Skip to main content
Virologica Sinica logoLink to Virologica Sinica
. 2012 Jan 22;27(1):57–68. doi: 10.1007/s12250-012-3229-x

The protamine-like DNA-binding protein P6.9 epigenetically up-regulates Autographa californica multiple nucleopolyhedrovirus gene transcription in the late infection phase

Ying Peng 1, Kun Li 1, Rong-juan Pei 2, Chun-chen Wu 2, Chang-yong Liang 3, Yun Wang 1,, Xin-wen Chen 2
PMCID: PMC8218125  PMID: 22270807

Abstract

Protamines are a group of highly basic proteins first discovered in spermatozoon that allow for denser packaging of DNA than histones and will result in down-regulation of gene transcription[1]. It is well recognized that the Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV) encodes P6.9, a protamine-like protein that forms the viral subnucleosome through binding to the viral genome[29]. Previous research demonstrates that P6.9 is essential for viral nucleocapsid assembly, while it has no influence on viral genome replication[31]. In the present study, the role of P6.9 in viral gene transcription regulation is characterized. In contrast to protamines or other protamine-like proteins that usually down-regulate gene transcription, P6.9 appears to up-regulate viral gene transcription at 12–24 hours post infection (hpi), whereas it is non-essential for the basal level of viral gene transcription. Fluorescence microscopy reveals the P6.9’s co-localization with DNA is temporally and spatially synchronized with P6.9’s impact on viral gene transcription, indicating the P6.9-DNA association contributes to transcription regulation. Chromatin fractionation assay further reveals an unexpected co-existence of P6.9 and host RNA polymerase II in the same transcriptionally active chromatin fraction at 24 hpi, which may probably contribute to viral gene transcription up-regulation in the late infection phase.

Key words: Epigenetics, AcMNPV, P6.9, Protamine, Subnucleosome

Footnotes

Foundation items: the National Nature Science Foundations of China (31030027, 30400271) and the National Natural Science Foundations of China for Young Scholars (31000081).

These authors contributed equally to this work.

