Skip to main content
Life logoLink to Life
. 2021 May 26;11(6):486. doi: 10.3390/life11060486

Multigene Phylogeny Reveals Haploanthostomella elaeidis gen. et sp. nov. and Familial Replacement of Endocalyx (Xylariales, Sordariomycetes, Ascomycota)

Sirinapa Konta 1,2,3, Kevin D Hyde 2, Prapassorn D Eungwanichayapant 3, Samantha C Karunarathna 1,4,5, Milan C Samarakoon 2, Jianchu Xu 1,4,5, Lucas A P Dauner 1, Sasith Tharanga Aluthwattha 6,7, Saisamorn Lumyong 8,9, Saowaluck Tibpromma 1,4,5,*
Editors: Armin Mešić, Ivana Kušan, Laura Selbmann
PMCID: PMC8227165  PMID: 34073589

Abstract

During our investigation of palm fungi in Thailand, two interesting taxa from Elaeis guineensis and Metroxylon sagu (Arecaceae) were collected. Based on phylogenetic analyses of a combined dataset of ITS, LSU, rpb2, and tub2 nucleotide sequences as well as unique morphological characteristics, we introduce the new genus Haploanthostomella within Xylariales, and a new species Endocalyx metroxyli. Additionally, in our study, the genus Endocalyx is transferred to the family Cainiaceae based on its brown conidia and molecular phylogenetic evidence.

Keywords: Apiosporaceae, Cainiaceae, fungi, palms, Thailand, Xylariales

1. Introduction

Palm trees represent a family of perennial lianas and consist of many diverse species worldwide, with the fossil record indicating around 65 million years of evolutionary history [1]. Microfungi on palms have been studied, but only a few have been analyzed using morphology and DNA sequence data. Several fungal species are currently unknown to science, with the total number estimated at somewhere between 2.2 and 3.8 million [2]. Thus, palms are a particularly interesting plant family for studying microfungi species unknown to science.

The subclass Xylariomycetidae has recently been updated to contain three orders (Amphisphaeriales, Delonicicolales, and Xylariales) and 35 families [3]. Recently, the family Induratiaceae was introduced in this subclass by Samarakoon et al. [4] with an updated phylogeny of Xylariales. Cainiaceae is a family of particular interest, as all members in this family tend to be found on monocotyledons, the majority of which are grasses [5]. In previous studies, Cainiaceae was accepted in the Xylariales [3,6]. Later, Hongsanan et al. [7], and Wijayawardene et al. [8] assigned Cainiaceae to the Xylariomycetidae as an incertae sedis family.

The Xylariales is one of the largest orders and includes 15 families, 160 genera, and 52 genera incertae sedis [3]. Family Cainiaceae was introduced by Krug [9] to include species of Cainia with unique apical rings in the asci that consist of a series of rings and ascospores with longitudinal germ slits. An asexual morph of Cainiaceae was coelomycetous with black, scattered, immersed pycnidial conidiomata; hyaline, denticulate, sympodially proliferating conidiophores; hyaline, filiform, branched or simple, septate conidiogenous cells with one to three phialides; and hyaline, elongate fusiform, falcate to lunate, unicellular or septate conidia, with pointed ends [10]. At present, seven genera have been accepted into this family (Alishanica, Amphibambusa, Arecophila, Atrotorquata, Cainia, Longiappendispora, and Seynesia) [3,11].

Since 2014, fungal research in Thailand has revealed a high diversity of novel species [12,13,14]. In this study, we found fungal species unknown to science from Thailand. The phylogeny results show that Endocalyx grouped within Cainiaceae, and so we transferred Endocalyx from Apiosporaceae (Amphisphaeriales) to Cainiaceae (Xylariales) based on both morphology and multigene phylogeny. We also introduce the new species Endocalyx metroxyli, collected from the economically important oil palm host (Elaeis guineensis). Lastly, we introduce the new genus Haploanthostomella associated with true sago palm (Metroxylon sagu).

2. Materials and Methods

2.1. Collection, Isolation, and Identification

Saprobic fungi growing on dead leaves, petioles and rachis of Elaeis guineensis and Metroxylon sagu were collected in Krabi and Surat Thani Provinces of Thailand, placed in ziplock bags and brought to the mycology laboratory at the Center of Excellence in Fungal Research, and morphological characteristics were observed. Specimens were examined following the methods provided by Konta et al. [15]. Single spore isolates were obtained following the method of Senanayake et al. [16], using malt extract agar (MEA) and incubating at 25–28 °C overnight. Germinating conidia were transferred to new MEA media and pure cultures were kept at 25–28 °C. Specimens and cultures were deposited in the herbarium of Mae Fah Luang University (MFLU) and Mae Fah Luang University Culture Collection (MFLUCC), Chiang Rai, Thailand, respectively. Faces of Fungi and Index Fungorum numbers were registered as outlined in Jayasiri et al. [17] and Index Fungorum [18].

2.2. DNA Extraction and Amplification (PCR)

Genomic DNA was extracted from fruiting bodies of Haploanthostomella elaeidis and fungal mycelium of Endocalyx metroxyli. DNA extraction and amplification were followed Dissanayake et al. [19]. Konta et al.’s method [16] was followed for PCR amplification of ITS, LSU, SSU, tef1-α and rpb2, while O’Donnell and Cigelnik’s method [20] was followed for PCR amplification of the tub2 region. Amplification was done using the primers ITS5 and ITS4 for the internal transcribed spacer regions and intervening 5.8S rDNA (ITS), the primers LR5 and LR0R for the large subunit (LSU) rRNA gene, the primer pair fRPB2-5f and fRPB2-7cR for the RNA polymerase II second largest subunit (rpb2) gene, and the primers T1 and T22 for the partial gene β-tubulin (tub2). PCR amplifications were performed using 1× PCR buffer with 8.5 μL ddH2O, 12.5 μL 2× Easy Taq PCR SuperMix (mixture of Easy Taq TM DNA Polymerase, dNTPs and optimized buffer (Beijing Trans Gen Biotech Co., Beijing, China)), 2 μL of DNA template, and 1 μL each of forward and reverse primers (10 pM) in a final volume of 25 μL. The cycle conditions in the initiation step were started at 95 °C for 3 min, followed by 35 cycles at 95 °C for 30 s, 55 °C for 50 s, 72 °C for 30 s (for ITS, LSU); 95 °C for 5 min, followed by 35 cycles at 95 °C for 1 min, 54 °C for 2 min, 72 °C for 1:5 min (for rpb2); 95 °C for 5 min, followed by 35 cycles at 94 °C for 1 min, 52 °C for 1 min, 72 °C for 1:5 min (for tub2); a final elongation step at 72 °C for 10 min and a final hold at 4 °C were done as the last steps. Purification and sequencing were performed by Sangon Biotech Co., Shanghai, China. Consensus sequences were computed using SeqMan software, and new sequences generated in this study were deposited in GenBank (Table 1).

Table 1.

Names, strain numbers and corresponding GenBank accession numbers of the taxa used in phylogenetic analyses, the ex-type strains are in bold.

