Skip to main content
Virologica Sinica logoLink to Virologica Sinica
. 2011 Dec 10;26(6):393–402. doi: 10.1007/s12250-011-3212-y

Molecular characterization of Banana streak virus isolate from Musa Acuminata in China

Jun Zhuang 1,2, Jian-hua Wang 1, Xin Zhang 3, Zhi-xin Liu 1,
PMCID: PMC8222437  PMID: 22160939

Abstract

Banana streak virus (BSV), a member of genus Badnavirus, is a causal agent of banana streak disease throughout the world. The genetic diversity of BSVs from different regions of banana plantations has previously been investigated, but there are relatively few reports of the genetic characteristic of episomal (non-integrated) BSV genomes isolated from China. Here, the complete genome, a total of 7722bp (GenBank accession number DQ092436), of an isolate of Banana streak virus (BSV) on cultivar Cavendish (BSAcYNV) in Yunnan, China was determined. The genome organises in the typical manner of badnaviruses. The intergenic region of genomic DNA contains a large stem-loop, which may contribute to the ribosome shift into the following open reading frames (ORFs). The coding region of BSAcYNV consists of three overlapping ORFs, ORF1 with a non-AUG start codon and ORF2 encoding two small proteins are individually involved in viral movement and ORF3 encodes a polyprotein. Besides the complete genome, a defective genome lacking the whole RNA leader region and a majority of ORF1 and which encompasses 6525bp was also isolated and sequenced from this BSV DNA reservoir in infected banana plants. Sequence analyses showed that BSAcYNV has closest similarity in terms of genome organization and the coding assignments with an BSV isolate from Vietnam (BSAcVNV). The corresponding coding regions shared identities of 88% and ∼95% at nucleotide and amino acid levels, respectively. Phylogenetic analysis also indicated BSAcYNV shared the closest geographical evolutionary relationship to BSAcVNV among sequenced banana streak badnaviruses.

Key words: BSAcYNV, Complete genome, Defective genome, Identity, Phylogenetic analysis

Footnotes

Foundation items: Nature Science Foundation of China (No. 30660100); National Key Technology R&D Program of China (2007BAD48B01); and National Nonprofit Institute Research Grant of CATAS-ITBB (ITBB110304).

