Skip to main content
Virologica Sinica logoLink to Virologica Sinica
. 2011 Jun 12;26(3):147. doi: 10.1007/s12250-011-3180-2

The role of HIV replicative fitness in perinatal transmission of HIV

Xue-qing Chen 1, Chang Liu 1, Xiao-hong Kong 1,
PMCID: PMC8222459  PMID: 21667335

Abstract

Perinatal transmission of Human immunodeficiency virus (HIV), also called mother-to-child transmission (MTCT), accounts for 90% of infections in infants worldwide and occurs in 30%–45% of children born to untreated HIV-1 infected mothers. Among HIV-1 infected mothers, some viruses are transmitted from mothers to their infants while others are not. The relationship between virologic properties and the pathogenesis caused by HIV-1 remains unclear. Previous studies have demonstrated that one obvious source of selective pressure in the perinatal transmission of HIV-1 is maternal neutralizing antibodies. Recent studies have shown that viruses which are successfully transmitted to the child have growth advantages over those not transmitted, when those two viruses are grown together. Furthermore, the higher fitness is determined by the gp120 protein of the virus envelope. This suggests that the selective transmission of viruses with higher fitness occurred exclusively, regardless of transmission routes. There are many factors contributing to the selective transmission and HIV replicative fitness is an important one that should not be neglected. This review summarizes current knowledge of the role of HIV replicative fitness in HIV MTCT transmission and the determinants of viral fitness upon MTCT.

Key words: Human immunodeficiency virus (HIV), Acquired immune deficiency syndrome (AIDS), Mother-to-child transmission (MTCT), Replicative fitness, Gp120

Footnotes

Foundation items: The grants of National Science Foundation of China (30970162); Program of International Collaboration of Tianjin Municipal Science and Technology Commission (08ZCGHHZ01800).

