗是目前肝母细胞瘤治疗的主要手段。5-氟尿嘧啶、长春新碱、顺铂、环磷酰胺等是肝母细胞瘤治疗常用的化疗药物[4],但以上药物在杀死肿瘤细胞的同时也带来了严重的毒副作用,如肝脏毒性[5]、神经毒性[6]、肾脏毒性[7]及听力损伤[8]等,严重降低了患者的生存质量。因此,寻求高效低度的化疗药物和治疗靶点仍然是肝母细胞瘤等癌症研究的重要内容。

研究表明肿瘤的发生发展与脂肪代谢异常密切相关,脂肪酸合成酶(FASN)是一个重要的癌基因,在多种肿瘤细胞及肿瘤病变前组织中表达水平显著升高,且FASN的过度表达与肿瘤细胞的增殖、转移、抗凋亡等密切相关[9-10]。然而,作为与肿瘤细胞脂质合成密切相关的癌基因,尚未有关于FASN基因对肝母细胞瘤脂质代谢及生物学行为影响的研究报道。因而本研究通过RNAi技术,阻断肝母细胞瘤HepG2细胞中FASN的表达,通过油红O染色、CCK-8增殖实验、细胞划痕实验等,观察FASN基因沉默对HepG2细胞脂质代谢及生物学行为的影响,以期为深入研究FASN基因在肝母细胞瘤发生发展中的作用提供理论基础。

1. 材料和方法

1.1. 细胞与主要试剂

人肝母细胞瘤HepG2细胞(中国科学院细胞库),DMEM培养基及胎牛血清(Gibico),Lipofectamine 2000(Invitrogen),反转录试剂盒(Fermentas),PCR试剂盒(Takara);RIPA裂解液、BCA蛋白浓度检测试剂盒(上海碧云天生物技术有限公司),PVDF膜(Millipore);FASN抗体(Abcam),荧光二抗(优宁维),甘油三酯试剂盒(北京普利莱基因技术有限公司),油红O(Sigma),CCK-8(南京凯基生物有限公司),AnnexinV-FITC/PI凋亡试剂盒(杭州联科生物技术股份有限公司),Transwell小室(Corning)。FASN特异性siRNA干扰序列(FASN-siRNA)和siRNA阴性对照序列(NC-siRNA) 以及Fam荧光标记的siRNA阴性对照序列(NC-siRNA-Fam)由上海吉玛制药技术有限公司合成,siRNA寡核苷酸序列(表 1)。

1.

SiRNA寡核苷酸序列

Sequences of small interfering RNA(siRNA)

Gene Sequence 5'-3'
FASN-siRNA-sense GGUCCUUCUACUACAAGCUTT
FASN-siRNA-antisense AGCUUGUAGUAGAAGGACCTT
NC-siRNA-sense UUCUCCGAACGUGUCACGUTT
NC-siRNA-antisense ACGUGACACGUUCGGAGAATT
NC-siRNA-Fam-sense UUCUCCGAACGUGUCACGUTT
NC-siRNA-Fam-antisense ACGUGACACGUUCGGAGAATT

1.2. 方法

1.2.1. 细胞培养与处理

HepG2细胞培养于含10%胎牛血清的DMEM培养基中,置于37 ℃、5% CO2的培养箱中,取对数生长期的HepG2细胞用于实验。转染前观察细胞生长状态,密度达到60%时,按照Lipofectamine 2000说明书及siRNA说明书进行细胞转染,过程如下:实验分为Control组、NC-siRNA组和FASN-siRNA组,FASN-siRNA组转染75 nmol/L的FASN-siRNA片段,NC-siRNA组转染等剂量的NC-siRNA片段,Control组只加入等体积的转染试剂,转染24 h后更换培养基,继续培养24 h后检测各个指标。

1.2.2. 实时荧光定量PCR实验

按照1.2.1的方法转染HepG2细胞,48 h后加TRIzol提取细胞内总RNA,按照试剂盒说明书逆转录成cDNA,通过实时荧光定量PCR法测FASN mRNA的表达水平,GAPDH为内参。PCR引物由上海吉玛制药技术有限公司合成,FASN的上游引物序列为5'-ACAGCGGGGAATGGG-3',下游引物序列为5'-GACTGGTACAACGAG-3';GAPDH的上游引物序列为5'-CTTTGACGCTGGGGCTGGCA-3',下游引物序列为5'-TGGCAGGGACTCCCCAGCAG-3'。反应程序为:95 ℃,3 min;95 ℃,12 s;62 ℃,40 s,40个循环,以2-△△Ct计算mRNA相对表达水平。实验重复3次。

