Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 2021 Jun 23;51(5):577–582. doi: 10.1007/s11055-021-01108-z

SARS-CoV-2 (COVID-19) as a Predictor of Neuroinflammation and Neurodegeneration: Potential Treatment Strategies

M V Putilina 1,, D V Grishin 1,2
PMCID: PMC8219508  PMID: 34176996

Abstract

The SARS-CoV-2 (COVID-19) pandemic has attracted attention to the challenge of neuroinflammation as an unavoidable component of viral infections. Acute neuroinflammatory responses include activation of resident tissue macrophages in the CNS followed by release of a variety of cytokines and chemokines associated with activation of oxidative stress and delayed neuron damage. This makes the search for treatments with indirect anti-inflammatory properties relevant. From this point of view, attention is focused on further study of the treatment of patients with COVID-19 with dipyridamole (Curantil) which, having antiviral and anti-inflammatory effects, can inhibit acute inflammatory activity and progression of fibrosis, is a drug with potential, especially among patients with early increases in the D-dimer concentration and severe signs of microangiopathy.

Keywords: SARS-CoV-2 coronavirus, neuroinflammation, cytokine storm, neurodegeneration, cognitive impairment, dipyridamole

Footnotes

Translated from Zhurnal Nevrologii i Psikhiatrii imeni S. S. Korsakova, Vol. 120, No. 8, Iss. 2, Stroke, pp. 58–64, August, 2020.