Order Family Species Strain No. GenBank Accession No. References
ITS LSU rpb2 tub2
Amphisphaeriales Apiosporaceae Arthrinium balearicum AP24118 MK014869 MK014836 - MK017946 [21]
Amphisphaeriales Apiosporaceae Arthrinium caricicola CBS 145127 MK014871 MK014838 - MK017948 [21]
Amphisphaeriales Apiosporaceae Arthrinium hydei CBS 114990 KF144890 KF144936 - KF144982 [22]
Amphisphaeriales Apiosporaceae Arthrinium phragmitis CBS 135458 KF144909 KF144956 - KF145001 [22]
Amphisphaeriales Apiosporaceae Arthrinium pseudospegazzinii CBS 102052 KF144911 KF144958 - KF145002 [22]
Amphisphaeriales Apiosporaceae Nigrospora aurantiaca CGMCC 3.18130 NR_153477 NG_069394 - KY019465 [23]
Amphisphaeriales Apiosporaceae Nigrospora brasiliensis CMM 1214 KY569629 - - MK720816 [24]
Amphisphaeriales Apiosporaceae Nigrospora zimmermanii CBS 290.62 KY385309 - KY806276 KY385317 [23]
Amphisphaeriales Beltraniaceae Beltrania rhombica CBS 123.58 = IMI 072432 MH553990 MH554209 MH554899 MH704631 [25]
Amphisphaeriales Beltraniaceae Beltraniella endiandrae CBS 137976 KJ869128 KJ869185 - - [26]
Amphisphaeriales Beltraniaceae Beltraniopsis neolitseae CBS 137974 KJ869126 KJ869183 - - [26]
Amphisphaeriales Beltraniaceae Arecophila bambusae HKUCC 4794 - AF452038 - - [27]
Xylariales Cainiaceae Alishanica miscanthii FU31025 MK503821 MK503827 - - [3]
Xylariales Cainiaceae Amphibambusa bambusicola MFLUCC 11-0617 KP744433 KP744474 - - [28]
Xylariales Cainiaceae Atrotorquata lineata HKUCC 3263 AF009807 - - - Unpublished
Xylariales Cainiaceae Cainia anthoxanthis MFLUCC 15-0539 KR092787 KR092777 - - [5]
Xylariales Cainiaceae Cainia desmazieri CAI KT949896 KT949896 - - [29]
Xylariales Cainiaceae Cainia globosa MFLUCC 13-0663 KX822127 KX822123 - - [30]
Xylariales Cainiaceae Cainia graminis CBS 136.62 KR092793 AF431949 - - [5,31]
Xylariales Cainiaceae Longiappendispora chromolaenae MFLUCC 17-1485 MT214370 MT214464 - - [11]
Xylariales Cainiaceae Endocalyx cinctus JCM 7946 LC228648 LC228704 - - [32]
Xylariales Cainiaceae Endocalyx metroxyli MFLUCC 15-0723A MT929162 MT929313 - - This study
Xylariales Cainiaceae Endocalyx metroxyli MFLUCC 15-0723B MT929163 MT929314 - MT928155 This study
Xylariales Cainiaceae Endocalyx metroxyli MFLUCC 15-0723C - MT929315 - - This study
Xylariales Cainiaceae Seynesia erumpens SMH 1291 - AF279410 - - [33]
Xylariales Clypeosphaeriaceae Clypeosphaeria mamillana CBS 140735 KT949897 KT949897 MF489001 MH704637 [29,34]
Xylariales Coniocessiaceae Coniocessia anandra Co108 GU553338 GU553349 - - [35]
Xylariales Coniocessiaceae Coniocessia cruciformis Co116 GU553336 GU553347 - - [35]
Xylariales Coniocessiaceae Coniocessia maxima Co117 GU553332 GU553344 - - [35]
Xylariales Coniocessiaceae Coniocessia minima Co111 GU553334 GU553345 - - [35]
Xylariales Coniocessiaceae Coniocessia nodulisporioides CBS 281.77T - AJ875224 - - [36]
Xylariales Coniocessiaceae Paraxylaria rosacearum TASM 6132 MG828941 MG829050 - - [37]
Xylariales Diatrypaceae Allocryptovalsa polyspora MFLUCC 17-0364 MF959500 MF959503 - MG334556 [38]
Xylariales Diatrypaceae Allodiatrype arengae MFLUCC 15-0713 MN308411 MN308402 MN542886 MN340297 [39]
Xylariales Diatrypaceae Cryptovalsa rabenhorstii CreI = CBS 125574 KC774567 KC774567 - - [40]
Xylariales Diatrypaceae Diatrype disciformis CBS 197.49 - DQ470964 DQ470915 - [41]
Xylariales Diatrypaceae Diatrypella verruciformis UCROK1467 JX144793 - - JX174093 [42]
Xylariales Diatrypaceae Eutypa lata CBS 208.87 DQ006927 MH873755 - DQ006969 [43,44]
Xylariales Diatrypaceae Eutypella caricae EL5C AJ302460 - - - [45]
Xylariales Diatrypaceae Halodiatrype salinicola MFLUCC 15-1277 KX573915 - - KX573932 [46]
Xylariales Diatrypaceae Monosporascus cannonballus CMM3646 JX971617 - - - Unpublished
Xylariales Diatrypaceae Neoeutypella baoshanensis EL51C, CBS 274.87 AJ302460 - - - [45]
Xylariales Diatrypaceae Pedumispora rhizophorae BCC44877 KJ888853 KJ888850 - - [47]
Xylariales Diatrypaceae Peroneutypa longiasca MFLUCC 17-0371 MF959502 MF959505 - MG334558 [38]
Xylariales Fasciatisporaceae Fasciatispora arengae MFLUCC 15-0326a MK120275 MK120300 MK890794 MK890793 [48]
Xylariales Fasciatisporaceae Fasciatispora calami MFLUCC 15-0294 - MF459055 - MF459056 [49]
Xylariales Fasciatisporaceae Fasciatispora cocoes MFLUCC 18-1445 MN482680 MN482675 MN481517 MN505154 [13]
Xylariales Fasciatisporaceae Fasciatispora nypae MFLUCC 11-0382 - KP744484 - - [28]
Xylariales Fasciatisporaceae Fasciatispora petrakii - AY083828 - - Unpublished
Xylariales Graphostromataceae Biscogniauxia nummularia MUCL 51395 KY610382 KY610427 KY624236 KX271241 [50]
Xylariales Graphostromataceae Camillea obularia ATCC 28093 KY610384 KY610429 KY624238 KX271243 [50]
Xylariales Graphostromataceae Graphostroma platystomum CBS 270.87 JX658535 DQ836906 KY624296 HG934108 [50,51,52,53]
Xylariales Graphostromataceae Obolarina dryophila MUCL 49882 GQ428316 GQ428316 KY624284 GQ428322 [50,54]
Xylariales Hansfordiaceae Hansfordia pulvinate CBS 194.56 MK442585 MH869122 KU684307 - [24]
Xylariales Hansfordiaceae Hansfordia pulvinate CBS 144422 MK442587 MK442527 - - [24]
Xylariales Hypoxylaceae Annulohypoxylon truncatum CBS 140778 KY610419 KY610419 KY624277 KX376352 [50,55]
Xylariales Hypoxylaceae Anthocanalis sparti MFLUCC 14-0010 KP297394 KP340536 KP340522 KP406605 [54]
Xylariales Hypoxylaceae Anthostoma decipiens CD = CBS 133221 KC774565 KC774565 - - [40]
Xylariales Hypoxylaceae Daldinia concentrica CBS 113277 AY616683 KY610434 KY624243 KC977274 [50,56,57]
Xylariales Hypoxylaceae Durotheca depressa BCC28073 - - - GQ160492 [58]
Xylariales Hypoxylaceae Entonaema liquescens ATCC 46302 KY610389 KY610443 KY624253 KX271248 [50]
Xylariales Hypoxylaceae Hypomontagnella monticulosa MUCL 54604 KY610404 KY610487 KY624305 KX271273 [50]
Xylariales Hypoxylaceae Hypoxylon fragiforme MUCL 51264 KC477229 KM186295 KM186296 KX271282 [50,59,60]
Xylariales Hypoxylaceae Jackrogersella multiformis CBS 119016 KC477234 KY610473 KY624290 KX271262 [50,55,57]
Xylariales Hypoxylaceae Pyrenomyxa morganii CBS 116990T AM749920 - - - [61]
Xylariales Hypoxylaceae Pyrenomyxa picea ILLS 58257 - EF562506 - - [62]
Xylariales Hypoxylaceae Pyrenopolyporus hunteri MUCL 52673 KY610421 KY610472 KY624309 KU159530 [50,55]
Xylariales Hypoxylaceae Rhopalostroma indicum CBS 113035 MH862909 MH874483 - - [44]
Xylariales Hypoxylaceae Thamnomyces dendroidea CBS 123578 FN428831 KY610467 KY624232 KY624313 [50,63]
Xylariales Hypoxylaceae Thuemenella cubispora CBS 119807 JX658531 EF562508 - - [62]
Xylariales Hypoxylaceae Phylacia sagrana CBS 119992 AM749919 - - - [61]
Xylariales Hypoxylaceae Pyrenopolyporus symphyon TBRC:8873 MH938529 MH938538 MK165428 MK165419 [64]
Xylariales Induratiaceae Emarcea castanopsidicola CBS 117105 MK762710 MK762717 MK791285 MK776962 [64]
Xylariales Induratiaceae Emarcea eucalyptigena CBS 139908 MK762711 MK762718 MK791286 MK776963 [64]
Xylariales Induratiaceae Induratia fengyangensis CGMCC 2862 HM034856 HM034859 HM034849 HM034843 [65]
Xylariales Induratiaceae Induratia thailandica MFLUCC 17-2669 MK762707 MK762714 MK791283 MK776960 [64]
Xylariales Lopadostomataceae Creosphaeria sassafras STMA 14087 KY610411 KY610468 KY624265 KX271258 [50]
Xylariales Lopadostomataceae Lopadostoma turgidum CBS 133207 KC774618 KC774618 KC774563 MF489024 [29,40]
Xylariales Microdochiaceae Idriella lunata MUCL 4103 KC775734 KC775709 - - [66]
Xylariales Microdochiaceae Idriella lunata CBS 204.56 KP859044 KP858981 - - [67]
Xylariales Microdochiaceae Microdochium phragmitis CBS 423.78 KP859012 KP858948 KP859121 KP859076 [67]
Xylariales Polystigmataceae Polystigma fulvum MFLU 18-0261 MK429738 MK429727 - - [68]
Xylariales Polystigmataceae Polystigma rubrum MFLU 15-3091 KY594023 MF981079 - - [68]
Xylariales Requienellaceae Acrocordiella occulta RS9 KT949893 KT949893 - - [29]
Xylariales Requienellaceae Acrocordiella omanensis SQUCC 15091 MG584568 MG584570 - - [69]
Xylariales Requienellaceae Requienella fraxini RS2 KT949909 KT949909 - - [29]
Xylariales Requienellaceae Requienella seminuda RS12 = CBS 140502 KT949912 KT949912 MK523300 - [29,64]
Xylariales Xylariaceae Abieticola koreana EML-F0010-1 JN977612 JQ014618 KP792128 KP792126 [70]
Xylariales Xylariaceae Amphirosellinia nigrospora HAST 91092308 GU322457 - GQ848340 GQ495951 [71]
Xylariales Xylariaceae Anthostomella formosa MFLUCC 14-0170 KP297403 KP340544 KP340531 KP406614 [59]
Xylariales Xylariaceae Anthostomella helicofissa MFLUCC 14-0173 KP297406 KP340547 KP340534 KP406617 [59]
Xylariales Xylariaceae Anthostomella obesa MFLUCC 14-0171 KP297405 KP340546 KP340533 KP406616 [59]
Xylariales Xylariaceae Anthostomella pseudobambusicola MFLUCC 15-0192 KU940153 KU863141 - - [72]
Xylariales Xylariaceae Anthostomelloides brabeji CBS 110128 EU552098 EU552098 - - [73]
Xylariales Xylariaceae Anthostomelloides forlicesenica MFLUCC 14-0558 KP297397 KP340539 - KP406608 [66]
Xylariales Xylariaceae Anthostomelloides krabiensis MFLUCC 15-0678 KX305927 KX305928 KX305929 - [30]
Xylariales Xylariaceae Anthostomelloides leucospermi CBS:110126 EU552100 - - - [73]
Xylariales Xylariaceae Anthostomelloides proteae CBS 110127 EU552101 - - - [73]
Xylariales Xylariaceae Astrocystis mirabilis 94070803 HAST GU322448 - GQ844835 GQ495941 [71]
Xylariales Xylariaceae Brunneiperidium gracilentum MFLUCC 14-0011 Ex-type KP297400 KP340542 KP340528 KP406611 [66]
Xylariales Xylariaceae Collodiscula japonica CBS 124266 JF440974 JF440974 KY624273 KY624316 [50,74]
Xylariales Xylariaceae Coniolariella gamsii Co27IRAN 842C, CBS114379 (T) GU553325 GU553329 - - [35]
Xylariales Xylariaceae Entalbostroma erumpens ICMP 21152 KX258206 - KX258204 KX258205 [75]
Xylariales Xylariaceae Entoleuca mammata J.D.R. 100 GU300072 - GQ844782 GQ470230 [71]
Xylariales Xylariaceae Euepixylon sphaeriostomum J.D.R. 261 GU292821 - GQ844774 GQ470224 [71]
Xylariales Xylariaceae Halorosellinia oceanica SGLAf82 EU715635 - - - [76]
Xylariales Xylariaceae Hypocopra rostrata NRRL 66178 KM067909 - - - [77]
Xylariales Xylariaceae Hypocreodendron sanguineum J.D.R. 169 GU322433 - GQ844819 GQ487710 [71]
Xylariales Xylariaceae Kretzschmaria clavus YMJ 114 EF026126 - GQ844789 EF025611 [71,78]
Xylariales Xylariaceae Linosporopsis ischnotheca LIF1 = CBS 145761 MN818952 MN818952 MN820708 MN820715 [79]
Xylariales Xylariaceae Lunatiannulus irregularis MFLUCC 14-0014 KP297398 KP340540 KP340526 KP406609 [57]
Xylariales Xylariaceae Nemania serpens CBS 679.86 KU683765 - KU684284 KU684188 [80]
Xylariales Xylariaceae Neoxylaria arengae MFLUCC 15-0292 MT496747 - MT502418 - [81]
Xylariales Xylariaceae Podosordaria mexicana WSP 176 GU324762 - GQ853039 GQ844840 [71]
Xylariales Xylariaceae Poronia punctata CBS 656.78 KT281904 KY610496 KY624278 KX271281 [5,50]
Xylariales Xylariaceae Rosellinia aquila MUCL 51703 KY610392 KY610460 KY624285 KX271253 [50]
Xylariales Xylariaceae Rostrohypoxylon terebratum CBS 119137 DQ631943 DQ840069 DQ631954 DQ840097 [82,83]
Xylariales Xylariaceae Ruwenzoria pseudoannulata MUCL 51394 KY610406 KY610494 KY624286 KX271278 [50]
Xylariales Xylariaceae Sarcoxylon compunctum CBS 359.61 KT281903 KY610462 KY624230 KX271255 [5,50]
Xylariales Xylariaceae Stilbohypoxylon elaeicola Y.M.J. 173 EF026148 - GQ844826 EF025616 [71]
Xylariales Xylariaceae Stilbohypoxylon elaeidis MFLUCC 15-0295a MT496745 MT496755 MT502416 MT502420 [81]
Xylariales Xylariaceae Stilbohypoxylon quisquiliarum Y.M.J. 172 EF026119 - GQ853020 EF025605 [71]
Xylariales Xylariaceae Vamsapriya bambusicola MFLUCC 11-0477 KM462835 KM462836 KM462834 KM462833 [84]
Xylariales Xylariaceae Vamsapriya breviconidiophora MFLUCC 14-0436 MF621584 MF621588 - - [39]
Xylariales Xylariaceae Vamsapriya indica MFLUCC 12-0544 KM462839 KM462840 KM462841 KM462838 [84]
Xylariales Xylariaceae Vamsapriya khunkonensis MFLUCC 11-0475 KM462830 KM462831 KM462829 KM462828 [84]
Xylariales Xylariaceae Vamsapriya yunnana KUMCC 18-0008 MG833874 MG833873 MG833875 - [85]
Xylariales Xylariaceae Virgaria boninensis JCM 18624 AB740956 AB740960 - - [86]
Xylariales Xylariaceae Virgaria nigra CBS 128006 MH864744 MH876180 - - [44]
Xylariales Xylariaceae Xylaria hypoxylon CBS 122620 KY610407 KY610495 KY624231 KX271279 [50,87]
Sordariomycetes genera
incertae sedis
Xylariales genera incertae sedis Melanographium phoenicis MFLUCC 18-1481 MN482677 MN482678 - - [13]
Sordariomycetes genera
incertae sedis
Xylariales genera incertae sedis Ceratocladium microspermum CBS126092 MH864077 MH875534 - - [44]
Xylariales Xylariales genera incertae sedis Ascotricha chartarum CBS 234.97 KF893284 - - KF893271 [88]
Xylariales Xylariales genera incertae sedis Ascotricha longipila OUCMBI110118 (T) KC503896 - - KF893265 [88]
Xylariales Xylariales genera incertae sedis Ascotricha lusitanica CBS 462.70 (IT) KF893289 - - KF893275 [88]
Xylariales Xylariales genera incertae sedis Ascotricha parvispora OUCMBI110001 (T) JX014298 - - KF893267 [88]
Xylariales Xylariales genera incertae sedis Ascotricha sinuosa OUCMBI101190 (T) JX014299 - - KF893266 [88]
Xylariales Xylariales genera incertae sedis Alloanthostomella rubicola MFLUCC 14-0175 KP297407 KP340548 KP340535 KP406618 [89]
Xylariales Xylariales genera incertae sedis Circinotrichum cycadis CPC 17285 KJ869121 KJ869178 - - [26]
Xylariales Xylariales genera incertae sedis Circinotrichum maculiforme CPC 24566 KR611874 KR611895 - - [90]
Xylariales Xylariales genera incertae sedis Circinotrichum papakurae CBS 101373 KR611876 KR611897 - - [90]
Xylariales Xylariales genera incertae sedis Circinotrichum sinense KY994106 KY994107 - - [91]
Xylariales Xylariales genera incertae sedis Gyrothrix eucalypti CPC 36066 MN562109 MN567617 - - [92]
Xylariales Xylariales genera incertae sedis Gyrothrix inops BE108 KC775746 KC775721 - - [66]
Xylariales Xylariales genera incertae sedis Gyrothrix oleae CPC 37069 MN562136 MN567643 - - [92]
Xylariales Xylariales genera incertae sedis Gyrothrix ramosa MUCL54061 KC775747 KC775722 - - [66]
Xylariales Xylariales genera incertae sedis Haploanthostomella elaeidis MFLU 20-0522 MT929161 MT929312 MT928154 - This study
Xylariales Xylariales genera incertae sedis Neoanthostomella pseudostromatica MFLUCC 11-0610 KU940158 KU863146 - - [72]
Xylariales Xylariales genera incertae sedis Neoanthostomella viticola MFLUCC 16-0243 KX505957 KX505958 KX789496 KX789495 [89]
Xylariales Xylariales genera incertae sedis Pseudoanthostomella conorum CBS 119333 EU552099 - - - [73]
Xylariales Xylariales genera incertae sedis Pseudoanthostomella delitescens MFLUCC 16-0477 KX533451 KX533452 KX789491 KX789490 [89]
Xylariales Xylariales genera incertae sedis Pseudoanthostomella pini-nigrae MFLUCC 16-0478 KX533453 KX533454 KX789492 - [89]
Xylariales Xylariales genera incertae sedis Pseudoanthostomella sepelibilis AY908989 AY875645 - - Unpublished
Xylariales Xylariales genera incertae sedis Xenoanthostomella chromolaenae MFLUCC 17-1484 MN638863 MN638848 - - [3]
Xylariales Zygosporiaceae Zygosporium oscheoides MFLUCC 14-0402 MF621585 MF621589 - - [93]
Xylariales Zygosporiaceae Zygosporium minus HKAS99625 MF621586 MF621590 - - [93]