1.2.3. Western blot实验

按照1.2.1的方法转染HepG2细胞,48 h后弃培养基,用预冷的PBS洗细胞3次,加RIPA裂解液于冰上裂解30 min,4 ℃下12 000 g离心10 min,收集上清,通过BCA法检测蛋白浓度,GAPDH作为内参蛋白。取30 μg总蛋白进行电泳分离,分离后的蛋白转移至PVDF膜上,5%的脱脂奶粉封闭PVDF膜1 h,TBST洗PVDF膜3次,加入1∶1000稀释的FASN和GAPDH抗体,4 ℃过夜,TBST洗PVDF膜3次,加入1∶10000稀释的二抗,室温孵育1 h,ECL显色液孵育PVDF膜条,在凝胶成像系统上显影拍照,使用Image J软件进行灰度分析。实验重复3次。

1.2.4. 油红O染色

按照1.2.1细胞转染的方法转染HepG2细胞,并于48 h后进行细胞染色:弃培养基,PBS清洗3遍后每孔加入4%多聚甲醛200 μL,室温固定20 min,再次用PBS清洗细胞,60%异丙醇200 μL清洗细胞10 s,弃异丙醇,每孔加油红O工作液200 μL,室温下染色30 min,弃染色液,60%异丙醇洗细胞2次,PBS洗细胞3次,显微镜下观察细胞内红色脂质,拍照比较各组间油红O染色变化。拍照后每孔加入60%的异丙醇500 μL,室温放置15 min,溶解细胞上附着的油红O染液,酶标仪485 nm处测定各组A485 nm。实验重复3次。

1.2.5. 细胞内甘油三酯的检测

按照1.2.1的方法转染HepG2细胞,48 h后收集细胞,细胞沉淀用PBS洗涤3遍,提取细胞总蛋白,BCA法测总蛋白浓度。细胞内甘油三酯水平检测参照试剂盒操作说明书,以总蛋白浓度进行校正,在酶标仪550 nm波长下测样本的吸光度A550 nm。实验重复3次。

1.2.6. CCK-8检测细胞增殖活性

细胞接种于96孔板,接种细胞约5×103/孔,每组设5个复孔,按照1.2.1的方法转染HepG2细胞,37 ℃、5% CO2条件下培养。转染24、48、72、96 h后每孔加入10 μL的CCK-8工作液,继续孵育2 h,在酶标仪450 nm波长下测A450 nm。实验重复3次。

1.2.7. AnnexinV-FITC/PI染色检测细胞凋亡

按照1.2.1的方法转染HepG2细胞,48 h后弃培养基,PBS洗细胞3次,每孔加500 μL 1×Binding Buffer工作液和5 μL的Annexin V-FITC,3 min后加入10 μL的PI,室温避光孵育10 min,每管加PBS 300 μL,混匀后通过流式细胞仪进行检测。

1.2.8. 细胞划痕实验

采用体外细胞划痕实验,检测沉默FASN基因对HepG2细胞迁移能力的影响。细胞接种于6孔板中,按照1.2.1的方法转染HepG2细胞,24 h后用200 μL灭菌一次性吸头做直线划痕,用PBS洗涤3次以去除划落的细胞,加入含1%胎牛血清的DMEM培养液,于细胞划痕后的0、24 h观察并照相,通过Image J软件进行愈合率的计算,划痕愈合率=(初始划痕面积-现存划痕面积)/初始划痕面积×100%。

1.2.9. Transwell实验

按照1.2.1的方法转染HepG2细胞,24 h后胰酶消化并用含0.1% BSA的无血清培养基重悬细胞,计数并调节细胞浓度至1 × 105/mL。Transwell小室放入24孔板中,上室加入200 μL的细胞悬液,下室加入600 μL含10%胎牛血清的培养基,于37 ℃,5% CO2条件下培养24 h。弃培养基,小室于4%多聚甲醛中固定20 min,加入0.1%结晶紫染液染色15 min,PBS清洗3次,棉签轻轻擦净小室上层未迁移过去的细胞。显微镜下随机选取5个视野进行拍照并计数迁移到下室的细胞。