References

  • 1.Abraha A., Troyer R. M., Quinones-Mateu M. E., et al. Methods to determine hiv-1 ex vivo fitness. Methods Mol Biol. 2005;304:355–368. doi: 10.1385/1-59259-907-9:355. [DOI] [PubMed] [Google Scholar]
  • 2.Ahmad N. 2010. Molecular mechanisms of hiv-1 mother-to-child transmission and infection in neonatal target cells. Life Sci, DO1:10.1016/j.lfs.2010.09.023. [DOI] [PMC free article] [PubMed]
  • 3.Anonymous. 2001. Duration of ruptured membranes and vertical transmission of hiv-1: A meta-analysis from 15 prospective cohort studies. AIDS, 15(3): 357–368. [DOI] [PubMed]
  • 4.Arien K. K., Troyer R. M., Gali Y., et al. Replicative fitness of historical and recent hiv-1 isolates suggests hiv-1 attenuation over time. AIDS. 2005;19(15):1555–1564. doi: 10.1097/01.aids.0000185989.16477.91. [DOI] [PubMed] [Google Scholar]
  • 5.Arien K. K., Abraha A., Quinones-Mateu M. E., et al. The replicative fitness of primary human immunodeficiency virus type 1 (hiv-1) group m, hiv-1 group o, and hiv-2 isolates. J Virol. 2005;79(14):8979–8990. doi: 10.1128/JVI.79.14.8979-8990.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Arien K. K., Gali Y., El-Abdellati A., et al. Replicative fitness of ccr5-using and cxcr4-using human immunodeficiency virus type 1 biological clones. Virology. 2006;347(1):65–74. doi: 10.1016/j.virol.2005.11.045. [DOI] [PubMed] [Google Scholar]
  • 7.Asjo B., Morfeldt-Manson L., Albert J., et al. Replicative capacity of human immunodeficiency virus from patients with varying severity of hiv infection. Lancet. 1986;2(8508):660–662. [PubMed] [Google Scholar]
  • 8.Ball S. C., Abraha A., Collins K. R., et al. Comparing the ex vivo fitness of ccr5-tropic human immunodeficiency virus type 1 isolates of subtypes b and c. J Virol. 2003;77(2):1021–1038. doi: 10.1128/JVI.77.2.1021-1038.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Behets F. M., Matendo R., Vaz L. M., et al. Preventing vertical transmission of hiv in kinshasa, democratic republic of the congo: A baseline survey of 18 antenatal clinics. Bull World Health Organ. 2006;84(12):969–975. doi: 10.2471/BLT.05.028217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Bhoopat L., Khunamornpong S., Sirivatanapa P., et al. Chorioamnionitis is associated with placental transmission of human immunodeficiency virus-1 subtype e in the early gestational period. Mod Pathol. 2005;18(10):1357–1364. doi: 10.1038/modpathol.3800418. [DOI] [PubMed] [Google Scholar]
  • 11.Biesinger T., White R., Yu Kimata M. T., et al. Relative replication capacity of phenotypic siv variants during primary infections differs with route of inoculation. Retrovirology. 2010;7:88. doi: 10.1186/1742-4690-7-88. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Biggar R. J., Taha T. E., Hoover D. R., et al. Higher in utero and perinatal hiv infection risk in girls than boys. J Acquir Immune Defic Syndr. 2006;41(4):509–513. doi: 10.1097/01.qai.0000191283.85578.46. [DOI] [PubMed] [Google Scholar]
  • 13.Birkhead G. S., Pulver W. P., Warren B. L., et al. Progress in prevention of mother-to-child transmission of hiv in new york state: 1988–2008. J Public Health Manag Pract. 2010;16(6):481–491. doi: 10.1097/PHH.0b013e3181ee9af1. [DOI] [PubMed] [Google Scholar]
  • 14.Bulterys P. L., Dalai S. C., Katzenstein D. A. Viral sequence analysis from hiv-infected mothers and infants: Molecular evolution, diversity, and risk factors for mother-to-child transmission. Clin Perinatol. 2010;37(4):739–750. doi: 10.1016/j.clp.2010.08.003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Cavarelli M., Karlsson I., Zanchetta M., et al. Hiv-1 with multiple ccr5/cxcr4 chimeric receptor use is predictive of immunological failure in infected children. PLoS One. 2008;3(9):e3292. doi: 10.1371/journal.pone.0003292. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Centers for Diease Control. Update on acquired immune deficiency syndrome (AIDS)-united states. MMWR Morb Mortal Wkly Rep. 1982;31(37):504–513. [PubMed] [Google Scholar]