2.3. Phylogenetic Analyses

The consensus sequences were put through a BLAST search in the NCBI GenBank nucleotide database to search for the fungal sequences of closest relatives that have been deposited in the NCBI database. Dissanayake et al.’s study [19] was followed for the phylogenetic analyses. Voglmayr and Beenken’s study [79] was used as a reference of the dataset. Both individual and combined ITS, LSU, rpb2, and tub2 nucleotide sequences were analyzed. A total of 151 taxa were used for the phylogenetic analyses in order to find the taxonomic placement of each species. Three genera viz. Delonicicola, Furfurella (Delonicicolaceae), and Leptosillia (Leptosilliaceae) in Delonicicolales were used as the outgroup taxa.

The MAFFT online program was used to obtain initial alignments for each locus [94]. Alignments were manually edited and single gene sequence data sets were combined using MEGA7 [95]. The Alignment Transformation Environment online program was used to convert the file format [96]. MrModeltest [97] was used to find the best model for maximum likelihood (ML) and Bayesian analyses (BYPP). The six simultaneous Markov chains were run for 20,000,000 generations and trees were sampled every 1000th generation. Bayesian posterior probabilities from MCMC were evaluated with a final average standard deviation of the split frequency of <0.01. Bootstrap values for ML equal to or greater than 50% and BYPP equal to or greater than 0.90 are given at the nodes (Figure 1). Fig Tree v1.4.0 was used to configure the phylogenetic trees [98] and edited using Microsoft Office PowerPoint 2010 and Adobe Photoshop CS6 (Adobe Systems Incorporated, 345 Park Avenue, San Jose, CA, USA).

Figure 1.

Figure 1

Maximum likelihood majority rule consensus tree for the analyses of selected Xylariomycetidae isolates based on a dataset of combined ITS, LSU, rpb2, and tub2 nucleotide sequence. Bootstrap support values for maximum likelihood (ML) equal to or higher than 50% are given above each branch. Bayesian posterior probabilities (BYPP) equal to or greater than 0.90 are given at the nodes. Novel taxa are in blue bold and ex-type strains are in black bold. The tree is rooted to Delonicicolaceae and Leptosilliaceae (Delonicicolales). The asterisks represent unstable species.

3. Results

3.1. Morphology and Phylogeny

The combined dataset comprised 151 taxa from selected taxa in Amphisphaeriales, Delonicicolales, and Xylariales (Table 1). The RAxML analyses of the combined dataset yielded the best-scoring tree (Figure 1) with a final ML optimization likelihood value of −126584.196783. The matrix had 4598 distinct alignment patterns, with 65.07% undetermined characters or gaps. Estimated base frequencies were: A = 0.243574, C = 0.257762, G = 0.258457, T = 0.240207; substitution rates AC = 1.296272, AG = 3.089851, AT = 1.400263, CG = 1.060328, CT = 9.900102, GT = 1.000000; gamma distribution shape parameter α = 0.443932. Tree-Length = 25.372161. Bayesian analysis resulted in a tree with similar topology and clades as the ML tree. Phylogenetic analyses of the combined ITS, LSU, rpb2, and tub2 loci show two novel taxa within the monospecific genus Haploanthostomella (type species Haploanthostomella elaeidis; Xylariales incertae sedis) and the novel taxa Endocalyx metroxyli, with the genus Endocalyx being placed in Cainiaceae.

3.1.1. Haploanthostomella Konta & K.D. Hyde. gen. nov.

Index Fungorum number: IF557876; Facesoffungi number: FoF09173

Etymology: “haplos” (απλός) in Greek means single; Anthostomella refers to its morphological similarity to Anthostomella.

Saprobic on dead leaves and rachis in terrestrial habitats. Sexual morph: Ascomata immersed in the host epidermis, beneath a clypeus, visible as slightly raised blackened areas, dark brown to black, coriaceous, solitary or aggregated into clusters, scattered, with an ostiolar canal. Peridial wall thick, comprised of several layers of cells, outwardly comprising dark brown cells of textura prismatica and inwardly comprising hyaline cells of textura angularis. Paraphyses septate, tapering hyphae-like, hyaline. Asci eight-spored, unitunicate, clavate to cylindric, short pedicellate, with J-, apical ring. Ascospores uni–biseriate into the asci, unicellular, obovoid, fusoid, hyaline or brown to dark brown, verrucose with a mucilaginous cap at apex. Germ slit straight, less than spore-length. Asexual morph: Not observed.

Type species: Haploanthostomella elaeidis Konta & K.D. Hyde.

Notes: Anthostomella species were proven to be polyphyletic, and it is of no surprise that a new genus with anthostomella-like characteristics was discovered in this study [99]. Phylogenetic analyses based on a single dataset of ITS (supporting information section) and combined sequence data indicated that Haploanthostomella belongs to Xylariales genera incertae sedis, separating well from other genera but with low bootstrap values (Figure 1). According to the phylogenetic tree (Figure 1), seven genera (Ceratocladium, Circinotrichum, Gyrothrix, Idriella, Neoanthostomella, Virgaria and Xenoanthostomella) are closely related to our new genus, but morphological characteristics of these genera are different. The genera Neoanthostomella, Virgaria, and Xenoanthostomella were compared morphologically since they are similar to our new taxon. Haploanthostomella differs from Virgaria, Neoanthostomella, and Xenoanthostomella in having a J- apical ring, fusoid-obovoid ascospores, and verrucose with a mucilaginous cap at the apex, while Virgaria has asci with a J+ apical ring and smooth-walled elliposidal ascospores lacking of a mucilaginous sheath; Neoanthostomella smooth-walled elliposidal ascospores surrounded by a thick mucilaginous sheath; Xenoanthostomella has unilocular ascoma, and ascospores lacking germ slits and mucilaginous sheaths [13,72,89]. Therefore, Haploanthostomella is described here as a new genus based on phylogeny coupled with morphology. In addition, we provide a key to genera with Anthostomella-like characteristics.

3.1.2. Haploanthostomella elaeidis Konta & K.D. Hyde., sp. nov.

Index Fungorum number: IF557877, Facesoffungi number: FoF09174 (Figure 2)

Figure 2.

Figure 2

Haploanthostomella elaeidis (MFLU 20-0522, holotype). (A) Substrate. (B,C) Appearance of ascomata on the host surface. (D) Sections of ascomata. (E) Peridium. (F) Hamathecium. (G) Septa of paraphyses show in red arrows. (H,IK) Asci. (L) J- apical ring in Melzer’s reagent. (M,N,PR) Ascospores with mucilaginous cap (red arrows in M, Q, R) and germ slit (red arrows in P). (O) An ascospore with verrucose wall. Scale bars: B = 1000 μm, C = 200 μm, D = 500 μm, E, G, L = 20 μm, F, H–K = 50 μm, M–P = 10 μm, Q–R = 5 μm.

Etymology: Referring to the genus of palm trees Elaeis Jacq.

Holotype: MFLU 20-0522.

Saprobic on dead leaves and rachis of Elaeis guineensis. Sexual morph: Ascomata 160–280 × 130–350 μm ( = 220 × 240 μm, n = 20), immersed in the host epidermis, beneath a clypeus, visible as slightly raised blackened areas, dark brown to black, coriaceous, solitary or aggregated into clusters, scattered, with an ostiolar canal. Peridial wall 13–45 μm wide, thick, comprising several layers of cells, outwardly comprising dark brown cells of textura irregularis and inwardly comprising hyaline cells of textura prismatica, 7–20 μm wide. Paraphyses 1.5–4.5 μm wide, septate, hyphae-like, hyaline. Asci 50–90 × 10–15 μm ( = 70 × 12 μm, n = 40), 8-spored, unitunicate, clavate to cylindric, short pedicellate, with J- apical ring. Ascospores 10–18 × 5–8 μm ( = 14 × 6 μm, n = 100), uni–biseriate into the asci, unicellular, obovoid, fusoid, hyaline to light brown when immature and brown to dark brown when mature, mostly one, rarely two-guttulate, cell wall verrucose, with a mucilaginous cap at the apex. Germslit 3–6 μm length ( = 5 μm, n = 50), straight, less than spore-length. Asexual morph: Not observed.

Material examined: THAILAND, Surat Thani Province, on dead leaves and rachis of Elaeis guineensis Jacq. (Arecaceae) on the ground, 21 July 2017, Sirinapa Konta, SRWD12 (MFLU 20-0522, holotype).

Notes: A BLAST search of H. elaeidis ITS sequence shows 83.87% similarity with Gyrothrix oleae (CPC 37069); LSU sequence shows 95.95% similarity with Gyrothrix eucalypti (CPC 36066); and rpb2 sequence shows 80.95% similarity with Lopadostoma meridionale (LG). Only the sexual morph of H. elaeidis was found in nature, and we could not obtain a pure culture from fresh samples. Therefore, the morphological characteristics of H. elaeidis were not compared with Ceratocladium, Circinotrichum, Gyrothrix, and Idriella, as they only had asexual morphs found in nature. Hence, the morphological features of H. elaeidis were only compared with Neoanthostomella, Virgaria, and Xenoanthostomella, as they have sexual morphs.

Key to genera related to Anthostomella-like genera
1. Hyaline ascospores Alloanthostomella
1. Brown ascospores 2
2. Asci with a J- apical ring 3
2. Asci with or without J+ apical ring 5
3. Ascospores with or without germ slit 4
3. Ascospores with germ slit Xenoanthostomella
4. Ascospores with a germ slit and the length less than spore length with a mucilaginous cap at the apex Haploanthostomella
4. Ascospores with or without germ slit, with mucilaginous sheath Neoanthostomella
5. Asci with a J+ apical ring, ascospores with germ slit, with or without mucilaginous sheath 6
5. Asci with J+ or J- apical ring, ascospores with or without germ slit (straight or spiral), and also with or without appendages or mucilaginous sheath Anthostomella
6. Ascospores with germ slit less than spore length, with or without mucilaginous sheath 7
6. Ascospores with germ slit extending over full length with mucilaginous sheath Pseudoanthostomella
7. Ellipsoid ascospores without mucilaginous sheath Virgaria
7. Inequilaterally oblong-ellipsoidal ascospores with mucilaginous sheath Anthostomelloides

3.1.3. Endocalyx Berk. & Broome, J. Linn. Soc., Bot. 15(1): 84 (1876) [1877]

Index Fungorum number: IF8158; Facesoffungi number: FoF09175

Saprobic on various plants. Colonies on host plant, pustules nearly flat or raised, circular, discolored, dark brown to black, at last bursting, the conidiomata developing. Sexual morph: Undetermined. Asexual morph: Conidiomata scattered, erect, cupulate to cylindrical; peridial hyphae enclosing the inner conidial mass, nonsporiferous, brown to yellowish brown; some species consisting of two parts of conidioma: (1) a basal cylinder covering a central column, rough-walled, carbonaceous, composed of black hyphae which are sometimes branched and are adherent to one another; (2) a slender central column, synnematous, expanding radially apically, high, enclosed by the peridial hyphae which are nonsporiferous, orange-yellow to lemon-yellow. Peridial wall thick, comprising dark brown, thick-walled cells of textura angularis. Conidiophores thread-like, septate, with or without short pegs bearing the conidia, meristematic at the base, colorless basally and gradually turning brown apically, 1–2 µm wide; peridium thick, comprising dark brown, thick-walled cells of textura angularis. Conidiogenous cells holoblastic, integrated, determinate. Conidia solitary, unicellular, flattened, round, oval or slightly polygonal in face view, at first pale, dark brown to fuscous black at maturity, with or without guttules, often with a longitudinal hyaline straight germ slit extending the full-length (adapted from [99,100,101]).

