Skip to main content
Virologica Sinica logoLink to Virologica Sinica
. 2011 Jun 12;26(3):181–189. doi: 10.1007/s12250-011-3187-8

Total chemical synthesis, assembly of human torque teno virus genome

Zheng Hou 1, Gengfu Xiao 1,
PMCID: PMC8222436  PMID: 21667338

Abstract

Torque teno virus (TTV) is a nonenveloped virus containing a single-stranded, circular DNA genome of approximately 3.8kb. We completely synthesized the 3 808 nucleotides of the TTV (SANBAN isolate) genome, which contains a hairpin structure and a GC-rich region. More than 100 overlapping oligonucleotides were chemically synthesized and assembled by polymerase chain assembly reaction (PCA), and the synthesis was completed with splicing by overlap extension (SOEing). This study establishes the methodological basis of the chemical synthesis of a viral genome for use as a live attenuated vaccine or gene therapy vector.

Key words: Torque teno virus (TTV), Synthetic biology, Polymerase chain assembly reaction (PCA), Gene splicing by overlap extension (SOEing)

Footnotes

Foundation item: The Knowledge Innovation Program of the Chinese Academy of Sciences (KSCX2-EW-Z-3)

References

  • 1.Agarwal K. L., Büchi H., Caruthers M. H., et al. Total synthesis of the gene for an alanine transfer ribonucleic acid from yeast. Nature. 1970;227(5253):27–34. doi: 10.1038/227027a0. [DOI] [PubMed] [Google Scholar]
  • 2.Bendinelli M., Pistello M., Maggi F., et al. Molecular properties, biology, and clinical implications of TT virus, a recently identified widespread infectious agent of humans. Clin Microbiol Rev. 2001;14(1):98–113. doi: 10.1128/CMR.14.1.98-113.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Camci C., Guney C., Balkan A., et al. The prevalence of TT virus in cancer patients. New Microbiol. 2002;25(4):463–468. [PubMed] [Google Scholar]
  • 4.Cello J., Paul A. V., Wimmer E. Chemical synthesis of poliovirus cDNA: generation of infectious virus in the absence of natural template. Science. 2002;297(5583):1016–1018. doi: 10.1126/science.1072266. [DOI] [PubMed] [Google Scholar]
  • 5.Dillon P. J., Rosen C. A. A rapid method for the construction of synthetic genes using the polymerase chain reaction. Biotechniques. 1990;9(3):298–300. [PubMed] [Google Scholar]
  • 6.Gibson D. G., Glass J. I., Lartigue C., et al. Creation of a bacterial cell controlled by a chemically synthesized genome. Science. 2010;329(5987):52–56. doi: 10.1126/science.1190719. [DOI] [PubMed] [Google Scholar]
  • 7.Hapgood J. P., Riedemann J., Scherer S. D. Regulation of gene expression by GC-rich DNA cis-elements. Cell Biol Int. 2001;25(1):17–31. doi: 10.1006/cbir.2000.0674. [DOI] [PubMed] [Google Scholar]
  • 8.Hijikata M., Takahashi K., Mishiro S. Complete circular DNA genome of a TT virus variant (isolate name SANBAN) and 44 partial ORF2 sequences implicating a great degree of diversity beyond genotypes. Virology. 1999;260(1):17–22. doi: 10.1006/viro.1999.9797. [DOI] [PubMed] [Google Scholar]
  • 9.Horton R. M. PCR-mediated recombination and mutagenesis. SOEing together tailor-made genes. Mol Biotechnol. 1995;3(2):93–99. doi: 10.1007/BF02789105. [DOI] [PubMed] [Google Scholar]
  • 10.Hu Z. J., Lang Z. W., Zhou Y. S., et al. Clinic pathological study on TTV infection in hepatitis of unknown etiology. World J Gastroenterol. 2002;8(2):288–293. doi: 10.3748/wjg.v8.i2.288. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Jelcic I., Hotz-Wagenblatt A., Hunziker A., et al. Isolation of multiple TT virus genotypes from spleen biopsy tissue from a Hodgkin’s disease patient: genome reorganization and diversity in the hypervariable region. J Virol. 2004;78(14):7498–7507. doi: 10.1128/JVI.78.14.7498-7507.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Liu X., Kong S., Shi M., et al. Genomic analysis of freshwater cyanophage Pf-WMP3 infecting cyano-bacterium Phormidium foveolarum: the conserved elements for a phage. Microb Ecol. 2008;56(4):671–680. doi: 10.1007/s00248-008-9386-7. [DOI] [PubMed] [Google Scholar]
