Skip to main content
Virologica Sinica logoLink to Virologica Sinica
. 2011 Oct 7;26(5):324. doi: 10.1007/s12250-011-3205-x

Evaluation of efficacy of stabilizers on the thermostability of live attenuated thermo-adapted Peste des petits ruminants vaccines

Thachamvally Riyesh 1,2, Vinayagamurthy Balamurugan 1,3, Arnab Sen 1, Veerakyathappa Bhanuprakash 1, Gnanavel Venkatesan 1, Vinita Yadav 1, Raj Kumar Singh 1,4,
PMCID: PMC8222494  PMID: 21979572

Abstract

In this study, thermo-adapted (Ta) PPR vaccines were assessed for their stability at 25, 37, 40, 42 and 45°C in lyophilized form using two extrinsic stabilizers {lactalbumin hydrolysate-sucrose (LS) and stabilizer E} and in reconstituted form with the diluents (1 mol/L MgSO4 or 0.85% NaCl). The lyophilized vaccines showed an expiry period of 24–26 days at 25°C, 7–8 days at 37°C and 3–4 days at 40°C. LS stabilizer was superior at 42°C with a shelf-life of 44 h, whereas in stabilizer E, a 40 h shelf-life with a comparable half-life was observed. At 45°C, the half-life in stabilizer E was better than LS and lasted for 1 day. Furthermore, the reconstituted vaccine maintained the titre for 48 h both at 4°C and 25°C and for 24–30 h at 37°C. As both the stabilizers performed equally well with regard to shelf-life and half-life, the present study suggests LS as stabilizer as a choice for lyophilization with 0.85% NaCl diluent, because it has better performance at higher temperature. These Ta vaccines can be used as alternatives to existing vaccines for the control of the disease in tropical countries as they are effective in avoiding vaccination failure due to the breakdown in cold-chain maintenance, as this vaccine is considerably more stable at ambient temperatures.

Key words: PPR, Thermo-adapted, Vaccines, Stabilizers, Diluents, Thermo-stability

Footnotes

Foundation items: Supported by grants from Indian Council of Agricultural Research, Ministry of Agriculture, Government of India, New Delhi, under the Ad-hoc Scheme (F.No.11-3/2007-GA-II and 1-1/2007-ASR-IV).