Type species: Endocalyx thwaitesii Berk. & Broome

Notes: Endocalyx is a coelomycetous genus in Cainiaceae with E. cinctus collected from Japan E. metroxyli sp. nov. collected from Thailand. Phylogenetic analyses of a single dataset of ITS (supporting information section) and phylogenetic analyses of a combined dataset of ITS, LSU, rpb2, and tub2 regions (Figure 1) confirm the placement of Endocalyx within Cainiaceae. ITS analyses showed that Endocalyx is closely related to Amphibambusa and Atrotorquata (supporting information section), while Figure 1 shows that Endocalyx formed a basal clade to other cainiaceous genera (Alishanica, Amphibambusa, Arecophila, Atrotorquata, Cainia, Longiappendispora, and Seynesia) with high bootstrap support. Morphologically, Endocalyx has been revised and described only as an asexual morph of the genus [100,101], while all genera in Cainiaceae have been described in their sexual morphs, except the type genus Cainia, for which both asexual and sexual morphs have been described. We could not compare the morphology of Endocalyx to Arecophila, Seynesia, and Amphibambusa (sister species in Figure 1). Therefore, Cainia was used for morphological comparisons; Endocalyx differs from Cainia in having erect conidiomata and also the ostiole opening surrounded by yellow hyphae, ellipsoid-globose conidia, unicellular with brown to dark brown color, and a germ slit. Cainia has immersed conidiomata, conidiogenous cells with one to three phialides, and elongate fusiform conidia, unicellular or septate, hyaline, with pointed ends [100,101,102].

Recently, Longiappendispora was introduced under Cainiaceae, with seven genera in total included in the family by Mapook et al. [11]. In our study, detailed molecular analyses were done for Endocalyx and its placement in Cainiaceae (Xyalriales) was confirmed. Previously, Endocalyx was classified in Apiosporaceae (Xylariales, Sordariomycetes) based on morphological evidence. As the first detailed molecular data of Endocalyx cinctus have been made available from a Japan laboratory [32], their current placement is supported (Figure 1). However, there are no recent publications referring to the molecular data of this genus yet. Thus, in this study, we present the placement of Endocalyx based on multigene phylogenetic analyses with recent sequence data from the Japan collection as well as the Thailand collection. In addition, we accept eight genera in Cainiaceae (Alishanica, Amphibambusa, Arecophila, Atrotorquata, Cainia, Endocalyx, Longiappendispora, and Seynesia), and seven species by including our new species in the genus Endocalyx (Table 2). In addition, we provide a key for the members of Cainiaceae.

Table 2.

Host and locality information of Endocalyx reported worldwide based on the records of Species Fungorum 2021.

No. Species Host Country Reference
Eudicots Monocots
1 Endocalyx amarkantakensis Shorea robusta (Dipterocarpaceae) India (Holotype) [103]
2 E. cinctus * Livistona chinensis var. boninensis (Arecaceae; solitary palm) Japan [104]
Oncosperma fasciculatum (Arecaceae; clustering, rarely solitary palm) Japan [101]
Oncosperma sp. (Arecaceae; clustering, rarely solitary palm) Sri Lanka
(Holotype)
[100]
Phoenix canariensis (Arecaceae; solitary palm) Japan [101]
Phoenix hanceana (Arecaceae; solitary palm) Hong Kong [105]
Trachycarpus fortunei (Arecaceae; solitary palm) Japan [101]
3 E. collantesis Smilax sp. (Smilacaceae) Cuba (Holotype) [106]
4 E. indicus twigs of woody India (Holotype) [107]
5 E. indumentum Livistona chinensis var. boninensis (Arecaceae; solitary palm) Japan (Holotype) [101,104]
Phoenix canariensis (Arecaceae; solitary palm) Japan [104]
6 E. melanoxanthus Acrocomia mexicana (Arecaceae) Mexico [108]
Archontophoenix alexandrae (Arecaceae; solitary palm) Australia [109]
Hong Kong [105,109]
Malaysia [109]
Singapore [109]
Arecaceae Mexico [108]
Arenga engleri (Arecaceae; clustering palm) Hong Kong [105]
Japan [104]
Dypsis lutescens (=Chrysalidocarpus lutescens) (Arecaceae; clustering palm) Japan [104]
Caryota urens (Arecaceae; solitary palm) Sri Lanka (Holotype) [100]
Cocos nucifera (Arecaceae; solitary palm) Australia [109]
Ghana [110]
Hawaii [111,112]
Japan [104]
Malaysia [109,113]
Papua New Guinea [114]
Seychelles [109]
Singapore [109]
Coffea arabica (Rubiaceae) Venezuela [115]
Dracaena fragrans (Asparagaceae) Cuba [116]
Venezuela [115]
Elaeis guineensis (Arecaceae; solitary palm) Ghana [110]
Myanmar [117]
Sierra Leone [113]
Elaeis sp. (Arecaceae; solitary palm) Japan [104]
Licuala longicalycata (Arecaceae; solitary palm) Thailand [118]
Livistona chinensis (Arecaceae; solitary palm) Hong Kong [105]
Livistona chinensis var. boninensis (Arecaceae; solitary palm) Japan [104]
Livistona rotundifolia (Arecaceae; solitary palm) Taiwan [119]
Livistona speciosa (Arecaceae; solitary palm) Myanmar [117]
Nannorrhops ritchieana (Arecaceae; clustering palm) Pakistan [120]
Phoenix canariensis (Arecaceae; solitary palm) Japan [104]
Phoenix hanceana (Arecaceae; solitary palm) Hong Kong [105,121]
Phoenix reclinata (Arecaceae; solitary palm) Ghana [110]
Phoenix roebelenii (Arecaceae; solitary palm) Japan [104]
Phoenix roebelenii-senegalensis (Arecaceae; solitary palm) Japan [104]
Ravenala madagascariensis (Strelitziaceae) Japan [104]
Taiwan [119]
Ripogonum scandens (Ripogonaceae) New Zealand [122]
Roystonea borinquena (Arecaceae; solitary palm) USA (Florida) [123]
Roystonea regia (Arecaceae; solitary palm) Cuba [124,125,126,127]
Sabal palmetto (Arecaceae; solitary palm) USA (Florida) [128]
Serenoa serrulata (Arecaceae; clustering and solitary palm) USA (Florida) [129]
Smilax sp. (Smilacaceae) USA (Florida) [128]
Trachycarpus fortunei (Arecaceae; solitary palm) China [109]
unknown, palm Australia [109]
China [109]
Hong Kong [109]
Malaysia [109]
Seychelles [109]
Singapore [109]
Wodyetia bifurcata (Arecaceae; solitary palm) Florida [123]
E. melanoxanthus
(=E. melanoxanthus var. grossus)
Trachycarpus fortunei (Arecaceae; solitary palm) Japan [101]
E. melanoxanthus
(=E. melanoxanthus var. melanoxanthus)
Acrocomia intumescens (Arecaceae; solitary palm) Brazil [102]
Butia yatay (Arecaceae; solitary palm) Argentina [130]
Cocos nucifera (Arecaceae; solitary palm) Ghana [101]
Euterpe edulis (Arecaceae; solitary, or rarely clustering palm (growing in dense tufts or clumps) and then with few stems) Argentina [130]
Brazil [102]
Euterpe oleracea (Arecaceae; clustering palm) Brazil [102]
Livistona chinensis var. boninensis (Arecaceae; solitary palm) Japan [101]
Livistona chinensis var. subglobosa (Arecaceae; solitary palm) Japan [101]
Phoenix canariensis (Arecaceae; solitary palm) Japan [101]
Phoenix roebelenii (Arecaceae; solitary palm) Japan [101]
Satakentia liukiuensis (Arecaceae; solitary palm) Japan [101]
Syagrus coronata (Arecaceae; solitary palm) Brazil [131]
Syagrus romanzoffiana (Arecaceae; solitary palm) Argentina [130]
Trachycarpus fortunei (Arecaceae; solitary palm) Japan [101]
Washingtonia robusta (Arecaceae; solitary palm) Japan [101]
7 E. thwaitesii (Type species) Cissus oreophila (Vitaceae) Ghana [132]
Cissus sp. (Vitaceae) Ghana [133]
Sri Lanka [133]
Oncosperma sp. (Arecaceae; clustering, rarely solitary palm) Ghana [133]
Sri Lanka (Holotype) [133]

* Have molecular data.

3.1.4. Endocalyx metroxyli Konta & K.D. Hyde. sp. nov.

Index Fungorum number: IF558116, Facesoffungi number: FoF09176 (Figure 3)

Figure 3.

Figure 3

Endocalyx metroxyli (MFLU 15-1454, holotype). (A) Forest in Krabi Province. (B) Palm samples. (CE) Appearance of conidiomata on host. (F) Vertical cut of a conidioma. (GH) Vertical section of a conidioma. (I) Section of peridium. (J) Group of conidia. (K) Conidiophores reduced to conidiogenous cell with conidium. (LS) Conidia (PR, Conidia with conidiogenous cells). (T) Germ slit (red arrow). (U) Germinated conidia. (V) Colonies on MEA media. Scale bars: B = 2 cm, C = 500 μm, D–H = 200 μm, I, J = 20 μm, L–T = 5 μm, U = 10 μm.

Etymology: Refers to the name of the host genus, Metroxylon.

Holotype: MFLU 15-1454.

Saprobic on dead petiole of Metroxylon sagu. Colonies on host plant, pustules. Sexual morph: Undetermined. Asexual morph: Conidiomata 340–660 μm wide, in vertical section 495–820 × 325–485 µm, acervulus, solitary, semi-immersed to immersed in the host epidermis, beneath a clypeus, visible as slightly raised and blackened, black, carbonaceous, fragile, with an ostiolar canal. Ostiolar opening surrounded by a yellow margin. Peridial wall 34–80 μm wide, thick, comprising dark brown cells of textura angularis. Conidiomata not observed with a basal cylinder covering a central column or a slender central column in our collection. Conidiophores reduced to conidiogenous cell, hyaline to pale-brown, unbranched, smooth. Conidia 13–16 × 7–10 µm ( = 13 × 10 µm, n = 30), unicellular, ellipsoid-globose, brown to dark brown, with short pegs bearing conidia, with germ slit, smooth-walled.

Culture characteristics: Colonies on MEA, at first white, raised, effuse, velvety to hairy, circular, smooth at the margin, white from above, pale-brown from below.

Material examined: Thailand, Krabi Province, on dead petiole of Metroxylon sagu Rottb. on the ground (Arecaceae), 8 December 2014, Sirinapa Konta KBR04h2 (MFLU 15-1454, holotype); ex-type living culture, MFLUCC 15-0723A; ibid. MFLUCC 15-0723B, MFLUCC 15-0723C.

Additional sequence data: SSU: MT929310, MT929311, tef1-α: MT928152, MT928153.

Notes: Endocalyx metroxyli is phylogenetically well supported and is placed in Cainiaceae (Figure 1). Endocalyx metroxyli is closely related to E. cinctus with high bootstrap support but is distinct in morphological characteristics. A BLAST search of E. metroxyli ITS sequence shows 83.10% similarity with Requienella seminuda (CBS 140502) (CPC 37069), LSU sequence shows 96.14% similarity with Entosordaria quercina (RQ), tub2 sequence shows 88.94% similarity with Daldinia dennisii var. dennisii, SSU sequence shows 97.92% similarity with Xenoanthostomella chromolaenae (MFLUCC 17-1484), and tef1-α sequence shows 89.39% similarity with Barrmaelia macrospor (BM).