1.3. 统计学分析

分析采用GraphPad Prism 8软件。计量资料以均数±标准差表示,组间数据采用单因素方差分析进行比较,当P < 0.05时为组间差异具有统计学意义。

2. 结果

2.1. siRNA转染效率的测定

预实验考察了0、25、50、75 nmol/L浓度下siRNAFAM对HepG2细胞的转染情况。当siRNA-FAM浓度为0 nmol/L时, 倒置荧光显微镜下无绿色荧光,当siRNA-FAM浓度为25 nmol/L时,少量HepG2细胞发绿色荧光,随着siRNA-FAM浓度的增加,荧光强度逐渐增强。当siRNA-FAM浓度为75 nmol/L时,HepG2细胞的荧光强度最强(图 1),转染效率在60%以上,故后续实验中所用siRNA浓度为75 nmol/L。

1.

1

荧光显微镜下观察NC-siRNA-Fam转染效率

Transfection efficiency of NC-siRNA-Fam observed by fluorescence microscope.

2.2. Real-time PCR法检测siRNA沉默FASN基因的效率

Control组、NC-siRNA组和FASN-siRNA组的FASN基因的表达水平分别为1.00±0.035、0.987±0.076和0.160±0.042。Control组FASN基因的表达水平和NC-siRNA组相比无统计学差异(P>0.05),FASNsiRNA组的FASN基因表达水平和NC-siRNA组相比显著降低(P < 0.001,图 2)。

2.

2

FASN-siRNA转染抑制HepG2细胞中FASNmRNA的表达

FASN-siRNA decreases the expression of FASN mRNAin HepG2 cells. ***P < 0.001 vs NC-siRNA.

2.3. Western blot法检测FASN基因沉默对FASN蛋白表达的影响

NC-siRNA组中FASN蛋白表达量和Control组相比略有下降,但两组差异无统计学意义(P>0.05),FASN-siRNA组中FASN蛋白表达低于NC-siRNA组(P < 0.001,图 3)。

3.

3

FASN-siRNA转染降低HepG2细胞中FASN蛋白的表达

FASN-siRNA decreases the expression of FASN protein in HepG2 cells. A: Western blotting results of FASN protein. B: Relative expression quantities of FASN protein. ***P < 0.001 vs NC-siRNA.

2.4. 油红O染色检测FASN基因沉默对HepG2细胞脂质含量的影响

光学显微镜下观察油红O染色,结果显示,NC-siRNA组与Control组HepG2细胞中均有少量红色小脂滴出现,FASN-siRNA组细胞内脂滴较NC-siRNA组减少(图 4A)。进一步脂质含量测定结果显示,NC-siRNA组和Control组相比脂质含量有所下降,但两者差异无统计学意义(P>0.05);FASN-siRNA组脂质含量低于NC-siRNA组,差异有统计学意义(P < 0.001,图 4B)。

4.

4

油红O染色观察FASN基因沉默对HepG2细胞脂质含量的影响

Effect of FASN gene silencing on lipid content in HepG2 cells. A: Lipid droplets in HepG2 cells (Oil red O staining). B: Quantitative results of lipid droplets in the cells. ***P < 0.001 vs NC-siRNA.

2.5. FASN基因沉默对HepG2细胞甘油三酯代谢的影响

Control组、NC-siRNA组、FASN-siRNA组细胞内甘油三酯水平分别为:798.3 ± 114.4、772.5 ± 141.6、501.3±70.4 μmol/g。NC-siRNA组与Control组的甘油三酯水平差异无统计学意义(P>0.05);FASN-siRNA组甘油三酯水平较NC-siRNA组降低,差异有统计学意义(P < 0.01,图 5)。

5.

5

FASN基因沉默对HepG2细胞甘油三酯含量的影响

Effect of FASN gene silencing on triglyceride content in HepG2 cells. **P < 0.01 vs NC-siRNA.

