Skip to main content
Virologica Sinica logoLink to Virologica Sinica
. 2012 Apr 11;27(2):120–131. doi: 10.1007/s12250-012-3232-2

Subtyping animal influenza virus with general multiplex RT-PCR and Liquichip high throughput (GMPLex)

Zhi-feng Qin 1,, Jie Sun 1, Ti-kang Lu 1, Shao-ling Zeng 1, Qun-yi Hua 1, Qing-yan Ling 1, Shu-kun Chen 1, Jian-qiang Lv 1, Cai-hong Zhang 1, Bing Cheng 1, Zhou-xi Ruan 1, Ying-zuo Bi 2, Joseph J Giambrone 3, Hong-zhuan Wu 4
PMCID: PMC8218139  PMID: 22492003

Abstract

This study developed a multiplex RT-PCR integrated with luminex technology to rapidly subtype simultaneously multiple influenza viruses. Primers and probes were designed to amplify NS and M genes of influenza A viruses HA gene of H1, H3, H5, H7, H9 subtypes, and NA gene of the N1 and N2 subtypes. Universal super primers were introduced to establish a multiplex RT-PCR (GM RT-PCR). It included three stages of RT-PCR amplification, and then the RT-PCR products were further tested by LiquiChip probe, combined to give an influenza virus (IV) rapid high throughput subtyping test, designated as GMPLex. The IV GMPLex rapid high throughput subtyping test presents the following features: high throughput, able to determine the subtypes of 9 target genes in H1, H3, H5, H7, H9, N1, and N2 subtypes of the influenza A virus at one time; rapid, completing the influenza subtyping within 6 hours; high specificity, ensured the specificity of the different subtypes by using two nested degenerate primers and one probe, no cross reaction occurring between the subtypes, no non-specific reactions with other pathogens and high sensitivity. When used separately to detect the product of single GM RT-PCR for single H5 or N1 gene, the GMPLex test showed a sensitivity of 10−5(= 280ELD50) forboth tests and the Luminex qualitative ratio results were 3.08 and 3.12, respectively. When used to detect the product of GM RT-PCR for H5N1 strain at the same time, both showed a sensitivity of 10−4(=2800 ELD50). The GMPLex rapid high throughput subtyping test can satisfy the needs of influenza rapid testing.

Key words: Influenza Virus, General multiplex RT-PCR, Iuminex assay, Subtyping, HA and NA genes

Footnotes

Foundation items: The Basic Rasearch Project of Shenzhen (JC200903190778A).

References

  • 1.Capua I., Alexander D. J. The challenge of avian influenza to the veterinary commol/Lunity. Avian Pathol. 2006;35:189. doi: 10.1080/03079450600717174. [DOI] [PubMed] [Google Scholar]
  • 2.Chen H. T., Zhang J., Ma L. N., et al. Rapid subtyping of H9N2 influenza virus by a triple reverse transcription polymerase chain reaction. J Virol Methods. 2009;158:58–62. doi: 10.1016/j.jviromet.2009.01.026. [DOI] [PubMed] [Google Scholar]
  • 3.Choi Y. K., Nguyen T. D., Ozaki H., et al. Studies on H5N1 influenza virus infection of pigs by using viruses isolated in Vietnam and Thailand in 2004. J Virol. 2005;79:10821–10825. doi: 10.1128/JVI.79.16.10821-10825.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Davison S., Galligan D., Eckert T. E., et al. Economic analysis of an outbreak of avian influenza, 1997–1998. J Am Vet Med Assoc. 1999;214(8):1164. [PubMed] [Google Scholar]
  • 5.Dieffenbach C. W., Lowe T. M., Dveksler G. S. General concepts for PCR primer design. PCR Methods Appl. 1993;3(3):S30–S37. doi: 10.1101/gr.3.3.s30. [DOI] [PubMed] [Google Scholar]
  • 6.Dunbar S. A., Vander C. A. Quantitative, multiplexed detection of bacterial pathogens: DNA and protein applications of Luminex Labmap system. J Microbiol Methods. 2003;53:245–252. doi: 10.1016/S0167-7012(03)00028-9. [DOI] [PubMed] [Google Scholar]
  • 7.Ellis J. S., Zambon M. C. Molecular diagnosis of influenza. Rev Med Virol. 2002;12:375–389. doi: 10.1002/rmv.370. [DOI] [PubMed] [Google Scholar]
  • 8.Hoffman B., Harder T., Starick E., et al. Rapid and highly sensitive pathotyping of avian influenza A H5N1 virus by using Real-time reverse transcription-PCR. J Clin Microbiol. 2007;45(2):600–603. doi: 10.1128/JCM.01681-06. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Lamb R. Genes and Proteins of the Influenza Viruses. In: Krug R. M., editor. The Influenza Viruses. New York: Plenum Press; 1989. pp. 1–67. [Google Scholar]
  • 10.Mack M., Burger M., Pietschman P., et al. A high-throughput microtiter plate-based screening method for the detection of full-length recombinant proteins. Protein Expr Purif. 2008;61(1):92–98. doi: 10.1016/j.pep.2008.05.005. [DOI] [PubMed] [Google Scholar]
  • 11.OIE. 2011. Manual of Diagnostic Tests and Vaccines for Terrestrial Animals. The World Organization for Animal. Available at: http://www.oie.int/fileadmin/Home/eng/Health_standards/tahm/2.03.04_AI.pdf.
  • 12.Ong W. T., Omar A. R., Ideris A. Development of a multiplex real-time PCR assay using SYBR Green 1 chemistry for simultaneous detection and subtyping of H9N2 influenza virus type A. J Virol Methods. 2007;144:57–64. doi: 10.1016/j.jviromet.2007.03.019. [DOI] [PubMed] [Google Scholar]
  • 13.Playford E. G., Dwyer D. E. Laboratory diagnosis of influenza virus infection. Pathology. 2002;34:115–125. doi: 10.1080/003130201201117909. [DOI] [PubMed] [Google Scholar]
  • 14.Qin Z. F., Lv J. Q., Xiao X. L. Sensitive test of the multiplex real-time reverse transcriptase PCR (RRT-PCR) kit for the rapid detection of subtype H5, H7 & H9 avian influenza virus. Chin J Prev Vet Med. 2006;28(3):336–340. [Google Scholar]
  • 15.Wen J. K., Zhang X. E., Cheng Z., et al. A visual DNA chip for simultaneous detection of hepatitis B virus, hepatitis C virus and human immol/Lunodeficiency virus type-1. Biosens Bioelectron. 2004;19(7):685–692. doi: 10.1016/S0956-5663(03)00264-1. [DOI] [PubMed] [Google Scholar]
  • 16.Wood J. M., Robertson J. S. From lethal virus to life-saving vaccine: developing inactivated vaccines for pandemic influenza. Nat Rev Microbiol. 2004;2(10):842–847. doi: 10.1038/nrmicro979. [DOI] [PubMed] [Google Scholar]

Articles from Virologica Sinica are provided here courtesy of Wuhan Institute of Virology, Chinese Academy of Sciences

RESOURCES