Endocalyx metroxyli is morphologically similar to E. melanoxanthus. However, Endocalyx metroxyli does not have erect conidiomata developing from the pustules, as was mentioned by Petch [100], Okada and Tubaki [101], and Vitoria et al. [102,131]. In this study, we found only a black raised pustule structure with ostiole surrounded by a yellow hyphae ring, and hyaline conidiophore, unicellular, dark brown conidia with a longitudinal germ slit. Endocalyx melanoxanthus was collected and described from palm hosts (Arecaceae), and a few collections were collected from other host plants (Table 2). According to Species Fungorum [134], E. melanoxanthus var. Grossus (G. Okada & Tubaki) and E. melanoxanthus var. melanoxanthus (Berk. & Broome) are considered as E. melanoxanthus, even though they have several different characteristics.

Endocalyx metroxyli is morphologically similar to E. melanoxanthus var. melanoxanthus, in having black raised pustules surrounded by yellow hyphae and smooth-walled conidia with no significant size differences [100,101,102]. However, our new taxon lacks cupulate or cylindrical conidiomata [101,102]. On the other hand, E. metroxyli differs from E. melanoxanthus var. grossus by lacking the production of ornamented conidia [100,101].

Keys to genera of Cainiaceae
1. Asexual morph
1.1 Coelomycetous; 1–3 phialides conidiogenous cells, and elongate fusiform conidia with unicellular or septate, with pointed ends Cainia
1.1 Coelomycetous; conidiomata with ostiolar opening surrounded by yellow, with unicellular conidia, ellipsoid-globose, pale to dark brown to black, with a straight germ slit extending the full-length Endocalyx
2. Sexual morph
2.1 Cylindrical-clavate asci, ascospores with 1-septate (2.2)
2.1 Cylindrical, or cylindrical to elongate cylindrical asci, ascospores with 1-septate (2.3)
2.2 Ellipsoidal ascospores, with brown, and sheath Cainia
2.2 Ellipsoidal to fusiform ascospores, with brown, and sheath Atrotorquata
2.3 Ellipsoid to broadly fusiform ascospores, longitudinal striations, bristle-like polar appendages from both ends, without a gelatinous sheath Longiappendispora
2.3 Fusiform to broad-fusiform ascospores with pointed at both ends, striation wall, and sheath Amphibambusa
2.3 Ellipsoidal or oblong ascospores (2.4)
2.4 Oblong ascospores with cap-like appendage, germ slits Seynesia
2.4 Ellipsoidal ascospores (2.5)
2.5 Ascospores with striation wall, brown, and sheath Alishanica
2.5 Ascospores with striate or verrucose wall, and subhyaline to brown Arecophila

4. Discussion

Based on phylogeny and morphological characteristics, the new monotypic genus Haploanthostomella (type species: Haploanthostomella elaeidis) and the new species Endocalyx metroxyli have been established. The former new species was isolated from a dead rachis of Elaeis guineensis, and the latter from a dead petiole of Metroxylon sagu (Arecaceae) in Thailand. Phylogenetic analyses of combined datasets together with morphological characteristics revealed that Haploanthostomella belongs to Xylariales incertae sedis, while Endocalyx belongs to the Cainiaceae (Xylariales).

Based on morphological features, Endocalyx was assigned to Apiosporaceae (Amphisphaeriales, Sordariomycetes), together with four other genera, viz. Appendicospora, Arthrinium, Dictyoarthrinium, and Nigrospora [3,8]. Later, Dictyoarthrinium was transferred to Didymosphaeriaceae (Pleosporales, Dothideomycetes) [135]. According to our phylogenetic analyses (Figure 1), Arthrinium and Nigrospora should be accepted under the Apiosporaceae, while Appendicospora did not clade to this family (supporting information section), and Endocalyx fits well within the Cainiaceae.

Interestingly, four out of seven species in the genus Endocalyx (E. melanoxanthus, E. cinctus, E. indumentum, and E. thwaitesii) were collected from palm hosts (Table 2). Endocalyx metroxyli is similar to other species by having dark brown conidia with a full-length germ slit, it but differs from other species by not having conidiomata produced from the pustulate and no thread-like structure of conidiophores. Morphological characteristics of species in the genus are mostly flat or raised pustules, capsule or slender conidiomata with or without branches at the apex, and brown to dark brown conidia with smooth walls (E. amarkantakensis, E. collantesis, E. indumentum, E. melanoxanthus, E. melanoxanthus var. melanoxanthus), while some species are verrucose-walled (E. cinctus, E. indumentum, E. melanoxanthus var. grossus, E. thwaitesii). We referred to previous publications for morphological comparisons to the taxa in this study, as we did not observe all holotype specimens [100,101,102].

According to the literature, there are also strains derived from another two species and two varieties. Excluding E. cinctus, no sequence data are available for generic types of Endocalyx and other species, and their morphology and host substrates are closely related to our novel taxon. Endocalyx species have been reported in several countries, especially in tropical and subtropical regions. Furthermore, palm trees (Arecaceae) have most commonly been reported as the host, while several species have been presented from other hosts (Table 2).

The phylogenetic placement of many groups within the Xylariales remains unclear (e.g., Anthostomelloides, Calceomyces, Circinotrichum, Fasciatispora (only F. petrakii), Gyrothyrix, Melanographium, Neoanthostomella, Pseudoanthostomella, and Xenoanthostomella, Figure 1). Thus, it is necessary to collect and analyze more fungal specimens from Xylariales using multigene phylogeny (with protein coding genes) and morphology to resolve their taxonomical placement and delimitation.

Acknowledgments

Sirinapa Konta is grateful to Paul Kirk, Shaun Pennycook, Saranyaphat Boonmee, and Sirilak Radbouchoom for their valuable suggestions and help.

Author Contributions

Conceptualization, S.K.; Formal analysis, S.K.; Funding acquisition, K.D.H. and S.T.; Methodology, S.K.; Resources, S.C.K., J.X. and S.T.; Supervision, K.D.H. and P.D.E.; Writing—original draft, S.K., S.C.K., M.C.S., S.T.A., L.A.P.D. and S.T.; Writing—review and editing, K.D.H., S.C.K., S.T. and S.L. All authors have read and agreed to the published version of the manuscript.

Funding

Saowaluck Tibpromma would like to thank the International Postdoctoral Exchange Fellowship Program (number Y9180822S1), CAS President’s International Fellowship Initiative (PIFI) (number 2020PC0009), China Postdoctoral Science Foundation, and the Yunnan Human Resources, and Social Security Department Foundation for funding her postdoctoral research. Samantha C. Kaunarathna thanks CAS President’s International Fellowship Initiative (PIFI) for funding his postdoctoral research (No. 2018PC0006) and the National Science Foundation of China (NSFC) for funding this work under the project code 31851110759. Kevin D. Hyde thanks the Thailand Research Funds for the grant “Impact of Climate Change on Fungal Diversity and Biogeography in the Greater Mekong Subregion (RDG6130001)”. This work was partly supported by Chiang Mai University.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Not applicable.

Conflicts of Interest

The authors declare no conflict of interest.