  • 13.Miyata H., Tsunoda H., Kazi A., et al. Identification of a novel GC-rich 113-nucleotide region to complete the circular, single-stranded DNA genome of TT virus, the first human circovirus. J Virol. 1999;73(5):3582–3586. doi: 10.1128/jvi.73.5.3582-3586.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Mushahwar I. K., Erker J. C., Muerhoff A. S., et al. Molecular and biophysical characterization of TT virus: evidence for a new virus family infecting humans. Proc Natl Acad Sci USA. 1999;96(6):3177–3182. doi: 10.1073/pnas.96.6.3177. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Nishizawa T., Okamoto H., Konishi K., et al. A novel DNA virus (TTV) associated with elevated transaminase levels in posttransfusion hepatitis of unknown etiology. Biochem Biophys Res Commun. 1997;241(1):92–97. doi: 10.1006/bbrc.1997.7765. [DOI] [PubMed] [Google Scholar]
  • 16.Okamoto H., Nishizawa T., Ukita M. A novel unenveloped DNA virus (TT virus) associated with acute and chronic non-A to G hepatitis. Intervirology. 1999;42(2–3):196–204. doi: 10.1159/000024961. [DOI] [PubMed] [Google Scholar]
  • 17.Okamoto H., Ukita M., Nishizawa T., et al. Circular double-stranded forms of TT virus DNA in the liver. J Virol. 2000;74(11):5161–5167. doi: 10.1128/JVI.74.11.5161-5167.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Peng Y. H., Nishizawa T., Takahashi M., et al. Analysis of the entire genomes of thirteen TT virus variants classifiable into the fourth and fifth genetic groups, isolated from viremic infants. Arch Virol. 2002;147(1):21–41. doi: 10.1007/s705-002-8301-7. [DOI] [PubMed] [Google Scholar]
  • 19.Sekiya T., Takeya T., Brown E. L., et al. Total synthesis of a tyrosine suppressor transfer RNA gene. XVI. Enzymatic joining to form the total 207-base pair-long DNA. J Biol Chem. 1979;254(13):5787–5801. [PubMed] [Google Scholar]
  • 20.Smith H. O., Hutchison C. A., 3rd, Pfannkoch C., et al. Generating a synthetic genome by whole genome assembly: phiX174 bacteriophage from synthetic oligonucleotides. Proc Natl Acad Sci USA. 2003;100(26):15440–15445. doi: 10.1073/pnas.2237126100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Stemmer W. P., Crameri A., Ha K.D., et al. Single-step assembly of a gene and entire plasmid from large numbers of oligodeoxyribonucleotides. Gene. 1995;164(1):49–53. doi: 10.1016/0378-1119(95)00511-4. [DOI] [PubMed] [Google Scholar]
  • 22.Takahashi K., Iwasa Y., Hijikata M., et al. Identification of a new human DNA virus (TTV-like mini virus, TLMV) intermediately related to TT virus and chicken anemia virus. Arch Virol. 2000;145(5):979–993. doi: 10.1007/s007050050689. [DOI] [PubMed] [Google Scholar]
  • 23.Takahashi K., Hijikata M., Samokhvalov E. I., et al. Full or near full length nucleotide sequences of TT virus variants (Types SANBAN and YONBAN) and the TT virus-like mini virus. Intervirology. 2000;43(2):119–123. doi: 10.1159/000025034. [DOI] [PubMed] [Google Scholar]
  • 24.Xiong A. S., Yao Q. H., Peng R. H., et al. A simple, rapid, high-fidelity and cost-effective PCR-based two-step DNA synthesis method for long gene sequences. Nucl Acids Res. 2004;32(12):e98. doi: 10.1093/nar/gnh094. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Yoshida T., Nagasaki K., Takashima Y., et al. Ma-LMM01 infecting toxic Microcystis aeruginosa illuminates diverse cyanophage genome strategies. J Bacteriol. 2008;190(5):1762–1772. doi: 10.1128/JB.01534-07. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Virologica Sinica are provided here courtesy of Wuhan Institute of Virology, Chinese Academy of Sciences

RESOURCES