2.6. CCK-8实验检测FASN基因沉默对HepG2细胞增殖的影响

转染24 h后,FASN-siRNA组HepG2细胞增殖活性和NC-siRNA组相比略有降低,但差异无统计学意义(P>0.05);转染48、72、96 h后,FASN-siRNA组HepG2细胞增殖被显著抑制,和NC-siRNA组相比差异均有统计学意义(P < 0.01,图 6)。

6.

6

FASN基因沉默对HepG2细胞增殖的影响

Effect of FASN gene silencing on proliferation of HepG2 cells. **P < 0.01, ***P < 0.001 vs NC-siRNA.

2.7. FASN基因沉默对HepG2细胞凋亡的影响

流式细胞仪结果显示,Control组、NC-siRNA组和FASN-siRNA组的细胞总凋亡率分别为(5.88±0.67)%、(7.34±0.49)%和(36.16±3.64)%。NC-siRNA组细胞总凋亡率与Control组相比有所增加,但差异没有统计学意义(P>0.05),FASN-siRNA组细胞总凋亡率与NC-siRNA组相比显著增加,差异有统计学意义(P < 0.001,图 7)。

7.

7

FASN基因沉默对HepG2细胞凋亡的影响

Effect of FASN gene silencing on apoptosis of HepG2 cells. A: Annexin V-PI flow cytometry for cell apoptosis. B: Statistical analysis of cell apoptosis detected byAnnexin V-PI flow cytometry. ***P < 0.001 vs NC-siRNA.

2.8. 划痕实验检测FASN基因沉默对HepG2细胞迁移能力的影响

光学显微镜下观察Control组、NC-siRNA组和FASN-siRNA组细胞划痕24 h后的愈合程度,结果显示,NC-siRNA组与Control组相比划痕愈合率无统计学差异(P>0.05),但FASN-siRNA组的HepG2细胞划痕愈合率低于NC-siRNA组,差异有统计学意义(P < 0.001,图 8)。

8.

8

划痕实验检测FASN基因沉默对HepG2细胞迁移能力的影响

Effect of FASN gene silencing on migration ability of HepG2 cells by wound healing assay. A: Wound healing assay; B: Wound healing rate. ***P < 0.001 vs NC-siRNA.

2.9. Transwell实验检测FASN基因沉默对HepG2细胞迁移能力的影响

Control组、NC-siRNA组和FASN-siRNA组细胞迁移数量分别为59.00±5.40、53.33±4.32和26.67±5.05;NC-siRNA组与Control组相比细胞迁移情况差异无统计学意义(P>0.05),但FASN-siRNA组发生迁移的HepG2细胞数量低于NC-siRNA组,差异有统计学意义(P < 0.001,图 9)。

9.

9

Transwell实验检测FASN基因沉默对HepG2细胞迁移能力的影响

Effect of FASN gene silencing on migration ability of HepG2 cells by Transwell assay. A: Transwell assay. B: Migrated cells. ***P < 0.001 vs NC-siRNA.

3. 讨论

研究显示肿瘤细胞生长所需要的脂肪酸约90%以上来自于从头合成途径[11]。FASN在正常细胞或组织中不表达或表达水平很低,主要用于合成能量储存的甘油三酯[12-13];但在多种恶性肿瘤中FASN呈现高表达[14-15],目前尚未有关于FASN基因对肝母细胞瘤脂质代谢及生物学行为影响的研究报道。本研究以肝母细胞瘤HepG2细胞为研究对象,通过RNAi技术干扰FASN基因的表达后,观察HepG2细胞脂质代谢及生物学行为的变化。前期预实验阶段,课题组设计了3种siRNA片段干扰FASN的表达,通过RT-PCR和Western blot实验检测FASN基因和蛋白的表达水平,筛选出了FASN mRNA沉默效率最高的siRNA片段并用于后续实验。

FASN被高度激活后可大量合成脂肪酸,用于细胞膜装配、细胞内信号传导、蛋白质酰化等,以上脂质代谢异常在肿瘤发生发展过程中具有重要作用[16]。本研究通过siRNA干扰FASN基因的表达后发现,HepG2细胞中脂滴数和甘油三酯水平均显著降低,提示FASN基因的表达可促进HepG2细胞脂质合成,与Gu等[17]研究结果相一致。本研究进一步证实了FASN作为重要的癌基因在肿瘤脂质代谢过程中发挥着重要的作用。