References

  • 1.Adebayo A. A., Sim-Brandenburg J. W., Emmel H., et al. Stability of 17D yellow fever virus vaccine using different stabilizers. Biologicals. 1998;26(4):309–316. doi: 10.1006/biol.1998.0157. [DOI] [PubMed] [Google Scholar]
  • 2.Amorij J. P., Huckriede A., Wilschut J., et al. Development of stable influenza vaccine powder formulations: challenges and possibilities. Pharm Res. 2008;25(6):1256–1273. doi: 10.1007/s11095-008-9559-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Balamurugan V., Sen A., Venkatesan G., et al. Sequence and Phylogenetic Analyses of the Structural Genes of Virulent Isolates and Vaccine Strains of Peste Des Petits Ruminants Virus from India. Trans Emerg Dis. 2010;57:352–364. doi: 10.1111/j.1865-1682.2010.01156.x. [DOI] [PubMed] [Google Scholar]
  • 4.Balamurugan V., Sen A., Venkatesan G., et al. Isolation and Identification of virulent peste des petits ruminants viruses from PPR outbreaks in India. Trop Anim Health Prod. 2010;42:1043–1046. doi: 10.1007/s11250-010-9527-0. [DOI] [PubMed] [Google Scholar]
  • 5.Boyd R.J., Hanson R. P. Survival of Newcastle disease virus in nature. Avian Dis. 1958;2:82–93. doi: 10.2307/1587515. [DOI] [Google Scholar]
  • 6.Diallo A., Taylor W. P., Lefevre P. C., et al. Attenuation of a strain of rinderpest virus: potential homologous live vaccine. Rev Elev Med Vet Pays Trop. 1989;42(3):311–319. [PubMed] [Google Scholar]
  • 7.Diallo A., Minet C., Le Goff C., et al. The threat of peste des petits ruminants: progress in vaccine development for disease control. Vaccine. 2007;25(30):5591–5597. doi: 10.1016/j.vaccine.2007.02.013. [DOI] [PubMed] [Google Scholar]
  • 8.Lancz G. J. Effect of pH on the kinetics of herpes simplex virus inactivation at 36 degrees. Virology. 1976;75(2):488–491. doi: 10.1016/0042-6822(76)90048-9. [DOI] [PubMed] [Google Scholar]
  • 9.Mariner J. C., House J. A., Sollod A. E., et al. Comparison of the effect of various chemical stabilizers and lyophilization cycles on the thermostability of Vero cell-adapted rinderpest vaccine. Vet Microbiol. 1990;21(3):195–209. doi: 10.1016/0378-1135(90)90032-Q. [DOI] [PubMed] [Google Scholar]
  • 10.Rajak K. K., Sreenivasa B. P., Hosamani M., et al. Experimental studies on immunosuppressive effects of peste des petits ruminants (PPR) virus in goats. Comp Immunol Microbiol Inf Dis. 2005;28:287–296. doi: 10.1016/j.cimid.2005.08.002. [DOI] [PubMed] [Google Scholar]
  • 11.Raut A. A., Singh R. K., Malik M., et al. Development of a thermoresistant tissue culture rinderpest vaccine virus. Acta Virol. 2001;45:235–241. [PubMed] [Google Scholar]
  • 12.Reed L. J., Muench H. A. A Simple method of estimating fifty percent end points. Am J Hyg. 1938;27:493–497. [Google Scholar]
  • 13.Report of the FAO Expert Consultation on Rinderpest Diagnosis. Vaccine Production and Quality Control, Food and Agriculture Organization of the United Nations, Rome, 1985.
  • 14.Samuel D., Megson B., Ftrang M., et al. A microtiterplate method for isolation and typing of poliovirus using a blue cell ELISA. Virol Methods. 2000;90:125–133. doi: 10.1016/S0166-0934(00)00216-0. [DOI] [PubMed] [Google Scholar]
  • 15.Saravanan P., Balamurugan V., Sen A., et al. Long term immune response of goats to a Vero cell adapted live attenuated homologous PPR vaccine. Indian Vet J. 2010;87:1–3. [Google Scholar]
  • 16.Sarkar J., Sreenivasa B. P., Singh R. P., et al. Comparative efficacy of various chemical stabilizers on the thermo stability of a live-attenuated peste des petits ruminants (PPR) vaccine. Vaccine. 2003;21(32):4728–4735. doi: 10.1016/S0264-410X(03)00512-7. [DOI] [PubMed] [Google Scholar]
  • 17.Shiomi H., Urasawa T., Urasawa S. Heat stability of the lyophilized Sabin polio vaccine. Jpn J Infect Dis. 2003;56(2):70–72. [PubMed] [Google Scholar]
  • 18.Singh R. K., Balamurugan V., Bhanuprakash V., et al. Possible control and eradication of peste des petits ruminants from India: technical aspects. Vet Ital. 2009;45(3):449–462. [PubMed] [Google Scholar]
  • 19.Singh R. P., De U. K., Pandey K. D. Virological and antigenic characterization of two Peste des Petits Ruminants (PPR) vaccine viruses of Indian origin. Comp Immunol Microbiol Infect Dis. 2010;33(4):343–353. doi: 10.1016/j.cimid.2008.12.003. [DOI] [PubMed] [Google Scholar]
  • 20.Singh R. P., Saravanan P., Sreenivasa B. P., et al. Prevalence and distribution of peste des petits ruminants virus infection in small ruminants in India. Rev Sci Tech Off Int Epiz. 2004;23:807–819. doi: 10.20506/rst.23.3.1522. [DOI] [PubMed] [Google Scholar]
  • 21.Singh R. P., Sreenivasa B. P., Dhar P., et al. Development of monoclonal antibody based competitive-ELISA for detection and titration of antibodies to peste des petits ruminants virus. Vet Microbiol. 2004;98:3–15. doi: 10.1016/j.vetmic.2003.07.007. [DOI] [PubMed] [Google Scholar]
  • 22.Singh R.P. Production and characterization of monoclonal antibodies to peste des petits ruminants (PPR) virus. Izatnagar, India: Submitted to Deemed University, IVRI; 2002. [DOI] [PubMed] [Google Scholar]
  • 23.Sokhey J., Gupta C.K., Sharma B., et al. Stability of oral polio vaccine at different temperatures. Vaccine. 1988;6(1):12–13. doi: 10.1016/0264-410X(88)90006-0. [DOI] [PubMed] [Google Scholar]
  • 24.Velayudhan B. T., Lopes V. C., Noll S. L., et al. Avian pneumovirus and its survival in poultry litter. Avian Dis. 2003;47(3):764–768. doi: 10.1637/7042. [DOI] [PubMed] [Google Scholar]
  • 25.Worrall E. E., Litamoi J. K., Seck B. M., et al. Xerovac: an ultra rapid method for the dehydration and preservation of live attenuated Rinderpest and Peste des Petits ruminants vaccines. Vaccine. 2000;19(7–8):834–839. doi: 10.1016/S0264-410X(00)00229-2. [DOI] [PubMed] [Google Scholar]
  • 26.Zhai S., Hansen R. K., Taylor R., et al. Effect of freezing rates and excipients on the infectivity of a live viral vaccine during lyophilization. Biotechnol Prog. 2004;20(4):1113–1120. doi: 10.1021/bp034362x. [DOI] [PubMed] [Google Scholar]

Articles from Virologica Sinica are provided here courtesy of Wuhan Institute of Virology, Chinese Academy of Sciences

RESOURCES