Footnotes

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  • 1.Lewis C.E., Baker W.J., Asmussen C.B. DNA and palm evolution. Palms. 2000;44:19–24. [Google Scholar]
  • 2.Hawksworth D.L., Lücking R. Fungal diversity revisited: 2.2 to 3.8 million species. Fungal Kingd. 2017;4:79–95. doi: 10.1128/9781555819583.ch4. [DOI] [PubMed] [Google Scholar]
  • 3.Hyde K.D., Norphanphoun C., Maharachchikumbura S.S.N., Bhat D.J., Jones E.B.G., Bundhun D., Chen Y.J., Bao D.F., Boonmee S., Calabon M.S., et al. Refined families of Sordariomycetes. Mycosphere. 2020;11:305–1059. doi: 10.5943/mycosphere/11/1/7. [DOI] [Google Scholar]
  • 4.Samarakoon M.C., Thongbai B., Hyde K.D., Brönstrup M., Beutling U., Lambert C., Miller A.N., Liu J.K.J., Promputtha I., Stadler M. Elucidation of the life cycle of the endophytic genus Muscodor and its transfer into the genus Induratia in Induratiaceae fam. nov., based on a polyphasic taxonomic approach. Fungal Divers. 2020;101:177–210. doi: 10.1007/s13225-020-00443-9. [DOI] [Google Scholar]
  • 5.Senanayake I.C., Maharachchikumbura S.S.N., Hyde K.D., Bhat J.D., Jones E.B.G., McKenzie E.H.C., Dai D.Q., Daranagama D.A., Dayarathne M.C., Goonasekara I.D., et al. Towards unraveling relationships in Xylariomycetidae (Sordariomycetes) Fungal Divers. 2015;73:73–144. doi: 10.1007/s13225-015-0340-y. [DOI] [Google Scholar]
  • 6.Maharachchikumbura S.S.N., Hyde K.D., Jones E.G., McKenzie E.H., Huang S.K., Abdel-Wahab M.A., Daranagama D.A., Dayarathne M., D’souza M.J., Goonasekara I.D., et al. Towards a natural classification and backbone tree for Sordariomycetes. Fungal Divers. 2015;72:199–301. doi: 10.1007/s13225-015-0331-z. [DOI] [Google Scholar]
  • 7.Hongsanan S., Maharachchikumbura S.S.N., Hyde K.D., Samarakoon M.C., Jeewon R., Zhao Q., Al-Sadi A.M., Bahkali A.H. An updated phylogeny of Sordariomycetes based on phylogenetic and molecular clock evidence. Fungal Divers. 2017;84:25–41. doi: 10.1007/s13225-017-0384-2. [DOI] [Google Scholar]
  • 8.Wijayawardene N.N., Hyde K.D., Al-Ani L.K.T., Tedersoo L., Haelewaters D., Rajeshkumar K.C., Zhao R.L., Aptroot A., Leontyev D.V., Saxena R.K., et al. Outline of Fungi and fungus-like taxa. Mycosphere. 2020;11:1060–1456. doi: 10.5943/mycosphere/11/1/8. [DOI] [Google Scholar]
  • 9.Krug J.C. The genus Cainia and a new family, Cainiaceae. Sydowia. 1978;30:122–133. [Google Scholar]
  • 10.Maharachchikumbura S.S.N., Hyde K.D., Jones E.G., McKenzie E.H.C., Bhat J.D., Dayarathne M.C., Huang S.K., Norphanphoun C., Senanayake I.C., Perera R.H., et al. Families of Sordariomycetes. Fungal Divers. 2016;79:1–317. doi: 10.1007/s13225-016-0369-6. [DOI] [Google Scholar]
  • 11.Mapook A., Hyde K.D., McKenzie E.H., Jones E.G., Bhat D.J., Jeewon R., Stadler M., Samarakoon M.C., Malaithong M., Tanunchai B., et al. Taxonomic and phylogenetic contributions to fungi associated with the invasive weed Chromolaena odorata (Siam weed) Fungal Divers. 2020;101:1–175. doi: 10.1007/s13225-020-00444-8. [DOI] [Google Scholar]
  • 12.Hyde K.D., Norphanphoun C., Chen J., Dissanayake A.J., Doilom M., Hongsanan S., Jayawardena R.S., Jeewon R., Perera R.H., Thongbai B., et al. Thailand’s amazing diversity—Up to 96% of fungi in northern Thailand are novel. Fungal Divers. 2018;93:215–239. doi: 10.1007/s13225-018-0415-7. [DOI] [Google Scholar]
  • 13.Hyde K.D., Dong Y., Phookamsak R., Jeewon R., Bhat D.J., Jones E.B., Liu N.G., Abeywickrama P.D., Mapook A., Wei D.P., et al. Fungal diversity notes 1151–1276: Taxonomic and phylogenetic contributions on genera and species of fungal taxa. Fungal Divers. 2020;100:5–277. doi: 10.1007/s13225-020-00439-5. [DOI] [Google Scholar]
  • 14.Hyde K.D., Jeewon R., Chen Y.J., Bhunjun C.S., Calabon M.S., Jiang H.B., Lin C.G., Norphanphoun C., Sysouphanthong P., Pem D., et al. The numbers of fungi: Is the descriptive curve flattening? Fungal Divers. 2020;103:219–271. doi: 10.1007/s13225-020-00458-2. [DOI] [Google Scholar]
  • 15.Konta S., Hyde K.D., Eungwanichayapant P.D., Doilom M., Tennakoon D.S., Senwanna C., Boonmee S. Fissuroma (Aigialaceae: Pleosporales) appears to be hyperdiverse on Arecaceae: Evidence from two new species from southern Thailand. Acta Bot. Bras. 2020;34:384–393. doi: 10.1590/0102-33062020abb0021. [DOI] [Google Scholar]
  • 16.Senanayake I.C., Rathnayaka A.R., Marasinghe D.S., Calabon M.S., Gentekaki E., Lee H.B., Hurdeal V.G., Pem D., Dissanayake L.S., Wijesinghe S.N., et al. Morphological approaches in studying fungi: Collection, examination, isolation, sporulation and preservation. MYCOSP. 2020;11:2678–2754. doi: 10.5943/mycosphere/11/1/20. [DOI] [Google Scholar]
  • 17.Jayasiri S.C., Hyde K.D., Ariyawansa H.A., Bhat J., Buyck B., Cai L., Dai Y.C., Abd-Elsalam K.A., Ertz D., Hidayat I., et al. The Faces of Fungi database: Fungal names linked with morphology, phylogeny and human impacts. Fungal Divers. 2015;74:3–18. doi: 10.1007/s13225-015-0351-8. [DOI] [Google Scholar]
  • 18.Index Fungorum. [(accessed on 30 April 2020)];2021 Available online: http://www.indexfungorum.org/names/Names.asp.
  • 19.Dissanayake A.J., Bhunjun C.S., Maharachchikumbura S.S.N., Liu J.K. Applied aspects of methods to infer phylogenetic relationships amongst fungi. Mycosphere. 2020;11:2652–2676. doi: 10.5943/mycosphere/11/1/18. [DOI] [Google Scholar]
  • 20.O’Donnell K., Cigelnik E. Two divergent intragenomic rDNA ITS2 types within amonophyletic lineage of the fungus Fusarium are nonorthologous. Mol. Phylogenet. Evol. 1997;7:103–116. doi: 10.1006/mpev.1996.0376. [DOI] [PubMed] [Google Scholar]
  • 21.Pintos Á., Alvarado P., Planas J., Jarling R. Six new species of Arthrinium from Europe and notes about A. caricicola and other species found in Carex spp. hosts. MycoKeys. 2019;49:15–48. doi: 10.3897/mycokeys.49.32115. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Crous P.W., Groenewald J.Z. A phylogenetic re-evaluation of Arthrinium. IMA Fungus. 2013;4:133–154. doi: 10.5598/imafungus.2013.04.01.13. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Wang M., Liu F., Crous P.W., Cai L. Phylogenetic reassessment of Nigrospora: Ubiquitous endophytes, plant and human pathogens. Pers. Mol. Phylogeny Evol. Fungi. 2017;39:118–142. doi: 10.3767/persoonia.2017.39.06. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Crous P.W., Schumacher R.K., Akulov A., Thangavel R., Hernández-Restrepo M., Carnegie A.J., Cheewangkoon R., Wingfield M.J., Summerell B.A., Quaedvlieg W., et al. New and interesting fungi. 2. Fungal Syst. Evol. 2019;3:57–134. doi: 10.3114/fuse.2019.03.06. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Liu F., Bonthond G., Groenewald J.Z., Cai L., Crous P.W. Sporocadaceae, a family of coelomycetous fungi with appendage-bearing conidia. Stud. Mycol. 2019;92:287–415. doi: 10.1016/j.simyco.2018.11.001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Crous P.W., Shivas R.G., Quaedvlieg W., van der Bank M., Zhang Y., Summerell B.A., Guarro J., Wingfield M.J., Wood A.R., Alfenas A.C., et al. Fungal Planet description sheets: 214–280. Pers. Mol. Phylogeny Evol. Fungi. 2014;32:184–306. doi: 10.3767/003158514X682395. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Jeewon R., Liew E.C., Hyde K.D. Molecular systematics of the Amphisphaeriaceae based on cladistic analyses of partial LSU rDNA gene sequences. Mycol. Res. 2003;107:1392–1402. doi: 10.1017/S095375620300875X. [DOI] [PubMed] [Google Scholar]
  • 28.Liu J.K., Hyde K.D., Jones E.G., Ariyawansa H.A., Bhat D.J., Boonmee S., Maharachchikumbura S.S.N., McKenzie E.H.C., Phookamsak R., Phukhamsakda C., et al. Fungal diversity notes 1–110: Taxonomic and phylogenetic contributions to fungal species. Fungal Divers. 2015;72:1–197. doi: 10.1007/s13225-015-0324-y. [DOI] [Google Scholar]
  • 29.Jaklitsch W.M., Gardiennet A., Voglmayr H. Resolution of morphology-based taxonomic delusions: Acrocordiella, Basiseptospora, Blogiascospora, Clypeosphaeria, Hymenopleella, Lepteutypa, Pseudapiospora, Requienella, Seiridium and Strickeria. Pers. Mol. Phylogeny Evol. Fungi. 2016;37:82–105. doi: 10.3767/003158516X690475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Tibpromma S., Hyde K.D., Jeewon R., Maharachchikumbura S.S., Liu J.K., Bhat D.J., Jones E.G., McKenzie E.H., Camporesi E., Bulgakov T.S., et al. Fungal diversity notes 491–602: Taxonomic and phylogenetic contributions to fungal taxa. Fungal Divers. 2017;83:1–261. doi: 10.1007/s13225-017-0378-0. [DOI] [Google Scholar]
  • 31.Lumbsch H.T., Schmitt I., Lindemuth R., Miller A., Mangold A., Fernandez F., Huhndorf S. Performance of four ribosomal DNA regions to infer higher-level phylogenetic relationships of inoperculate euascomycetes (Leotiomyceta) Mol. Phylogenet. Evol. 2005;34:512–524. doi: 10.1016/j.ympev.2004.11.007. [DOI] [PubMed] [Google Scholar]
  • 32.Okada G., Iida T., Ohkuma M. The DNA Bank, RIKEN Bio Resource Research Center, Japan, 2017. [(accessed on 30 April 2020)]; Available online: https://www.jcm.riken.jp/cgi-bin/jcm/jcm_number?JCM=7946.
  • 33.Bhattacharya D., Lutzoni F., Reeb V., Simon D., Nason J., Fernandez F. Widespread occurrence of spliceosomal introns in the rDNA genes of ascomycetes. Mol. Biol. Evol. 2000;17:1971–1984. doi: 10.1093/oxfordjournals.molbev.a026298. [DOI] [PubMed] [Google Scholar]
  • 34.Voglmayr H., Friebes G., Gardiennet A., Jaklitsch W.M. Barrmaelia and Entosordaria in Barrmaeliaceae (fam. nov., Xylariales) and critical notes on Anthostomella-like genera based on multigene phylogenies. Mycol. Prog. 2018;17:155–177. doi: 10.1007/s11557-017-1329-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35.Asgari B., Zare R. A contribution to the taxonomy of the genus Coniocessia (Xylariales) Mycol. Prog. 2011;10:189–206. doi: 10.1007/s11557-010-0688-z. [DOI] [Google Scholar]
  • 36.García D., Stchigel A.M., Cano J., Calduch M., Hawksworth D.L., Guarro J. Molecular phylogeny of Coniochaetales. Mycol. Res. 2006;110:1271–1289. doi: 10.1016/j.mycres.2006.07.007. [DOI] [PubMed] [Google Scholar]
  • 37.Wanasinghe D.N., Phukhamsakda C., Hyde K.D., Jeewon R., Lee H.B., Jones E.G., Tibpromma S., Tennakoon D.S., Dissanayake A.J., Jayasiri S.C., et al. Fungal diversity notes 709–839: Taxonomic and phylogenetic contributions to fungal taxa with an emphasis on fungi on Rosaceae. Fungal Divers. 2018;89:1–236. doi: 10.1007/s13225-018-0395-7. [DOI] [Google Scholar]
  • 38.Senwanna C., Phookamsak R., Doilom M., Hyde K.D., Cheewangkoon R. Novel taxa of Diatrypaceae from Para rubber (Hevea brasiliensis) in northern Thailand; introducing a novel genus Allocryptovalsa. Mycosphere. 2017;8:1835–1855. doi: 10.5943/mycosphere/8/10/9. [DOI] [Google Scholar]
  • 39.Konta S., Maharachchikumbura S.S.N., Senanayake I.C., McKenzie E.H.C., Stadler M., Boonmee S., Phookamsak R., Jayawardena R.S., Senwanna C., Hyde K.D., et al. A new genus Allodiatrype, five new species and a new host record of diatrypaceous fungi from palms (Arecaceae) Mycosphere. 2020;11:239–268. doi: 10.5943/mycosphere/11/1/4. [DOI] [Google Scholar]