脂质的代谢紊乱与肿瘤的恶性生物学行为密切相关,研究表明癌细胞通过脂肪酸提供的能量可促进肿瘤的发生发展和转移[18-19]。增殖异常是恶性肿瘤的基本生物学特征,本研究通过CCK-8实验发现,转染FASNsiRNA片段可以显著抑制HepG2细胞增殖。除了细胞增殖异常外,细胞凋亡失衡也是肿瘤发生的重要原因,因此本研究进一步通过流式细胞术观察了沉默FASN基因对HepG2细胞凋亡的影响,结果显示抑制FASN基因的表达可促进HepG2细胞凋亡。有研究发现,敲除内源性FASN基因可抑制胰腺癌细胞HPAC和AsPC-1的增殖并促进其凋亡[20]。有研究发现,轻度抑制FASN的活性可降低乳腺癌细胞MCF-7和MDA-MB-231的克隆形成能力,重度抑制FASN的活性可诱导乳腺癌细胞MCF-7和MDA-MB-231的凋亡[21]。这与本研究结果相一致,同时表明在不同类型的肿瘤细胞中,抑制FASN的表达均可抑制癌细胞的异常增殖并促进其凋亡,这可能与FASN基因被抑制后细胞内脂质合成降低有关。

侵袭、迁移是恶性肿瘤的另一个重要生物学特征。研究发现,敲除结直肠癌细胞系SW480和HT29中的FASN基因,可以下调Wnt5a、Wnt5b、Fzd2基因的表达,从而抑制SW480和HT29细胞的迁移和侵袭[22]。敲除HepG2细胞中的FASN基因可下调P-STAT3、MMP-2和MMP-9蛋白的表达,从而抑制肝癌细胞的迁移和侵袭[23]。本研究通过划痕实验及transwell实验也发现,与NC-siRNA组相比,FASN-siRNA组的HepG2细胞划痕愈合率及细胞迁移数量均显著降低,说明抑制FASN基因的表达降低了HepG2细胞的迁移能力。以上结果表明,FASN基因的表达与多种肿瘤细胞的恶性生物学行为密切相关,同时也表明FASN可能是癌症治疗的潜在有效靶点。

综上所述,本研究通过RNAi技术干扰FASN基因的表达,观察FASN基因沉默对HepG2细胞脂质代谢及恶性生物学行为的影响。结果显示FASN基因和蛋白表达下调后可显著降低HepG2细胞中脂质及甘油三脂的合成,并影响HepG2细胞的增殖、凋亡及迁移等恶性生物学行为。但FASN基因沉默后影响HepG2细胞恶性生物学行为的机制有待进一步研究,这是接下来研究的重点。本课题的开展有助于了解FASN基因在肝母细胞瘤发生发展中的作用,为肝母细胞瘤的靶向治疗提供实验基础。

Biography

黄慧敏,硕士,E-mail: 1330526136@qq.com

Contributor Information

黄 慧敏 (Huimin HUANG), Email: 1330526136@qq.com.

陈 琴华 (Qinhua CHEN), Email: 1472355055@qq.com.

