Skip to main content
Virologica Sinica logoLink to Virologica Sinica
. 2010 Feb 12;25(1):18–26. doi: 10.1007/s12250-010-3041-4

B cell epitopes within VP1 of type O foot-and-mouth disease virus for detection of viral antibodies

Shan-dian Gao 1, Jun-zheng Du 1, Hui-yun Chang 1,, Guo-zheng Cong 1, Jun-jun Shao 1, Tong Lin 1, Shuai Song 1, Qing-ge Xie 1
PMCID: PMC8227897  PMID: 20960280

Abstract

In this study, the coding region of type O FMDV capsid protein VP1 and a series of codon optimized DNA sequences coding for VP1 amino acid residues 141–160 (epitope1), tandem repeat 200–213 (epitope2 (+2)) and the combination of two epitopes (epitope1–2) was genetically cloned into the prokaryotic expression vector pPROExHTb and pGEX4T-1, respectively. VP1 and the fused epitopes GST-E1, GST-E2 (+2) and GST-E1-2 were successfully solubly expressed in the cytoplasm of Escherichia coli and Western blot analysis demonstrated they retained antigenicity. Indirect VP1-ELISA and epitope ELISAs were subsequently developed to screen a panel of 80 field pig sera using LPB-ELISA as a standard test. For VP1-ELISA and all the epitope ELISAs, there were clear distinctions between the FMDV-positive and the FMDV-negative samples. Cross-reactions with pig sera positive to the viruses of swine vesicular disease virus that produce clinically indistinguishable syndromes in pigs or guinea pig antisera to FMDV strains of type A, C and Asia1 did not occur. The relative sensitivity and specificity for the GST-E1 ELISA, GST-E2 (+2), GST-E1-2 ELISA and VP1-ELISA in comparison with LPB-ELISA were 93.3% and 85.0%, 95.0% and 90%, 100% and 81.8%, 96.6% and 80.9% respectively. This study shows the potential use of the aforementioned epitopes as alternatives to the complex antigens used in current detection for antibody to FMDV structural proteins.

Key words: Foot-and-mouth disease virus (FMDV), Serology, Epitope ELISA

Footnotes

Foundation item: National key Technology R&D Program (2006BAD06A14).