  • 40.Jaklitsch W.M., Fournier J., Rogers J.D., Voglmayr H. Phylogenetic and taxonomic revision of Lopadostoma. Pers. Mol. Phylogeny Evol. Fungi. 2014;32:52–82. doi: 10.3767/003158514X679272. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41.Spatafora J.W., Sung G.H., Johnson D., Hesse C., O’Rourke B., Serdani M., Spotts R., Lutzoni F., Hofstetter V., Miadlikowska J., et al. A five-gene phylogeny of Pezizomycotina. Mycologia. 2006;98:1018–1028. doi: 10.1080/15572536.2006.11832630. [DOI] [PubMed] [Google Scholar]
  • 42.Lynch S.C., Eskalen A., Zambino P.J., Mayorquin J.S., Wang D.H. Identification and pathogenicity of Botryosphaeriaceae species associated with coast live oak (Quercus agrifolia) decline in southern California. Mycologia. 2013;105:125–140. doi: 10.3852/12-047. [DOI] [PubMed] [Google Scholar]
  • 43.Rolshausen P.E., Mahoney N.E., Molyneux R.J., Gubler W.D. A reassessment of the species concept in Eutypa lata, the causal agent of Eutypa dieback of grapevine. Phytopathology. 2006;96:369–377. doi: 10.1094/PHYTO-96-0369. [DOI] [PubMed] [Google Scholar]
  • 44.Vu D., Groenewald M., De Vries M., Gehrmann T., Stielow B., Eberhardt U., Al-Hatmi A., Groenewald J.Z., Cardinali G., Houbraken J., et al. Large-scale generation and analysis of filamentous fungal DNA barcodes boosts coverage for kingdom fungi and reveals thresholds for fungal species and higher taxon delimitation. Stud. Mycol. 2019;92:135–154. doi: 10.1016/j.simyco.2018.05.001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 45.Acero F.J., González V., Sánchez-Ballesteros J., Rubio V., Checa J., Bills G.F., Salazar O., Platas G., Peláez F. Molecular phylogenetic studies on the Diatrypaceae based on rDNA-ITS sequences. Mycologia. 2004;96:249–259. doi: 10.1080/15572536.2005.11832975. [DOI] [PubMed] [Google Scholar]
  • 46.Dayarathne M.C., Phookamsak R., Hyde K.D., Manawasinghe I.S., To-Anun C., Jones G.E. Halodiatrype, a novel diatrypaceous genus from mangroves with H. salinicola and H. avicenniae spp. nov. Mycosphere. 2016;7:612–627. doi: 10.5943/mycosphere/7/5/7. [DOI] [Google Scholar]
  • 47.Klaysuban A., Sakayaroj J., Jones E.G. An additional marine fungal lineage in the Diatrypaceae, Xylariales: Pedumispora rhizophorae. Bot. Mar. 2014;57:413–420. doi: 10.1515/bot-2014-0017. [DOI] [Google Scholar]
  • 48.Hyde K.D., Tennakoon D.S., Jeewon R., Bhat D.J., Maharachchikumbura S.S.N., Rossi W., Leonardi M., Lee H.B., Mun H.Y., Houbraken J., et al. Fungal diversity notes 1036–1150: Taxonomic and phylogenetic contributions on genera and species of fungal taxa. Fungal Divers. 2019;96:1–242. doi: 10.1007/s13225-019-00429-2. [DOI] [Google Scholar]
  • 49.Hyde K.D., Norphanphoun C., Abreu V.P., Bazzicalupo A., Chethana K.T., Clericuzio M., Dayarathne M.C., Dissanayake A.J., Ekanayaka A.H., He M.Q., et al. Fungal diversity notes 603–708: Taxonomic and phylogenetic notes on genera and species. Fungal Divers. 2017;87:1–235. doi: 10.1007/s13225-017-0391-3. [DOI] [Google Scholar]
  • 50.Wendt L., Sir E.B., Kuhnert E., Heitkämper S., Lambert C., Hladki A.I., Romero A.I., Luangsa-Ard J.J., Srikitikulchai P., Peršoh D., et al. Resurrection and emendation of the Hypoxylaceae, recognised from a multigene phylogeny of the Xylariales. Mycol. Prog. 2018;17:115–154. doi: 10.1007/s11557-017-1311-3. [DOI] [Google Scholar]
  • 51.Zhang N., Castlebury L.A., Miller A.N., Huhndorf S.M., Schoch C.L., Seifert K.A., Rossman A.Y., Rogers J.D., Kohlmeyer J., Volkmann-Kohlmeyer B., et al. An overview of the systematics of the Sordariomycetes based on a four-gene phylogeny. Mycologia. 2006;98:1076–1087. doi: 10.1080/15572536.2006.11832635. [DOI] [PubMed] [Google Scholar]
  • 52.Stadler M., Læssøe T., Fournier J., Decock C., Schmieschek B., Tichy H.V., Peršoh D. A polyphasic taxonomy of Daldinia (Xylariaceae) Stud. Mycol. 2014;77:1–143. doi: 10.3114/sim0016. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 53.Koukol O., Kelnarová I., Černý K. Recent observations of sooty bark disease of sycamore maple in Prague (Czech Republic) and the phylogenetic placement of Cryptostroma corticale. For. Pathol. 2015;45:21–27. doi: 10.1111/efp.12129. [DOI] [Google Scholar]
  • 54.Pažoutová S., Šrůtka P., Holuša J., Chudíčková M., Kolařík M. The phylogenetic position of Obolarina dryophila (Xylariales) Mycol. Prog. 2010;9:501–507. doi: 10.1007/s11557-010-0658-5. [DOI] [Google Scholar]
  • 55.Kuhnert E., Sir E.B., Lambert C., Hyde K.D., Hladki A.I., Romero A.I., Rohde M., Stadler M. Phylogenetic and chemotaxonomic resolution of the genus Annulohypoxylon (Xylariaceae) including four new species. Fungal Divers. 2017;85:1–43. doi: 10.1007/s13225-016-0377-6. [DOI] [Google Scholar]
  • 56.Triebel D., Peršoh D., Wollweber H., Stadler M. Phylogenetic relationships among Daldinia, Entonaema, and Hypoxylon as inferred from ITS nrDNA analyses of Xylariales. Nova Hedwig. 2005;80:25–43. doi: 10.1127/0029-5035/2005/0080-0025. [DOI] [Google Scholar]
  • 57.Kuhnert E., Fournier J., Peršoh D., Luangsa-Ard J.J.D., Stadler M. New Hypoxylon species from Martinique and new evidence on the molecular phylogeny of Hypoxylon based on ITS rDNA and β-tubulin data. Fungal Divers. 2014;64:181–203. doi: 10.1007/s13225-013-0264-3. [DOI] [Google Scholar]
  • 58.Læssøe T., Srikitikulchai P., Jennifer J., Luangsa-Ard D., Stadler M. Theissenia reconsidered, including molecular phylogeny of the type species T. pyrenocrata and a new genus Durotheca (Xylariaceae, Ascomycota) IMA Fungus. 2013;4:57–69. doi: 10.5598/imafungus.2013.04.01.07. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 59.Daranagama D.A., Liu X., Chamyuang S., Stadler M., Bahkali A., Hyde K.D. Rhopalostroma brevistipitatum sp. nov. from Thailand with an extended generic description for Rhopalostroma. Phytotaxa. 2015;227:229–242. doi: 10.11646/phytotaxa.227.3.2. [DOI] [Google Scholar]
  • 60.Stadler M., Kuhnert E., Peršoh D., Fournier J. The Xylariaceae as model example for a unified nomenclature following the “One Fungus-One Name” (1F1N) concept. Mycology. 2013;4:5–21. doi: 10.1080/21501203.2013.782478. [DOI] [Google Scholar]
  • 61.Bitzer J., Læssøe T., Fournier J., Kummer V., Decock C., Tichy H.V., Piepenbring M., Peršoh D., Stadler M. Affinities of Phylacia and the daldinoid Xylariaceae, inferred from chemotypes of cultures and ribosomal DNA sequences. Mycol. Res. 2008;112:251–270. doi: 10.1016/j.mycres.2007.07.004. [DOI] [PubMed] [Google Scholar]
  • 62.Miller A.N., Vasilyeva L.N., Rogers J.D. Chlorostroma subcubisporum gen. et sp. nov. and notes on the systematic position of Thuemenella cubispora. Sydowia. 2007;59:138–147. [Google Scholar]
  • 63.Stadler M., Flessa F., Rambold G., Peršoh D., Fournier J., Læssøe T., Chlebicki A., Lechat C. Chemotaxonomic and phylogenetic studies of Thamnomyces (Xylariaceae) Mycoscience. 2010;51:189–207. doi: 10.1007/S10267-009-0028-9. [DOI] [Google Scholar]
  • 64.Voglmayr H., Aguirre-Hudson M.B., Wagner H.G., Tello S., Jaklitsch W.M. Lichens or endophytes? The enigmatic genus Leptosillia in the Leptosilliaceae fam. nov. (Xylariales), and Furfurella gen. nov. (Delonicicolaceae) Pers. Mol. Phylogeny Evol. Fungi. 2019;42:228–260. doi: 10.3767/persoonia.2019.42.09. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 65.Zhang C.L., Wang G.P., Mao L.J., Komon-Zelazowska M., Yuan Z.L., Lin F.C., Druzhinina I.S., Kubicek C.P. Muscodor fengyangensis sp. nov. from southeast China: Morphology, physiology and production of volatile compounds. Fungal Biol. Rev. 2010;114:797–808. doi: 10.1016/j.funbio.2010.07.006. [DOI] [PubMed] [Google Scholar]
  • 66.Becerra-Hernández C.I., González D., De Luna E., Mena-Portales J. First report of pleoanamorphy in Gyrothrix verticiclada with an Idriella-like synanamorph. Cryptogam. Mycol. 2016;37:241–252. doi: 10.7872/crym/v37.iss2.2016.241. [DOI] [Google Scholar]
  • 67.Hernández-Restrepo M., Groenewald J.Z., Crous P.W. Taxonomic and phylogenetic re-evaluation of Microdochium, Monographella and Idriella. Pers. Mol. Phylogeny Evol. Fungi. 2016;36:57–82. doi: 10.3767/003158516X688676. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 68.Bundhun D., Jeewon R., Dayarathne M.C., Bulgakov T.S., Khramtsov A.K., Aluthmuhandiram J.V., Pem D., To-Anun C., Hyde K.D. A morpho-molecular re-appraisal of Polystigma fulvum and P. rubrum (Polystigma, Polystigmataceae) Phytotaxa. 2019;422:209–224. doi: 10.11646/phytotaxa.422.3.1. [DOI] [Google Scholar]
  • 69.Maharachchikumbura S.S.N., Hyde K.D., Perera R.H., Al-Sadi A.M. Acrocordiella omanensis sp. nov. (Requienellaceae, Xylariales) from the Sultanate of Oman. Phytotaxa. 2018;338:294–300. doi: 10.11646/phytotaxa.338.3.7. [DOI] [Google Scholar]
  • 70.Park J.H., Choi G.J., Lee H.B., Kim K.M., Jung H.S., Lee S.W., Jang K.S., Cho K.Y., Kim J.C. Griseofulvin from Xylaria sp. strain F0010, an endophytic fungus of Abies holophylla and its antifungal activity against plant pathogenic fungi. J. Microbiol. Biotechnol. 2005;15:112–117. [Google Scholar]
  • 71.Hsieh H.M., Lin C.R., Fang M.J., Rogers J.D., Fournier J., Lechat C., Ju Y.M. Phylogenetic status of Xylaria subgenus Pseudoxylaria among taxa of the subfamily Xylarioideae (Xylariaceae) and phylogeny of the taxa involved in the subfamily. Mol. Phylogenet. Evol. 2010;54:957–969. doi: 10.1016/j.ympev.2009.12.015. [DOI] [PubMed] [Google Scholar]
  • 72.Dai D.Q., Phookamsak R., Wijayawardene N.N., Li W.J., Bhat D.J., Xu J.C., Taylor J.E., Hyde K.D., Chukeatirote E. Bambusicolous fungi. Fungal Divers. 2017;82:1–105. doi: 10.1007/s13225-016-0367-8. [DOI] [Google Scholar]
  • 73.Marincowitz S., Crous P.W., Groenewald J.Z., Wingfield M.J. Microfungi Occurring on Proteaceae in the Fynbos. CBS-KNAW Fungal Biodiversity Centre; Utrecht, The Netherlands: 2008. (CBS Biodiversity Series). [Google Scholar]
  • 74.Jaklitsch W.M., Voglmayr H. Phylogenetic relationships of five genera of Xylariales and Rosasphaeria gen. nov. (Hypocreales) Fungal Divers. 2012;52:75–98. doi: 10.1007/s13225-011-0104-2. [DOI] [Google Scholar]
  • 75.Johnston P.R., Rogers J.D., Park D., Martin N.A. Entalbostroma erumpens gen. et sp. nov. (Xylariaceae) from Phormium in New Zealand. Mycotaxon. 2016;131:765–771. doi: 10.5248/131.765. [DOI] [Google Scholar]
  • 76.Soca-Chafre G., Rivera-Orduña F.N., Hidalgo-Lara M.E., Hernandez-Rodriguez C., Marsch R., Flores-Cotera L.B. Molecular phylogeny and paclitaxel screening of fungal endophytes from Taxus globosa. Fungal Biol. Rev. 2011;115:143–156. doi: 10.1016/j.funbio.2010.11.004. [DOI] [PubMed] [Google Scholar]
  • 77.Jayanetti D.R., Yue Q., Bills G.F., Gloer J.B. Hypocoprins A–C: New sesquiterpenoids from the coprophilous fungus Hypocopra rostrata. J. Nat. Prod. 2015;78:396–401. doi: 10.1021/np5007718. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 78.Ju Y.M., Hsieh H.M., Ho M.C., Szu D.H., Fang M.J. Theissenia rogersii sp. nov. and phylogenetic position of Theissenia. Mycologia. 2007;99:612–621. doi: 10.1080/15572536.2007.11832555. [DOI] [PubMed] [Google Scholar]
  • 79.Voglmayr H., Beenken L. Linosporopsis, a new leaf-inhabiting scolecosporous genus in Xylariaceae. Mycol. Prog. 2020;19:205–222. doi: 10.1007/s11557-020-01559-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 80.U’Ren J.M., Miadlikowska J., Zimmerman N.B., Lutzoni F., Stajich J.E., Arnold A.E. Contributions of North American endophytes to the phylogeny, ecology, and taxonomy of Xylariaceae (Sordariomycetes, Ascomycota) Mol. Phylogenet. Evol. 2016;98:210–232. doi: 10.1016/j.ympev.2016.02.010. [DOI] [PubMed] [Google Scholar]