References

  • 1.Beck A, Trippel F, Wagner A, et al. Overexpression of UHRF1 promotes silencing of tumor suppressor genes and predicts outcome in hepatoblastoma. Clin Epigenetics. 2018;10:27–36. doi: 10.1186/s13148-018-0462-7. [Beck A, Trippel F, Wagner A, et al. Overexpression of UHRF1 promotes silencing of tumor suppressor genes and predicts outcome in hepatoblastoma[J]. Clin Epigenetics, 2018, 10: 27-36.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.儿童肝母细胞瘤诊疗规范编写审定专家组 儿童肝母细胞瘤诊疗规范(2019年版) https://www.cnki.com.cn/Article/CJFDTOTAL-LCGD201911008.htm. 临床肝胆病杂志. 2019;35(11):2431–4. [儿童肝母细胞瘤诊疗规范编写审定专家组. 儿童肝母细胞瘤诊疗规范(2019年版)[J]. 临床肝胆病杂志, 2019, 35(11): 2431-4.] [Google Scholar]
  • 3.Liu YF, Song JP, Liu Y, et al. Transcription activation of circ-STAT3 induced by Gli2 promotes the progression of hepatoblastoma via acting as a sponge for miR-29a/b/c-3p to upregulate STAT3/Gli2. J Exp Clin Cancer Res. 2020;39(1):101–7. doi: 10.1186/s13046-020-01598-8. [Liu YF, Song JP, Liu Y, et al. Transcription activation of circ-STAT3 induced by Gli2 promotes the progression of hepatoblastoma via acting as a sponge for miR-29a/b/c-3p to upregulate STAT3/Gli2[J]. J Exp Clin Cancer Res, 2020, 39(1): 101-7.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Katzenstein HM, Langham MR, Malogolowkin MH, et al. Minimal adjuvant chemotherapy for children with hepatoblastoma resected at diagnosis (AHEP0731): a Children's Oncology Group, multicentre, phase 3 trial. Lancet Oncol. 2019;20(5):719–27. doi: 10.1016/S1470-2045(18)30895-7. [Katzenstein HM, Langham MR, Malogolowkin MH, et al. Minimal adjuvant chemotherapy for children with hepatoblastoma resected at diagnosis (AHEP0731): a Children's Oncology Group, multicentre, phase 3 trial[J]. Lancet Oncol, 2019, 20(5): 719-27.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Doustimotlagh AH, Kokhdan EP, Vakilpour H, et al. Protective effect of Nasturtium officinale R. Br and quercetin against cyclopho-sphamide-induced hepatotoxicity in rats. Mol Biol Rep. 2020;47(7):5001–12. doi: 10.1007/s11033-020-05556-7. [Doustimotlagh AH, Kokhdan EP, Vakilpour H, et al. Protective effect of Nasturtium officinale R. Br and quercetin against cyclopho-sphamide-induced hepatotoxicity in rats[J]. Mol Biol Rep, 2020, 47 (7): 5001-12.] [DOI] [PubMed] [Google Scholar]
  • 6.Tay SY, Foster J, Heczey A, et al. Pediatric oncology patients with vincristine-induced recurrent laryngeal nerve palsy: two case reports and a brief review of literature. http://www.researchgate.net/publication/341520008_Pediatric_Oncology_Patients_With_Vincristine-Induced_Recurrent_Laryngeal_Nerve_Palsy_Two_Case_Reports_and_a_Brief_Review_of_Literature. Ear Nose Throat J. 2020;145:924868–79. doi: 10.1177/0145561320924868. [Tay SY, Foster J, Heczey A, et al. Pediatric oncology patients with vincristine-induced recurrent laryngeal nerve palsy: two case reports and a brief review of literature[J]. Ear Nose Throat J, 2020, 145: 924868-79.] [DOI] [PubMed] [Google Scholar]
  • 7.Najafi M, Tavakol S, Zarrabi A, et al. Dual role of quercetin in enhancing the efficacy of cisplatin in chemotherapy and protection against its side effects: a review. http://www.tandfonline.com/doi/full/10.1080/13813455.2020.1773864. Arch Physiol Biochem. 2020;72:1–15. doi: 10.1080/13813455.2020.1773864. [Najafi M, Tavakol S, Zarrabi A, et al. Dual role of quercetin in enhancing the efficacy of cisplatin in chemotherapy and protection against its side effects: a review[J]. Arch Physiol Biochem, 2020, 72: 1-15.] [DOI] [PubMed] [Google Scholar]