References

  • 1.X. Jin, J. S. Lian, J. H. Hu, et al., “Epidemiological, clinical and virological characteristics of 74 cases of coronavirus-infected disease 2019 (COVID-19) with gastrointestinal symptoms,” Gut (2020), pii: Gutjnl-2020-320926, 10.1136/gutjnl-2020-320926. [DOI] [PMC free article] [PubMed]
  • 2.J. Wu, W. Li, X. Shi, et al., “Early antiviral treatment contributes to alleviate the severity and improve the prognosis of patients with novel coronavirus disease (COVID-19),” J. Intern. Med. (2020), 10.1111/joim.13063. [DOI] [PubMed]
  • 3.S. Amor, F. Puentes, D. Baker, and P. van der Valk, “Inflammation in neurodegenerative diseases,” Immunology, 129, No. 2, 154–169 (2010), 10.1111/j.1365-2567.2009.03225.x. [DOI] [PMC free article] [PubMed]
  • 4.W. J. Streit, Q. S. Xue, H. Braak, and K. del Tredici, “Presence of severe neuroinflammation does not intensify neurofi brillary degeneration in human brain,” Glia, 62, No. 1, 96–105 (2014), 10.1002/glia.22589. [DOI] [PubMed]
  • 5.Walker AK, Kavelaars A, Heijnen CJ, Dantzer R. Neuroinflammation and comorbidity of pain and depression. Pharmacol. Rev. 2013;66(1):80–101. doi: 10.1124/pr.113.008144. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Singhal G, Jaehne EJ, Corrigan F, et al. Inflammasomes in neuroinflammation and changes in brain function: a focused review. Front. Neurosci. 2014;8:315. doi: 10.3389/fnins.2014.00315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.M. V. Putilina, “The endothelium as a target for new therapeutic strategies in cerebral vascular diseases,” Zh. Nevrol. Psikhiatr., 117, No. 10, 122–130 (2017), 10.17116/jnevro2017117101122-130. [DOI] [PubMed]
  • 8.E. Gülke, M. Gelderblom, and T. Magnus, “Danger signals in stroke and their role on microglia activation after ischemia,” Ther. Adv. Neurol. Disord., 22, No. 11, 1756286418774254 (2018), 10.1177/1756286418774254. [DOI] [PMC free article] [PubMed]
  • 9.Chamorro Á, Dirnagl U, Urra X, Planas AM. Neuroprotection in acute stroke: targeting excitotoxicity, oxidative and nitrosative stress, and inflammation. Lancet Neurol. 2016;15(8):869–881. doi: 10.1016/S1474-4422(16)00114-9. [DOI] [PubMed] [Google Scholar]
  • 10.Chen GY, Nuñez G. Sterile inflammation: sensing and reacting to damage. Nat. Rev. Immunol. 2010;10(12):826–837. doi: 10.1038/nri2873. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Frank MG, Weber MD, Watkins LR, Maier SF. Stress sounds the alarmin: The role of the danger-associated molecular pattern HMGB1 in stress-induced neuroinflammatory priming. Brain Behav. Immun. 2015;48:1–7. doi: 10.1016/j.bbi.2015.03.010. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Fettelschoss A, Kistowska M, Leibund Gut-Landmann S, et al. Inflammasome activation and IL-1β target IL-1α for secretion as opposed to surface expression. Proc. Natl. Acad. Sci. USA. 2011;108(44):18055–18060. doi: 10.1073/pnas.1109176108. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.O. V. Artem’eva and L. V. Gankovskaya, “Inflammatory aging as the basis of age-associated diseases,” Med. Immunol. (Russia), 3, No. 22, 419–432 (2020), 10.15789/1563-0625-IAT-1938.
  • 14.Lima Giacobbo B, Doorduin J, Klein HC, et al. Brain-derived neurotrophic factor in brain disorders: Focus on neuroinflammation. Mol. Neurobiol. 2019;56(5):3295–3312. doi: 10.1007/s12035-018-1283-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.A. I. Chernykh, Yu. K. Komleva, Ya. V. Gorina, et al., “Proinflammatory phenotype of perivascular astroglia and CD133+ progenitor cells of endotheliocytes in A murine model of Alzheimer’s disease,” Fundament. Klin. Med., 3, No. 1, 6–15 (2018), 10.23946/2500-0764-2018-3-1-6-15.
  • 16.V. S. S. S. Sajja, N. Hlavac, and P. J. VandeVord, “Role of glia in memory deficits following traumatic brain injury: Biomarkers of glia dysfunction.,” Front. Integr. Neurosci. (2016), 10.3389/fnint.2016.00007. [DOI] [PMC free article] [PubMed]
  • 17.Liang SY. Sepsis and other infectious disease emergencies in the elderly. Emerg. Med. Clin. North Am. 2016;34(3):501–522. doi: 10.1016/j.emc.2016.04.005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.G. Zhang, J. Li, S. Purkayastha, et al., “Hypothalamic programming of systemic ageing involving IKK-β, NF-κB and GnRH,” Nature, 497, No. 7448, 211–216 (2013), 10.1038/nature12143. [DOI] [PMC free article] [PubMed]
  • 19.M. Hoffmann, H. Kleine-Weber, S. Schroeder, et al., “SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor,” Cell, 181, No. 2, 271–280.e8 (2020), 10.1016/j.cell.2020.02.052. [DOI] [PMC free article] [PubMed]
  • 20.Rodriguez-Morales AJ, Cardona-Ospina JA, Gutiérrez-Ocampo E, et al. Clinical, laboratory and imaging features of COVID-19: A systematic review and meta-analysis. Travel Med. Infect. Dis. 2020;34:101623. doi: 10.1016/j.tmaid.2020.101623. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.P. Conti, G. Ronconi, A. Caraffa, et al., “Induction of pro-inflammatory cytokines (IL-1 and IL-6) and lung inflammation by Coronavirus-19 (COVI-19 or SARS-CoV-2, anti-inflammatory strategies,” J. Biol. Regul. Homeost. Agents, 34, No. 2 (2020), 10.23812/CONTI-E. [DOI] [PubMed]
  • 22.Borthwick LA. The IL-1 cytokine family and its role in inflammation and fibrosis in the lung. Semin. Immunopathol. 2016;38(4):517–534. doi: 10.1007/s00281-016-0559-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Zubair AS, McAlpine LS, Gardin T, et al. Neuropathogenesis and neurologic manifestations of the coronaviruses in the age of coronavirus disease 2019: A review. JAMA Neurol. 2020;77(8):1018–1027. doi: 10.1001/jamaneurol.2020.2065. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Becker RC. COVID-19 update: Covid-19-associated coagulopathy. J. Thromb. Thrombolysis. 2020;50(1):54–67. doi: 10.1007/s11239-020-02134-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Amgalan A, Othman M. Exploring possible mechanisms for COVID-19 induced thrombocytopenia: Unanswered questions. J. Thromb. Haemost. 2020;18(6):1514–1516. doi: 10.1111/jth.14832. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.M. V. Putilina, “Current concepts of small vessel disease,” Zh. Nevrol. Psikhiatr., 119, No. 11, 65–73 (2019), 10.17116/jnevro201911911165. [DOI] [PubMed]