References

  • 1.Agindotan B. O., Thottappolly G., Uwaifo A. Production of monoclonal and polyclonal antibodies against a Nigerian isolate of banana streak virus. Afr J Biotech. 2003;2:171–178. [Google Scholar]
  • 2.Covey S. N. Amino acid sequence homology in gag regions of reverse transcribing elements and the coat protein gene of cauliflower mosaic virus. Nucleic Acids Res. 1986;14:623–633. doi: 10.1093/nar/14.2.623. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Daniells J., Thomas J. E., Smith M. Seed transmission of banana streak virus confirmed. Infomusa. 1995;4:1–7. [Google Scholar]
  • 4.Fütterer J., Kiss-Lá szló Z., Hohn T. Non-linear ribosome migration on cauliflower mosaic virus 35S RNA. Cell. 1993;73:789–802. doi: 10.1016/0092-8674(93)90257-Q. [DOI] [PubMed] [Google Scholar]
  • 5.Gayral P., Juan-Carlos N. C., Lescot M. A single banana streak virus integration event in the banana genome as the origin of infectious endogenous pararetrovirus. J Virol. 2008;82:6697–6710. doi: 10.1128/JVI.00212-08. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Geering A. D., McMichael L. A., Dietzgen R. G. Genetic diversity among banana streak virus isolates from Australia. Phytopathology. 1999;90:291–297. doi: 10.1094/PHYTO.2000.90.8.921. [DOI] [PubMed] [Google Scholar]
  • 7.Grassmann R., Jeang K. T. The roles of microRNAs in mammalian virus infection. Biochim Biophys Acta. 2008;1179:706–711. doi: 10.1016/j.bbagrm.2008.05.005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Harper G., Hull R. Cloning and sequence analysis of banana streak virus DNA. Virus Genes. 1998;17:271–278. doi: 10.1023/A:1008021921849. [DOI] [PubMed] [Google Scholar]
  • 9.Harper G., Osuji J., Heslop-Harrison J. S. Integration of banana streak badnavirus in to the Musa genome: Molecular and cytogenetic evidence. Virology. 1999;255:207–213. doi: 10.1006/viro.1998.9581. [DOI] [PubMed] [Google Scholar]
  • 10.Hohn T., Fütterer J. The proteins and functions of plant pararetroviruses: knowns and unknowns. Crit Rev Plant Sci. 1997;16:133–161. doi: 10.1080/07352689709701947. [DOI] [Google Scholar]
  • 11.Kubiriba B. J., Legg J. P., Tushemerirwe W. Vector transmission of Banana streak virus in the screenhouse in Uganda. Ann Appl Biol. 2001;139:37–43. doi: 10.1111/j.1744-7348.2001.tb00128.x. [DOI] [Google Scholar]
  • 12.Lheureux F., Laboureau N., Muller E. Molecular characterization of banana streak acuminata Vietnam virus isolated from Musa acuminata siamea (banana cultivar) Arch Virol. 2007;152:1409–1416. doi: 10.1007/s00705-007-0946-9. [DOI] [PubMed] [Google Scholar]
  • 13.Lockhart B. E. L., Jones D. R. Disease of banana, abacá, and enset. UK: CABI Publishing; 1999. Banana streak; pp. 263–274. [Google Scholar]
  • 14.Medenbach J., Seiler M., Hentze M. W. Translational control via protein-regulated upstream open reading frames. Cell. 2011;145:902–913. doi: 10.1016/j.cell.2011.05.005. [DOI] [PubMed] [Google Scholar]
  • 15.Moissiard G., Voinnet O. RNA silencing of host transcript by cauliflower mosaic virus requires coordinated action of thebidopsis Dicer-like proteins. Proc Natl Acad Sci. 2006;103:19593–19598. doi: 10.1073/pnas.0604627103. [DOI] [PMC free article] [PubMed] [Google Scholar] [Retracted]
  • 16.Ndowora T. C., Dahal G., Lafleur D. Evidence that badnavirus infection in Musa can originate from integrated paratetrovial sequences. Virology. 1999;225:214–220. doi: 10.1006/viro.1998.9582. [DOI] [PubMed] [Google Scholar]
  • 17.Peraza G. O., Kirk D., Seltzer V. Coat proteins of Rice tungro bacilliform virus and Mungbean yellow mosaic virus contain multiple nuclear-localization signals and interact with importin α. J Gen Virol. 2005;86:1815–1826. doi: 10.1099/vir.0.80920-0. [DOI] [PubMed] [Google Scholar]
  • 18.Plisson C., Uzest M., Drucker M. Structure of the Mature P3-virus Particle Complex of Cauliflower Mosaic Virus Revealed by Cryo-electron Microscopy. J Mol Biol. 2005;346:267–277. doi: 10.1016/j.jmb.2004.11.052. [DOI] [PubMed] [Google Scholar]
  • 19.Pooggin M. M., Fütterer J., Skryabin G. K. A short open reading frame terminating in front of a stable hairpin is the conserved feature in pregenomic RNA leaders of plant pararetroviruses. J Gen Virol. 1999;80:2217–2228. doi: 10.1099/0022-1317-80-8-2217. [DOI] [PubMed] [Google Scholar]
  • 20.Schenk P. M., Remans T., Sági L. Promoters for pregenomic RNA of banana streak badnavirus are active for transgene expression in monocot and dicot plants. Plant Mol Biol. 2001;47:399–412. doi: 10.1023/A:1011680008868. [DOI] [PubMed] [Google Scholar]
  • 21.Stavolone L., Herzog E., Leclerc D. Tetramerization is a conserved feature of the virion-associated protein in plant pararetroviruses. J Virol. 2001;75:7739–7743. doi: 10.1128/JVI.75.16.7739-7743.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Voinnet O. Induction and suppression of RNA silencing: insights from viral infections. Nat Rev Genet. 2005;6:206–220. doi: 10.1038/nrg1555. [DOI] [PubMed] [Google Scholar]

Articles from Virologica Sinica are provided here courtesy of Wuhan Institute of Virology, Chinese Academy of Sciences

RESOURCES