  • 8.Beyea JA, Lau C, Cooke B, et al. Long-term incidence and predictors of significant hearing loss requiring hearing assistive devices among childhood cancer survivors: a population-based study. J Clin Oncol. 2020;38(23):2639–46. doi: 10.1200/JCO.19.03166. [Beyea JA, Lau C, Cooke B, et al. Long-term incidence and predictors of significant hearing loss requiring hearing assistive devices among childhood cancer survivors: a population-based study[J]. J Clin Oncol, 2020, 38(23): 2639-46.] [DOI] [PubMed] [Google Scholar]
  • 9.Polonio-Alcalá E, Palomeras S, Torres-Oteros D, et al. Fatty acid synthase inhibitor G28 shows anticancer activity in EGFR tyrosine kinase inhibitor resistant lung adenocarcinoma models. http://www.researchgate.net/publication/341534580_Fatty_Acid_Synthase_Inhibitor_G28_Shows_Anticancer_Activity_in_EGFR_Tyrosine_Kinase_Inhibitor_Resistant_Lung_Adenocarcinoma_Models. Cancers (Basel) 2020;12(5):308–15. doi: 10.3390/cancers12051283. [Polonio-Alcalá E, Palomeras S, Torres-Oteros D, et al. Fatty acid synthase inhibitor G28 shows anticancer activity in EGFR tyrosine kinase inhibitor resistant lung adenocarcinoma models[J]. Cancers (Basel), 2020, 12(5): 308-15] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Zaytseva YY, Elliott VA, Rychahou P, et al. Cancer cell-associated fatty acid synthase activates endothelial cells and promotes angiogenesis in colorectal cancer. Carcinogenesis. 2014;35(6):1341–51. doi: 10.1093/carcin/bgu042. [Zaytseva YY, Elliott VA, Rychahou P, et al. Cancer cell-associated fatty acid synthase activates endothelial cells and promotes angiogenesis in colorectal cancer[J]. Carcinogenesis, 2014, 35(6): 1341-51.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Zaidi N, Lupien L, Kuemmerle NB, et al. Lipogenesis and lipolysis: the pathways exploited by the cancer cells to acquire fatty acids. Prog Lipid Res. 2013;52(4):585–9. doi: 10.1016/j.plipres.2013.08.005. [Zaidi N, Lupien L, Kuemmerle NB, et al. Lipogenesis and lipolysis: the pathways exploited by the cancer cells to acquire fatty acids[J]. Prog Lipid Res, 2013, 52(4): 585-9.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Wu X, Qin L, Fako V, et al. Molecular mechanisms of fatty acid synthase (FASN)-mediated resistance to anti-cancer treatments. Adv Biol Regul. 2014;54:214–21. doi: 10.1016/j.jbior.2013.09.004. [Wu X, Qin L, Fako V, et al. Molecular mechanisms of fatty acid synthase (FASN)-mediated resistance to anti-cancer treatments[J]. Adv Biol Regul, 2014, 54: 214-21.] [DOI] [PubMed] [Google Scholar]
  • 13.Menendez JA, Lupu R. Oncogenic properties of the endogenous fatty acid metabolism: molecular pathology of fatty acid synthase in cancer cells. Curr Opin Clin Nutr Metab Care. 2006;9(4):346–57. doi: 10.1097/01.mco.0000232893.21050.15. [Menendez JA, Lupu R. Oncogenic properties of the endogenous fatty acid metabolism: molecular pathology of fatty acid synthase in cancer cells[J]. Curr Opin Clin Nutr Metab Care, 2006, 9(4): 346-57.] [DOI] [PubMed] [Google Scholar]
  • 14.Gong J, Shen S, Yang Y, et al. Inhibition of FASN suppresses migration, invasion and growth in hepatoma carcinoma cells by deregulating the HIF-1α/IGFBP1 pathway. Int J Oncol. 2017;50(3):883–92. doi: 10.3892/ijo.2017.3867. [Gong J, Shen S, Yang Y, et al. Inhibition of FASN suppresses migration, invasion and growth in hepatoma carcinoma cells by deregulating the HIF-1α/IGFBP1 pathway[J]. Int J Oncol, 2017, 50 (3): 883-92.] [DOI] [PubMed] [Google Scholar]