  • 17.Chen K. T., Segu M., Lumey L. H., et al. Genital herpes simplex virus infection and perinatal transmission of human immunodeficiency virus. Obstet Gynecol. 2005;106(6):1341–1348. doi: 10.1097/01.AOG.0000185917.90004.7c. [DOI] [PubMed] [Google Scholar]
  • 18.Chun T. W., Carruth L., Finzi D., et al. Quantification of latent tissue reservoirs and total body viral load in hiv-1 infection. Nature. 1997;387(6629):183–188. doi: 10.1038/387183a0. [DOI] [PubMed] [Google Scholar]
  • 19.Contag C. H., Ehrnst A., Duda J., et al. Mother-to-infant transmission of human immunodeficiency virus type 1 involving five envelope sequence subtypes. J Virol. 1997;71(2):1292–1300. doi: 10.1128/jvi.71.2.1292-1300.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.De Cock K. M., Fowler M. G., Mercier E., et al. Prevention of mother-to-child hiv transmission in resource-poor countries: Translating research into policy and practice. JAMA. 2000;283(9):1175–1182. doi: 10.1001/jama.283.9.1175. [DOI] [PubMed] [Google Scholar]
  • 21.Dickover R., Garratty E., Yusim K., et al. Role of maternal autologous neutralizing antibody in selective perinatal transmission of human immunodeficiency virus type 1 escape variants. J Virol. 2006;80(13):6525–6533. doi: 10.1128/JVI.02658-05. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Dickover R. E., Garratty E. M., Herman S. A., et al. Identification of levels of maternal hiv-1 rna associated with risk of perinatal transmission. Effect of maternal zidovudine treatment on viral load. JAMA. 1996;275(8):599–605. doi: 10.1001/jama.1996.03530320023029. [DOI] [PubMed] [Google Scholar]
  • 23.Domingo E., Holland J. J. Rna virus mutations and fitness for survival. Annu Rev Microbiol. 1997;51:151–178. doi: 10.1146/annurev.micro.51.1.151. [DOI] [PubMed] [Google Scholar]
  • 24.Drake A. L., John-Stewart G. C., Wald A., et al. Herpes simplex virus type 2 and risk of intrapartum human immunodeficiency virus transmission. Obstet Gynecol. 2007;109(2Pt1):403–409. doi: 10.1097/01.AOG.0000251511.27725.5c. [DOI] [PubMed] [Google Scholar]
  • 25.Fawzi W., Msamanga G., Renjifo B., et al. Predictors of intrauterine and intrapartum transmission of hiv-1 among tanzanian women. AIDS. 2001;15(9):1157–1165. doi: 10.1097/00002030-200106150-00011. [DOI] [PubMed] [Google Scholar]
  • 26.Fordyce E. J., Singh T. P., Nash D., et al. Survival rates in nyc in the era of combination art. J Acquir Immune Defic Syndr. 2002;30(1):111–118. doi: 10.1097/00042560-200205010-00015. [DOI] [PubMed] [Google Scholar]
  • 27.Frost S. D., Liu Y., Pond S. L., et al. Characterization of human immunodeficiency virus type 1 (hiv-1) envelope variation and neutralizing antibody responses during transmission of hiv-1 subtype b. J Virol. 2005;79(10):6523–6527. doi: 10.1128/JVI.79.10.6523-6527.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Galli L., Puliti D., Chiappini E., et al. Lower mother-to-child hiv-1 transmission in boys is independent of type of delivery and antiretroviral prophylaxis: The italian register for hiv infection in children. J Acquir Immune Defic Syndr. 2005;40(4):479–485. doi: 10.1097/01.qai.0000164247.49098.0e. [DOI] [PubMed] [Google Scholar]
  • 29.Ganesh L., Leung K., Lore K., et al. Infection of specific dendritic cells by ccr5-tropic human immunodeficiency virus type 1 promotes cell-mediated transmission of virus resistant to broadly neutralizing antibodies. J Virol. 2004;78(21):11980–11987. doi: 10.1128/JVI.78.21.11980-11987.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Garcia P. M., Kalish L. A., Pitt J., et al. Maternal levels of plasma human immunodeficiency virus type 1 rna and the risk of perinatal transmission. Women and infants transmission study group. N Engl J Med. 1999;341(6):394–402. doi: 10.1056/NEJM199908053410602. [DOI] [PubMed] [Google Scholar]