References

  • 1.Balhorn R. The protamine family of sperm nuclear proteins. Genome biol. 2007;8(9):227. doi: 10.1186/gb-2007-8-9-227. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Dai W. T., Deng F., Wang H. L., et al. The transcription profiles of nine HaSNPV genes. Virol Sin. 2006;21(1):47–51. [Google Scholar]
  • 3.Eirin-Lopez J. M., Frehlick L. J., Ausio J. Protamines, in the footsteps of linker histone evolution. J Biol Chem. 2006;281(1):1–4. doi: 10.1074/jbc.R500018200. [DOI] [PubMed] [Google Scholar]
  • 4.Fareed G. C., Davoli D. Molecular biology of papovaviruses. Annu Rev Biochem. 1977;46:471–522. doi: 10.1146/annurev.bi.46.070177.002351. [DOI] [PubMed] [Google Scholar]
  • 5.Flint J., Shenk T. Viral transactivating proteins. Annu rev genet. 1997;31:177–212. doi: 10.1146/annurev.genet.31.1.177. [DOI] [PubMed] [Google Scholar]
  • 6.Guarino L. A., Summers M. D. Interspersed homologous DNA of autographa californica nuclear polyhedrosis virus enhances delayed-early gene expression. J Virol. 1986;60(1):215–223. doi: 10.1128/jvi.60.1.215-223.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Guarino L. A., Gonzalez M. A., Summers M. D. Complete sequence and enhancer function of the homologous DNA regions of autographa californica nuclear polyhedrosis virus. J Virol. 1986;60(1):224–229. doi: 10.1128/jvi.60.1.224-229.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Guarino L. A., Xu B., Jin J., et al. A virus-encoded rna polymerase purified from baculovirus-infected cells. J Virol. 1998;72(10):7985–7991. doi: 10.1128/jvi.72.10.7985-7991.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Jiang S. S., Chang I. S., Huang L. W., et al. Temporal transcription program of recombinant autographa californica multiple nucleopolyhedrosis virus. J Virol. 2006;80(18):8989–8999. doi: 10.1128/JVI.01158-06. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Johnson J. S., Osheim Y. N., Xue Y., et al. Adenovirus protein vii condenses DNA, represses transcription, and associates with transcriptional activator E1A. J Virol. 2004;78(12):6459–6468. doi: 10.1128/JVI.78.12.6459-6468.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Kanda T., Sullivan K. F., Wahl G. M. Histone-gfp fusion protein enables sensitive analysis of chromosome dynamics in living mammalian cells. Curr Biol. 1998;8(7):377–385. doi: 10.1016/S0960-9822(98)70156-3. [DOI] [PubMed] [Google Scholar]
  • 12.Knebel D., Lubbert H., Doerfler W. The promoter of the late p10 gene in the insect nuclear polyhedrosis virus autographa californica: Activation by viral gene products and sensitivity to DNA methylation. The EMBO journal. 1985;4(5):1301–1306. doi: 10.1002/j.1460-2075.1985.tb03776.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Kovacs G. R., Guarino L. A., Summers M. D. Novel regulatory properties of the ie1 and ie0 transactivators encoded by the baculovirus autographa californica multicapsid nuclear polyhedrosis virus. J Virol. 1991;65(10):5281–5288. doi: 10.1128/jvi.65.10.5281-5288.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Krappa R., Knebel-Morsdorf D. Identification of the very early transcribed baculovirus gene pe-38. J Virol. 1991;65(2):805–812. doi: 10.1128/jvi.65.2.805-812.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Krappa R., Roncarati R., Knebel-Morsdorf D. Expression of pe38 and ie2, viral members of the c3hc4 finger family, during baculovirus infection: Pe38 and ie2 localize to distinct nuclear regions. J Virol. 1995;69(9):5287–5293. doi: 10.1128/jvi.69.9.5287-5293.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Krappa R., Behn-Krappa A., Jahnel F., et al. Differential factor binding at the promoter of early baculovirus gene pe38 during viral infection: Gata motif is recognized by an insect protein. J Virol. 1992;66(6):3494–3503. doi: 10.1128/jvi.66.6.3494-3503.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Kurg R., Sild K., Ilves A., et al. Association of bovine papillomavirus e2 protein with nuclear structures in vivo. J Virol. 2005;79(16):10528–10539. doi: 10.1128/JVI.79.16.10528-10539.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Lewis J. D., Song Y., de Jong M. E., et al. A walk though vertebrate and invertebrate protamines. Chromosoma. 2003;111(8):473–482. doi: 10.1007/s00412-002-0226-0. [DOI] [PubMed] [Google Scholar]
  • 19.Lieberman P. M. Chromatin regulation of virus infection. Trends Microbiol. 2006;14(3):132–140. doi: 10.1016/j.tim.2006.01.001. [DOI] [PubMed] [Google Scholar]
  • 20.Luckow V. A., Lee S. C., Barry G. F., et al. Efficient generation of infectious recombinant baculoviruses by site-specific transposon-mediated insertion of foreign genes into a baculovirus genome propagated in escherichia coli. J Virol. 1993;67(8):4566–4579. doi: 10.1128/jvi.67.8.4566-4579.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Luger K., Mader A. W., Richmond R. K., et al. Crystal structure of the nucleosome core particle at 2. a resolution. Nature. 1997;389(6648):251–260. doi: 10.1038/38444. [DOI] [PubMed] [Google Scholar]
  • 22.Morris T. D., Miller L. K. Mutational analysis of a baculovirus major late promoter. Gene. 1994;140(2):147–153. doi: 10.1016/0378-1119(94)90538-X. [DOI] [PubMed] [Google Scholar]
  • 23.Nagamine T., Kawasaki Y., Abe A., et al. Nuclear marginalization of host cell chromatin associated with expansion of two discrete virus-induced subnuclear compartments during baculovirus infection. J Virol. 2008;82(13):6409–6418. doi: 10.1128/JVI.00490-08. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Olins D. E., Olins A. L. Chromatin history: Our view from the bridge. Nat Rev Mol Cell Biol. 2003;4(10):809–814. doi: 10.1038/nrm1225. [DOI] [PubMed] [Google Scholar]
  • 25.Peng Y., Song J., Lu J., et al. The histone deacetylase inhibitor sodium butyrate inhibits baculovirus-mediated transgene expression in sf9 cells. J Biotechnol. 2007;131(2):180–187. doi: 10.1016/j.jbiotec.2007.06.009. [DOI] [PubMed] [Google Scholar]
  • 26.Rose S. M., Garrard W. T. Differentiation-dependent chromatin alterations precede and accompany transcription of immunoglobulin light chain genes. J Biol Chem. 1984;259(13):8534–8544. [PubMed] [Google Scholar]
  • 27.Strahl B. D., Allis C. D. The language of covalent histone modifications. Nature. 2000;403(6765):41–45. doi: 10.1038/47412. [DOI] [PubMed] [Google Scholar]
  • 28.Sung M. T., Cao T. M., Coleman R. T., et al. Gene and protein sequences of adenovirus protein vii, a hybrid basic chromosomal protein. Proc Natl Acad Sci U S A. 1983;80(10):2902–2906. doi: 10.1073/pnas.80.10.2902. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Tweeten K. A., Bulla L. A., Consigli R. A. Characterization of an extremely basic protein derived from granulosis virus nucleocapsids. J Virol. 1980;33(2):866–876. doi: 10.1128/jvi.33.2.866-876.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Vanarsdall A. L., Okano K., Rohrmann G. F. Characterization of the role of very late expression factor 1 in baculovirus capsid structure and DNA processing. J Virol. 2006;80(4):1724–1733. doi: 10.1128/JVI.80.4.1724-1733.2006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31.Wang M., Tuladhar E., Shen S., et al. Specificity of baculovirus p6. basic DNA-binding proteins and critical role of the c terminus in virion formation. J Virol. 2010;84(17):8821–8828. doi: 10.1128/JVI.00072-10. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.Wang Y., Wang Q., Liang C., et al. Autographa californica multiple nucleopolyhedrovirus nucleocapsid protein bv/odv-c42 mediates the nuclear entry of p78/83. J Virol. 2008;82(9):4554–4561. doi: 10.1128/JVI.02510-07. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.Wilson M. E., Miller L. K. Changes in the nucleoprotein complexes of a baculovirus DNA during infection. Virology. 1986;151(2):315–328. doi: 10.1016/0042-6822(86)90052-8. [DOI] [PubMed] [Google Scholar]
  • 34.Wilson M. E., Price K. H. Association of autographa californica nuclear polyhedrosis virus (acmnpv) with the nuclear matrix. Virology. 1988;1671:233–241. doi: 10.1016/0042-6822(88)90073-6. [DOI] [PubMed] [Google Scholar]
  • 35.Workman J. L. Nucleosome displacement in transcription. Genes Dev. 2006;20(15):2009–2017. doi: 10.1101/gad.1435706. [DOI] [PubMed] [Google Scholar]
  • 36.Wykes S. M., Krawetz S. A. The structural organization of sperm chromatin. J Biol Chem. 2003;278(32):29471–29477. doi: 10.1074/jbc.M304545200. [DOI] [PubMed] [Google Scholar]

Articles from Virologica Sinica are provided here courtesy of Wuhan Institute of Virology, Chinese Academy of Sciences

RESOURCES