  • 15.Xu S, Chen TT, Dong LH, et al. Fatty acid synthase promotes breast cancer metastasis by mediating changes in fatty acid metabolism. Oncol Lett. 2021;21(1):27–35. doi: 10.3892/ol.2020.12288. [Xu S, Chen TT, Dong LH, et al. Fatty acid synthase promotes breast cancer metastasis by mediating changes in fatty acid metabolism[J]. Oncol Lett, 2021, 21(1): 27-35.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Shen M, Tsai Y, Zhu R, et al. FASN-TGF-β1-PD-L1 axis contributes to the development of resistance to NK cell cytotoxicity of cisplatin-resistant lung cancer cells. Biochim Biophys Acta. 2018;1863(3):313–22. doi: 10.1016/j.bbalip.2017.12.012. [Shen M, Tsai Y, Zhu R, et al. FASN-TGF-β1-PD-L1 axis contributes to the development of resistance to NK cell cytotoxicity of cisplatin-resistant lung cancer cells[J]. Biochim Biophys Acta, 2018, 1863(3): 313-22.] [DOI] [PubMed] [Google Scholar]
  • 17.Gu L, Zhu Y, Lin X, et al. Stabilization of FASN by ACAT1-mediated GNPAT acetylation promotes lipid metabolism and hepatocarcino-genesis. Oncogene. 2020;39(11):2437–49. doi: 10.1038/s41388-020-1156-0. [Gu L, Zhu Y, Lin X, et al. Stabilization of FASN by ACAT1-mediated GNPAT acetylation promotes lipid metabolism and hepatocarcino-genesis[J]. Oncogene, 2020, 39(11): 2437-49.] [DOI] [PubMed] [Google Scholar]
  • 18.Fujii K, Luo Y, Fujiwara-Tani R, et al. Pro-metastatic intracellular signaling of the elaidic trans fatty acid. Int J Oncol. 2017;50(1):85–92. doi: 10.3892/ijo.2016.3797. [Fujii K, Luo Y, Fujiwara-Tani R, et al. Pro-metastatic intracellular signaling of the elaidic trans fatty acid[J]. Int J Oncol, 2017, 50(1): 85-92.] [DOI] [PubMed] [Google Scholar]
  • 19.Ohmori H, Fujii K, Kadochi Y, et al. Elaidic acid, a trans-fatty acid, enhances the metastasis of colorectal cancer cells. Pathobiology. 2017;84(3):144–51. doi: 10.1159/000449205. [Ohmori H, Fujii K, Kadochi Y, et al. Elaidic acid, a trans-fatty acid, enhances the metastasis of colorectal cancer cells[J]. Pathobiology, 2017, 84(3): 144-51.] [DOI] [PubMed] [Google Scholar]
  • 20.Bian Y, Yu Y, Wang S, et al. Up-regulation of fatty acid synthase induced by EGFR/ERK activation promotes tumor growth in pancreatic cancer. Biochem Biophys Res Commun. 2015;463(4):612–7. doi: 10.1016/j.bbrc.2015.05.108. [Bian Y, Yu Y, Wang S, et al. Up-regulation of fatty acid synthase induced by EGFR/ERK activation promotes tumor growth in pancreatic cancer[J]. Biochem Biophys Res Commun, 2015, 463(4): 612-7.] [DOI] [PubMed] [Google Scholar]
  • 21.Cui Y, Xing P, Wang Y, et al. NADPH accumulation is responsible for apoptosis in breast cancer cells induced by fatty acid synthase inhibition. Oncotarget. 2017;8(20):32576–85. doi: 10.18632/oncotarget.15936. [Cui Y, Xing P, Wang Y, et al. NADPH accumulation is responsible for apoptosis in breast cancer cells induced by fatty acid synthase inhibition[J]. Oncotarget, 2017, 8(20): 32576-85.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Wang H, Xi Q, Wu G. Fatty acid synthase regulates invasion and metastasis of colorectal cancer via Wnt signaling pathway. Cancer Med. 2016;5(7):1599–606. doi: 10.1002/cam4.711. [Wang H, Xi Q, Wu G. Fatty acid synthase regulates invasion and metastasis of colorectal cancer via Wnt signaling pathway[J]. Cancer Med, 2016, 5(7): 1599-606.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.黄 娟, 邹 小芹, 佘 莎, et al. 脂肪酸合成酶与信号传导及转录激活因子3相互作用促进肝癌细胞的迁移和侵袭. 中华肝脏病杂志. 2019;27(9):681–6. doi: 10.3760/cma.j.issn.1007-3418.2019.09.005. [黄娟, 邹小芹, 佘莎, 等. 脂肪酸合成酶与信号传导及转录激活因子3相互作用促进肝癌细胞的迁移和侵袭[J]. 中华肝脏病杂志, 2019, 27(9): 681-6.] [DOI] [Google Scholar]

Articles from Journal of Southern Medical University are provided here courtesy of Editorial Department of Journal of Southern Medical University

RESOURCES