  • 31.Gonzalez N., Perez-Olmeda M., Mateos E., et al. A sensitive phenotypic assay for the determination of human immunodeficiency virus type 1 tropism. J Antimicrob Chemother. 2010;65(12):2493–2501. doi: 10.1093/jac/dkq379. [DOI] [PubMed] [Google Scholar]
  • 32.Ho D. D., Neumann A. U., Perelson A. S., et al. Rapid turnover of plasma virions and cd4 lymphocytes in hiv-1 infection. Nature. 1995;373(6510):123–126. doi: 10.1038/373123a0. [DOI] [PubMed] [Google Scholar]
  • 33.Ho S. K., Coman R. M., Bunger J. C., et al. Drug-associated changes in amino acid residues in gag p2, p7(nc), and p6(gag)/p6(pol) in human immunodeficiency virus type 1 (hiv-1) display a dominant effect on replicative fitness and drug response. Virology. 2008;378(2):272–281. doi: 10.1016/j.virol.2008.05.029. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.John-Stewart G., Mbori-Ngacha D., Ekpini R., et al. Breast-feeding and transmission of hiv-1. J Acquir Immune Defic Syndr. 2004;35(2):196–202. doi: 10.1097/00126334-200402010-00015. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35.Kong X., West J. T., Zhang H., et al. The human immunodeficiency virus type 1 envelope confers higher rates of replicative fitness to perinatally transmitted viruses than to nontransmitted viruses. J Virol. 2008;82(23):11609–11618. doi: 10.1128/JVI.00952-08. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Koopman J., Simon C., Jacquez J., et al. Sexual partner selectiveness effects on homosexual hiv transmission dynamics. J Acquir Immune Defic Syndr. 1988;1(5):486–504. [PubMed] [Google Scholar]
  • 37.Kwiek J. J., Mwapasa V., Milner D. A., Jr., et al. Maternal-fetal microtransfusions and hiv-1 mother-to-child transmission in malawi. PLoS Med. 2006;3(1):e10. doi: 10.1371/journal.pmed.0030010. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38.Lagaye S., Derrien M., Menu E., et al. Cell-to-cell contact results in a selective translocation of maternal human immunodeficiency virus type 1 quasispecies across a trophoblastic barrier by both transcytosis and infection. J Virol. 2001;75(10):4780–4791. doi: 10.1128/JVI.75.10.4780-4791.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39.Lehman D. A., Farquhar C. Biological mechanisms of vertical human immunodeficiency virus (hiv-1) transmission. Rev Med Virol. 2007;17(6):381–403. doi: 10.1002/rmv.543. [DOI] [PubMed] [Google Scholar]
  • 40.Lewin S. R., Vesanen M., Kostrikis L., et al. Use of real-time pcr and molecular beacons to detect virus replication in human immunodeficiency virus type 1-infected individuals on prolonged effective antiretroviral therapy. J Virol. 1999;73(7):6099–6103. doi: 10.1128/jvi.73.7.6099-6103.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41.Lewis S. H., Reynolds-Kohler C., Fox H. E., et al. Hiv-1 in trophoblastic and villous hofbauer cells, and haematological precursors in eight-week fetuses. Lancet. 1990;335(8689):565–568. doi: 10.1016/0140-6736(90)90349-A. [DOI] [PubMed] [Google Scholar]
  • 42.Linghong Wang A. W., Liwen Fang. Epidemic situation and prevention of hiv mtct. Maternal And Child Health Care Of China. 2005;20(03):4–8. [Google Scholar]
  • 43.Mansky L. M., Temin H. M. Lower in vivo mutation rate of human immunodeficiency virus type 1 than that predicted from the fidelity of purified reverse transcriptase. J Virol. 1995;69(8):5087–5094. doi: 10.1128/jvi.69.8.5087-5094.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 44.Medley A., Garcia-Moreno C., Mcgill S., et al. Rates, barriers and outcomes of hiv serostatus disclosure among women in developing countries: Implications for prevention of mother-to-child transmission programmes. Bull World Health Organ. 2004;82(4):299–307. [PMC free article] [PubMed] [Google Scholar]
  • 45.Moore J. P., Kitchen S. G., Pugach P., et al. The ccr5 and cxcr4 coreceptors—central to understanding the transmission and pathogenesis of human immuno-deficiency virus type 1 infection. AIDS Res Hum Retroviruses. 2004;20(1):111–126. doi: 10.1089/088922204322749567. [DOI] [PubMed] [Google Scholar]