  • 27.F. J. Carod-Artal, “Neurological complications of coronavirus and COVID-19,” Rev. Neurol., 70, No. 9, 311–322 (2020), 10.33588/rn.7009.2020179. [DOI] [PubMed]
  • 28.Mao L, Wang M, Chen S, et al. Neurological manifestations of hospitalized patients with COVID-19 in Wuhan, China: a retrospective case series study. JAMA Neurol. 2020;77(6):683–690. doi: 10.1001/jamaneurol.2020.1127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Acharya A, Kevadiya BD, Gendelman HE, Byrareddy SN. SARS-CoV-2 infection leads to neurological dysfunction. J. Neuroimmune Pharmacol. 2020;15(2):167–173. doi: 10.1007/s11481-020-09924-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.W. Guan, Z. Ni, Y. Hu, et al., “Clinical characteristics of coronavirus disease 2019 in China,” N. Engl. J. Med. (2020), Epub ahead of print, https://www.nejm.org/doi/full/10.1056/NEJMoa2002032. [DOI] [PMC free article] [PubMed]
  • 31.V. N. Lyusov, E. M. Evsikov, and N. V. Teplova, “Etiology and factors in the development and progression of severe and malignant arterial hypertension,” Ross. Kardiol. Zh., 4, No. 14, 6–16 (2009), 10.15829/1560-4071-2009-4-6-16.
  • 32.P. Martin-Jimenez, M. I. Munoz-Garcia, D. Seoane, et al., “Cognitive impairment is a common comorbidity in COVID-19 deceased patients. A hospital-based retrospective cohort study,” medRxiv (2020), 10.1101/2020.06.08.20125872. [DOI] [PubMed]
  • 33.A. Filatov, P. Sharma, F. Hindi, and P. S. Espinosa, “Neurological complications of coronavirus disease (COVID-19). Encephalopathy,” Cureus, 12, No. 3, e7352 (2020), 10.7759/cureus.7352. [DOI] [PMC free article] [PubMed]
  • 34.Wilcox C, Zhou H. The landscape of cognitive function in recovered COVID-19 patients. J. Psychiatr. Res. 2020;129:98. doi: 10.1016/j.jpsychires.2020.06.022. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35.A. Hall, T. Pekkala, and T. Polvikoski, “Prediction models for dementia and neuropathology in the oldest old: the Vantaa 85+ cohort study,” Alzheimers Res. Ther., 11, No. 1, 11 (2019), 10.1186/s13195-018-0450-3. [DOI] [PMC free article] [PubMed]
  • 36.M. V. Putilina and E. B. Natarova, “Features of manifestations of cerebral circulatory insufficiency in young patients,” Ross. Med. Vesti, No. 1, 41–44 (2002).
  • 37.Prevention, Diagnosis and Treatment of New Coronavirus Infection (COVID-19). Provisional Guidelines, Ministry of Health of the Russian Federation, Ver. 7, June 3, 2020.
  • 38.Putilina MV, Soldatov MA. Cerebral strokes in the elderly. Features of the clinical picture, course, and treatment. Vrach. 2006;5:29–34. [Google Scholar]
  • 39.Teplova NV, Evsikov EM. The angiotensin receptor blocker valsartan (Diovan) in clinical practice. Ross. Med. Zh. 2005;14:94–97. [Google Scholar]
  • 40.Cavalli G, De Luca G, Campochiaro C, et al. Interleukin-1 blockade with high-dose anakinra in patients with COVID-19, acute respiratory distress syndrome, and hyperinflammation: a retrospective cohort study. Lancet Rheumatol. 2020;2:325–331. doi: 10.1016/S2665-9913(20)30127-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41.Philip BM, Wardlaw JM. Pharmacological treatment and prevention of cerebral small vessel disease: a review of potential interventions. Int. J. Stroke. 2015;10(4):469–478. doi: 10.1111/ijs.12466. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42.M. V. Putilina, “Combined use of neuroprotectors in the treatment of cerebrovascular diseases,” Zh. Nevrol. Psikhiatr., 116, No. 11, 58–63 (2016), 10.17116/jnevro201611611158-63. [DOI] [PubMed]
  • 43.L. Tingbo, Handbook of COVID-19. Prevention and Treatment (2020), https://www.zju.edu.cn/english/2020/0323/c19573a1987520/page.htm.
  • 44.X. Liu, Z. Li, S. Liu, et al., “Therapeutic effects of dipyridamole on COVID-19 patients with coagulation dysfunction,” medRxiv, 2020.02.27.20027557, 10.1101/2020.02.27.20027557.
  • 45.Guo L, Rondina MT. The era of thromboinflammation: platelets are dynamic sensors and effector cells during infectious diseases. Front. Immunol. 2019;10:22–34. doi: 10.3389/fimmu.2019.02204. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 46.S. Kalayoglu Besisik, M. Ozbalak, Y. B. Tor, et al., “Dipyridamole added to anticoagulant prophylaxis: decline in poor outcome of clinically severe ill COVID-2019 patients [abstract],” Res. Pract. Thromb. Haemost., 4, Suppl. 1 (2020), https://abstracts.isth.org/abstract/dipyridamole-added-to-anticoagulant-prophylaxis-decline-in-poor-outcome-of-clinically-severe-ill-covid-2019-patients/, acc. Aug. 17, 2020.
  • 47.E. N. Kareva, “Features of the pharmacological actions and use of dipyridamole in the prevention and treatment of viral infections,” Consilium Medicum, 18, No. 12, 80–87 (2016).
  • 48.Balakumar P, Nyoa Y, Renushiaa R. Classical and pleiotropic actions of dipyridamole: Not enough light to illuminate the dark tunnel? Pharmacol. Res. 2014;87:144–150. doi: 10.1016/j.phrs.2014.05.008. [DOI] [PubMed] [Google Scholar]
  • 49.Putilina MV. The Role of endothelial dysfunction in cerebrovascular diseases. Vrach. 2012;7:24–28. [Google Scholar]
  • 50.Tanashyan MM, Domashenko MA. Use of Curantil in chronic cerebrovascular disease. Atmosfera. Nervnye Bolezni. 2005;3:8–11. [Google Scholar]
  • 51.A. A. Yakovlev and N. V. Gulyaeva, “Molecular partners of cortexin in the brain,” Neirokhimiya, 33, 1:91–96 (2017), 10.1134/S1819712416040164.

Articles from Neuroscience and Behavioral Physiology are provided here courtesy of Nature Publishing Group

RESOURCES