  • 81.Konta S., Hyde K.D., Phookamsak R., Xu J.C., Maharachchikumbura S.S.N., Daranagama D.A., McKenzie E.H.C., Boonmee S., Tibpromma S., Eungwanichayapant P.D., et al. Polyphyletic genera in Xylariaceae (Xylariales): Neoxylaria gen. nov. and Stilbohypoxylon. Mycosphere. 2020;11:2629–2651. doi: 10.5943/mycosphere/11/1/17. [DOI] [Google Scholar]
  • 82.Tang A.M.C., Jeewon R., Hyde K.D. A re-evaluation of the evolutionary relationships within the Xylariaceae based on ribosomal and protein-coding gene sequences. Fungal Divers. 2009;34:127–155. [Google Scholar]
  • 83.Fournier J., Stadler M., Hyde K.D., Duong M.L. The new genus Rostrohypoxylon and two new Annulohypoxylon species from Northern Thailand. Fungal Divers. 2010;40:23–36. doi: 10.1007/s13225-010-0026-4. [DOI] [Google Scholar]
  • 84.Dai D.Q., Bahkali A.H., Li Q.R., Bhat D.J., Wijayawardene N.N., Li W.J., Chukeatirote E., Zhao R.L., Xu J.C., Hyde K.D. Vamsapriya (Xylariaceae) re-described, with two new species and molecular sequence data. Cryptogam. Mycol. 2014;35:339–357. doi: 10.7872/crym.v35.iss4.2014.339. [DOI] [Google Scholar]
  • 85.Jiang H.B., Phookamsak R., Bhat D.J., Khan S., Bahkali A., Elgorban A., Hyde K.D. Vamsapriya yunnana, a new species of Vamsapriya (Xylariaceae, Xylariales) associated with bamboo from Yunnan, China. Phytotaxa. 2018;356:61–70. doi: 10.11646/phytotaxa.356.1.5. [DOI] [Google Scholar]
  • 86.Nonaka K., Ishii T., Shiomi K., Ōmura S., Masuma R. Virgaria boninensis, a new hyphomycete (Xylariaceae) from soils in the Bonin Islands, Japan. Mycoscience. 2013;54:394–399. doi: 10.1016/j.myc.2013.01.004. [DOI] [Google Scholar]
  • 87.Sir E.B., Kuhnert E., Surup F., Hyde K.D., Stadler M. Discovery of new mitorubrin derivatives from Hypoxylon fulvo-sulphureum sp. nov. (Ascomycota, Xylariales) Mycol. Prog. 2015;14:28. doi: 10.1007/s11557-015-1043-1. [DOI] [Google Scholar]
  • 88.Cheng X., Li W., Cai L. Molecular phylogeny of Ascotricha, including two new marine algae-associated species. Mycologia. 2015;107:490–504. doi: 10.3852/14-210. [DOI] [PubMed] [Google Scholar]
  • 89.Daranagama D.A., Hyde K.D., Sir E.B., Thambugala K.M., Tian Q., Samarakoon M.C., McKenzie E.H., Jayasiri S.C., Tibpromma S., Bhat J.D. Towards a natural classification and backbone tree for Graphostromataceae, Hypoxylaceae, Lopadostomataceae and Xylariaceae. Fungal Divers. 2018;88:1–165. doi: 10.1007/s13225-017-0388-y. [DOI] [Google Scholar]
  • 90.Crous P.W., Schumacher R.K., Wingfield M.J., Lombard L., Giraldo A., Christensen M., Gardiennet A., Nakashima C., Pereira O.L., Smith A.J. Fungal systematics and evolution: FUSE 1. Sydowia. 2015;67:81–118. doi: 10.12905/0380.sydowia67-2015-0081. [DOI] [Google Scholar]
  • 91.Li D.W., Schultes N.P., Chen J.Y., Wang Y.X., Castañeda-Ruiz R.F. Circinotrichum sinense, a new asexual fungus from Hubei, China. Botany. 2017;95:1099–1108. doi: 10.1139/cjb-2017-0132. [DOI] [Google Scholar]
  • 92.Crous P.W., Wingfield M.J., Lombard L., Roets F., Swart W.J., Alvarado P., Carnegie A.J., Moreno G., Luangsaard J., Thangavel R., et al. Fungal Planet description sheets: 951–1041. Pers. Mol. Phylogeny Evol. Fungi. 2019;43:223–425. doi: 10.3767/persoonia.2019.43.06. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 93.Li J.F., Phookamsak R., Jeewon R., Tibpromma S., Maharachchikumbura S.S.N., Bhat D.J., Chukeatirote E., Lumyong S., Hyde K.D., McKenzie E.H.C. Establishment of Zygosporiaceae fam. nov. (Xylariales, Sordariomycetes) based on rDNA sequence data to accommodate Zygosporium. MYCOAP. 2017;8:1855–1868. doi: 10.5943/mycosphere/8/10/10. [DOI] [Google Scholar]
  • 94.Katoh K., Standley K. MAFFT Multiple Sequence Alignment Software Version 7: Improvements in performance and usability. Mol. Biol. Evol. 2013;30:772–780. doi: 10.1093/molbev/mst010. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 95.Kumar S., Stecher G., Tamura K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 2016;33:1870–1874. doi: 10.1093/molbev/msw054. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 96.Glez-Peña D., Gómez-Blanco D., Reboiro-Jato M., Fdez-Riverola F., Posada D. ALTER: Program-oriented conversion of DNA and protein alignments. Nucleic Acid. Res. 2010;38:14–18. doi: 10.1093/nar/gkq321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 97.Nylander J.A.A. MrModeltest, Version 2. Evolutionary Biology Centre, Uppsala University; Uppsala, Sweden: 2004. [(accessed on 30 April 2020)]. Program Distributed by the Author. Available online: https://github.com/Nylander. [Google Scholar]
  • 98.Rambaut A. FigTree Version 1.4.0. [(accessed on 30 April 2020)];2012 Available online: http://tree.bio.ed.ac.uk/software/figtree/
  • 99.Daranagama D.A., Camporesi E., Tian Q., Liu X., Chamyuang S., Stadler M., Hyde K.D. Anthostomella is polyphyletic comprising several genera in Xylariaceae. Fungal Divers. 2015;73:203–238. doi: 10.1007/s13225-015-0329-6. [DOI] [Google Scholar]
  • 100.Petch T. The genus Endocalyx, Berkeley and Broome. Ann. Bot. 1908;22:389–400. doi: 10.1093/oxfordjournals.aob.a089179. [DOI] [Google Scholar]
  • 101.Okada G., Tubaki K. A new species and a new variety of Endocalyx (Deuteromycotina) from Japan. Mycologia. 1984;76:300–313. doi: 10.1080/00275514.1984.12023839. [DOI] [Google Scholar]
  • 102.Vitoria N.S., Cavalcanti M.A.Q., Luz E.D.M.N., Bezerra J.L. Endocalyx melanoxanthus var. melanoxanthus (Ascomycota): New to Brazil and three new hosts. Mycotaxon. 2011;117:109–113. doi: 10.5248/117.109. [DOI] [Google Scholar]
  • 103.Patel U.S., Pandey A.K., Rajak R.C. Two new hyphomycetes. J. Mycol. Plant Pathol. 2002;32:70–71. [Google Scholar]
  • 104.Kobayashi T. Index of Fungi Inhabiting Woody Plants in Japan: Host, Distribution and Literature. Zenkoku-Noson-Kyoiku Kyokai Publishing Co., Ltd.; Tokyo, Japan: 2007. pp. 1–1227. [Google Scholar]
  • 105.Lu B., Hyde K.D., Ho W.H., Tsui K.M., Taylor J.E., Wong K.M., Yanna, Zhou D. Checklist of Hong Kong Fungi. Fungal Diversity Press; Hong Kong, China: 2000. pp. 1–207. [Google Scholar]
  • 106.Portales J.M., Sierra A.M. Nuevas especies de Endocalyx y Stachylidium (Hyphomycetes, Deuteromycotina) de Cuba. Rev. Jard. Bot. Nac. 1984;5:53–60. [Google Scholar]
  • 107.Kapoor J.N., Munjal R.L. Indian species of Stilbaceae. Indian Phytopathol. 1966;19:348–350. [Google Scholar]
  • 108.Heredia G., Arias R.M., Reyes M. Contribucion al conocimiento de los hongos Hyphomycetes de Mexico. Acta Bot. Mex. 2000;51:39–51. doi: 10.21829/abm51.2000.849. [DOI] [Google Scholar]
  • 109.Taylor J.E., Hyde K.D. Microfungi of Tropical and Temperate Palms. Fungal Diversity Press; Hong Kong, China: 2003. pp. 1–459. [Google Scholar]
  • 110.Hughes S.J. Fungi from the gold coast. I. Mycol. Pap. 1952;48:1–91. [Google Scholar]
  • 111.Anonymous. Index of Plant Diseases in the United States. USDA Agric. Handb. 1960;165:1–531. [Google Scholar]
  • 112.Raabe R.D., Conners I.L., Martinez A.P. Checklist of Plant Diseases in Hawaii. College of Tropical Agriculture and Human Resources, University of Hawaii; Honolulu, HI, USA: 1981. pp. 1–313. (Information Text Series No. 22). [Google Scholar]
  • 113.Turner P.D. Microorganisms associated with oil palm (Elaeis guineensis Jacq.) Phytopathol. Pap. 1971;14:1–58. [Google Scholar]
  • 114.Shaw D.E. Microorganisms in Papua New Guinea. Dept. Prim. Ind. Res. Bull. 1984;33:1–344. [Google Scholar]
  • 115.Urtiaga R. [Host index of plant diseases and disorders from Venezuela—Addendum] [(accessed on 30 April 2020)];2004 :1–268. Available online: https://nt.ars-grin.gov/fungaldatabases/fungushost/new_rptOneLit.cfm?fungRec=39196&thisError=
  • 116.Urtiaga R. Indice de enfermedades en plantas de Venezuela y Cuba, Second Edition. [(accessed on 30 April 2020)];2004 :1–301. Available online: https://nt.ars-grin.gov/fungaldatabases/fungushost/new_rptOneLit.cfm?fungRec=39195&thisError=
  • 117.Thaung M.M. A list of hypomycetes (and agonomycetes) in Burma. Australas. Mycol. 2008;27:149–172. [Google Scholar]
  • 118.Pinruan U., Hyde K.D., Lumyong S., McKenzie E.H.C., Jones E.B.G. Occurrence of fungi on tissues of the peat swamp palm Licuala longicalycata. Fungal Divers. 2007;25:157–173. [Google Scholar]
  • 119.Matsushima T. Matsushima Mycological Memoirs No. 1. Saprophytic Microfungi from Taiwán, Part1. Matsushima Fungus collection; Kobe, Japan: 1980. pp. 1–82. [Google Scholar]
  • 120.Ahmad S. Fungi of West Pakistan. Biol. Soc. Pak. Monogr. 1969;5:1–110. [Google Scholar]
  • 121.Zhuang W.Y. Higher Fungi of Tropical China. Mycotaxon Limited; Ithaca, NY, USA: 2001. pp. 1–485. [Google Scholar]
  • 122.Hughes S.J. New Zealand Fungi. 25. Miscellaneous species. N. Z. J. Bot. 1978;16:311–370. doi: 10.1080/0028825X.1978.10425143. [DOI] [Google Scholar]
  • 123.Delgado G. South Florida microfungi: New records of saprophytic hyphomycetes on plant debris. FLA Sci. 2008;71:76–89. [Google Scholar]
  • 124.Arnold G.R.W. Lista de Hongos Fitopatogenos de Cuba. Ministerio de Cultura Editorial Cientifico-Tecnica; Havana, Cuba: 1986. pp. 1–207. [Google Scholar]
  • 125.Sierra A.M. Hifomicetes Demaciaceos de Sierra del Rosario, Cuba. Editorial Academica; Havana, Cuba: 1984. pp. 1–81. [Google Scholar]
  • 126.Urtiaga R. Indice de Enfermedades en Plantas de Venezuela y Cuba. Impresos en Impresos Nuevo Siglo S.R.L.; Barquisimeto, Venezuela: 1986. pp. 1–202. [Google Scholar]
  • 127.Delgado-Rodriguez G., Mena-Portales J., Calduch M., Decock C. Hyphomycetes (hongos mitosporicos) del area protegida mil cumbres, Cuba Occidental. Cryptog. Mycol. 2002;23:277–293. [Google Scholar]
  • 128.Petrak F. Ein Beitrag zur Pilzflora Floridas. Sydowia. 1953;7:103–116. [Google Scholar]
  • 129.Sutton B.C. New and interesting Hyphomycetes from Tampa, Florida. Mycologia. 1978;70:784–801. doi: 10.1080/00275514.1978.12020284. [DOI] [Google Scholar]
  • 130.Capdeet M., Romero A.I. Fungi from palms in Argentina. 1. Mycotaxon. 2010;112:339–355. doi: 10.5248/112.339. [DOI] [Google Scholar]
  • 131.Vitoria N.S., Fortes N.G.S., dos Santos M.A.L., Barbosa R.L. Mycota (Ascomycota) of Syagrus coronata (Mart.) Becc., Raso da Catarina Ecological Station, Brazil: New records. Acta Bras. 2020;4:110–120. doi: 10.22571/2526-4338318. [DOI] [Google Scholar]
  • 132.Hughes S.J. Fungi from the gold coast. II. Mycol. Pap. 1953;50:1–104. [Google Scholar]
  • 133.Ellis M.B. Dematiaceous Hyphomycetes. Commonwealth Mycological Institute; London, UK: 1971. pp. 1–608. [Google Scholar]
  • 134.Species Fungorum. [(accessed on 30 April 2020)];2021 Available online: http://www.speciesfungorum.org/Names/Names.asp.
  • 135.Samarakoon B.C., Wanasinghe D.N., Samarakoon M.C., Phookamsak R., McKenzie E.H., Chomnunti P., Hyde K.D., Lumyong S., Karunarathna S.C. Multi-gene phylogenetic evidence suggests Dictyoarthrinium belongs in Didymosphaeriaceae (Pleosporales, Dothideomycetes) and Dictyoarthrinium musae sp. nov. on Musa from Thailand. MycoKeys. 2020;71:101–118. doi: 10.3897/mycokeys.71.55493. [DOI] [PMC free article] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Data Availability Statement

Not applicable.


Articles from Life are provided here courtesy of Multidisciplinary Digital Publishing Institute (MDPI)

RESOURCES