  • 46.Mouko A., Mbika-Cardorelle A., Mboungou V., et al. [orphans in brazzaville orphanages] Sante. 2009;19(1):21–23. doi: 10.1684/san.2008.0129. [DOI] [PubMed] [Google Scholar]
  • 47.Mwanyumba F., Gaillard P., Inion I., et al. Placental inflammation and perinatal transmission of hiv-1. J Acquir Immune Defic Syndr. 2002;29(3):262–269. doi: 10.1097/00126334-200203010-00006. [DOI] [PubMed] [Google Scholar]
  • 48.Mwapasa V., Rogerson S. J., Kwiek J. J., et al. Maternal syphilis infection is associated with increased risk of mother-to-child transmission of hiv in malawi. AIDS. 2006;20(14):1869–1877. doi: 10.1097/01.aids.0000244206.41500.27. [DOI] [PubMed] [Google Scholar]
  • 49.Nduati R., John G., Mbori-Ngacha D., et al. Effect of breastfeeding and formula feeding on transmission of hiv-1: A randomized clinical trial. JAMA. 2000;283(9):1167–1174. doi: 10.1001/jama.283.9.1167. [DOI] [PubMed] [Google Scholar]
  • 50.Ostergren M., Malyuta R. Elimination of hiv infection in infants in europe—challenges and demand for response. Semin Fetal Neonatal Med. 2006;11(1):54–57. doi: 10.1016/j.siny.2005.10.008. [DOI] [PubMed] [Google Scholar]
  • 51.Rodriguez M. A., Ding M., Ratner D., et al. High replication fitness and transmission efficiency of hiv-1 subtype c from india: Implications for subtype c predominance. Virology. 2009;385(2):416–424. doi: 10.1016/j.virol.2008.12.025. [DOI] [PubMed] [Google Scholar]
  • 52.Rousseau C. M., Nduati R. W., Richardson B. A., et al. Association of levels of hiv-1-infected breast milk cells and risk of mother-to-child transmission. J Infect Dis. 2004;190(10):1880–1888. doi: 10.1086/425076. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 53.Ryland E. G., Tang Y., Christie C. D., et al. Sequence evolution of hiv-1 following mother-to-child transmission. J Virol. 2010;84(23):12437–12444. doi: 10.1128/JVI.01617-10. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 54.Scarlatti G. Mother-to-child transmission of hiv-1: Advances and controversies of the twentieth centuries. AIDS Rev. 2004;6(2):67–78. [PubMed] [Google Scholar]
  • 55.Scarlatti G., Leitner T., Hodara V., et al. Neutralizing antibodies and viral characteristics in mother-to-child transmission of hiv-1. AIDS. 1993;7(Suppl2):S45–48. doi: 10.1097/00002030-199311002-00010. [DOI] [PubMed] [Google Scholar]
  • 56.Taha T. E., Nour S., Kumwenda N. I., et al. Gender differences in perinatal hiv acquisition among african infants. Pediatrics. 2005;115(2):e167–172. doi: 10.1542/peds.2004-1590. [DOI] [PubMed] [Google Scholar]
  • 57.Valente P., Main E. K. Role of the placenta in perinatal transmission of hiv. Obstet Gynecol Clin North Am. 1990;17(3):607–616. [PubMed] [Google Scholar]
  • 58.Van’t Wout A. B., Kootstra N. A., Mulder-Kampinga G. A., et al. Macrophage-tropic variants initiate human immunodeficiency virus type 1 infection after sexual, parenteral, and vertical transmission. J Clin Invest. 1994;94(5):2060–2067. doi: 10.1172/JCI117560. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 59.Wabwire-Mangen F., Gray R. H., Mmiro F. A., et al. Placental membrane inflammation and risks of maternal-to-child transmission of hiv-1 in uganda. J Acquir Immune Defic Syndr. 1999;22(4):379–385. doi: 10.1097/00126334-199912010-00009. [DOI] [PubMed] [Google Scholar]
  • 60.Weber J., Weberova J., Carobene M., et al. Use of a novel assay based on intact recombinant viruses expressing green (egfp) or red (dsred2) fluorescent proteins to examine the contribution of pol and env genes to overall hiv-1 replicative fitness. J Virol Methods. 2006;136(1–2):102–117. doi: 10.1016/j.jviromet.2006.04.004. [DOI] [PubMed] [Google Scholar]
  • 61.Wolinsky S. M., Wike C. M., Korber B. T., et al. Selective transmission of human immunodeficiency virus type-1 variants from mothers to infants. Science. 1992;255(5048):1134–1137. doi: 10.1126/science.1546316. [DOI] [PubMed] [Google Scholar]

Articles from Virologica Sinica are provided here courtesy of Wuhan Institute of Virology, Chinese Academy of Sciences

RESOURCES