References

  • 1.Alexandersen S., Zhang Z., Donaldson A. I., et al. The pathogenesis and diagnosis of foot-and-mouth disease. J Comp Pathol. 2003;129(1):1–36. doi: 10.1016/S0021-9975(03)00041-0. [DOI] [PubMed] [Google Scholar]
  • 2.Brown F. The history of research in food-and-mouth disease. Virus Res. 2003;91(1):3–7. doi: 10.1016/S0168-1702(02)00268-X. [DOI] [PubMed] [Google Scholar]
  • 3.Cao Y. M., Lu Z. J., Liu Z. X., et al. Comparison of Three ELISA Kits for the Differentiation of Foot-and-mouth Disease Virus-infected from Vaccinated Animals. Virol Sin. 2007;22(1):74–79. doi: 10.1007/s12250-007-0065-5. [DOI] [Google Scholar]
  • 4.Casey J. L., Coley A. M., Anders R. F., et al. Antibodies to malaria peptide mimics inhibit Plasmodium falciparum invasion of erythrocytes. Infect Immun. 2004;72(2):126–1134. doi: 10.1128/IAI.72.2.1126-1134.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.DiMarchi R., Brooke G., Gale C., et al. Protection of cattle against foot-and-mouth disease by a synthetic peptide. Science. 1986;232(4750):639–641. doi: 10.1126/science.3008333. [DOI] [PubMed] [Google Scholar]
  • 6.Doel T. R. FMD vaccines. Virus Res. 2003;91(1):81–99. doi: 10.1016/S0168-1702(02)00261-7. [DOI] [PubMed] [Google Scholar]
  • 7.Domingo E., Baranowski E., Escarmís C., et al. Foot-and-mouth disease virus. Comp Immunol Microbiol Infect Dis. 2002;25(5–6):297–308. doi: 10.1016/S0147-9571(02)00027-9. [DOI] [PubMed] [Google Scholar]
  • 8.Dus Santos M. J., Wigdorovitz A., Trono K., et al. A novel methodology to develop a foot and mouth disease virus (FMDV) peptide-based vaccine in transgenic plants. Vaccine. 2002;20(7–8):1141–1147. doi: 10.1016/S0264-410X(01)00434-0. [DOI] [PubMed] [Google Scholar]
  • 9.Ferris N. P., Dawson M. Routine application of enzyme-linked immunosorbent assay in comparison with complement fixation for the diagnosis of foot-and-mouth and swine vesicular diseases. Vet Microbiol. 1988;16(3):201–209. doi: 10.1016/0378-1135(88)90024-7. [DOI] [PubMed] [Google Scholar]
  • 10.Golding S. M., Hedger R. S., Talbot P. Radial immuno-diffusion and serum neutralisation techniques for the assay of antibodies to swine vesicular disease. Res Vet Sci. 1976;20(2):142–147. [PubMed] [Google Scholar]
  • 11.Grubman M. J., Baxt B. Foot-and-mouth disease. Clin Microbiol Rev. 2004;17(2):465–93. doi: 10.1128/CMR.17.2.465-493.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Hamblin C., Barnett I. T. R., Hedger R. S. A new enzyme-linked immunosorbent assay (ELISA) for the detection of antibodies against foot-and-mouth disease virus. I. Development and method of ELISA. J Immunol Methods. 1986;93(1):115–121. doi: 10.1016/0022-1759(86)90441-2. [DOI] [PubMed] [Google Scholar]
  • 13.Hamblin C., Barnett I. T. R., Hedger R. S. A new enzyme-linked immunosorbent assay (ELISA) for the detection of antibodies against foot-and-mouth disease virus. II. Application. J Immunol Methods. 1986;93(1):123–129. doi: 10.1016/0022-1759(86)90442-4. [DOI] [PubMed] [Google Scholar]
  • 14.Kaikkonen L., Lankinen H., Harjunpää I., et al. Acute-Phase-Specific Heptapeptide Epitope for Diagnosis of Parvovirus B19 Infection. J Clin Microbiol. 1999;37(12):3952–3956. doi: 10.1128/jcm.37.12.3952-3956.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Kouzmitcheva G. A., Petrenko V. A., Smith G. P. Identifying diagnostic peptides for Lyme disease through epitope discovery. Clin Diagn Lab Immunol. 2001;8(1):150–160. doi: 10.1128/CDLI.8.1.150-160.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Lundin K., Samuelsson A., Jansson M., et al. Peptides isolated from random peptide libraries on phage elicit a neutralizing anti-HIV-1 response: analysis of immunological mimicry. Immunology. 1996;89(4):579–586. doi: 10.1046/j.1365-2567.1996.d01-772.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Mackay D. K. J., Bulut A. N., Rendle T., et al. A solid-phase competition ELISA for measuring antibody to foot-and-mouth disease virus. J Virol Methods. 2001;97(1–2):33–48. doi: 10.1016/S0166-0934(01)00333-0. [DOI] [PubMed] [Google Scholar]
  • 18.Parry N., Fox G., Rowlands D., et al. Structural and serological evidence for a novel mechanism of antigenic variation in foot-and-mouth disease virus. Nature. 1990;347(6293):569–572. doi: 10.1038/347569a0. [DOI] [PubMed] [Google Scholar]
  • 19.Rémond M., Kaiser C., Lebreton F. Diagnosis and screening of foot-and-mouth disease. Comp Immunol Microbiol Infect Dis. 2002;25(5–6):309–320. doi: 10.1016/S0147-9571(02)00028-0. [DOI] [PubMed] [Google Scholar]
  • 20.Roeder P. L., Le Blanc Smith P. M. Detection and typing of foot-and-mouth disease virus by enzyme-linked immunosorbent assay: a sensitive, rapid and reliable technique for primary diagnosis. Res Vet Sci. 1987;43(2):225–232. [PubMed] [Google Scholar]
  • 21.Schiappacassi M., Rojas E. R., Carrillo E., et al. Response of foot-and-mouth disease virus C3 Resende to immunological pressure exerted in vitro by antiviral polyclonal sera. Virus Res. 1995;36(1):77–85. doi: 10.1016/0168-1702(94)00099-X. [DOI] [PubMed] [Google Scholar]
  • 22.Sobrino F., Sáiz M., Jiménez-Clavero M. A., et al. Foot-and-mouth disease virus: a long known virus, but a current threat. Vet Res. 2001;32(1):1–30. doi: 10.1051/vetres:2001106. [DOI] [PubMed] [Google Scholar]
  • 23.Song H., Zhou L., Fang W., et al. High-level expression of codon optimized foot-and-mouth disease virus complex epitopes and cholera toxin B subunit chimera in Hansenula polymorpha. Biochem Biophys Res Commun. 2004;315(1):235–239. doi: 10.1016/j.bbrc.2004.01.037. [DOI] [PubMed] [Google Scholar]
  • 24.Sorensen K. J., Madekurozwa R. L., Dawe P. Foot-and-mouth disease: detection of antibodies in cattle sera by blocking ELISA. Vet Microbiol. 1992;32(3–4):253–265. doi: 10.1016/0378-1135(92)90148-M. [DOI] [PubMed] [Google Scholar]
  • 25.Sun T., Lu P., Wang X. SerologicaLocalization of infection-related epitopes on the non-structural protein 3ABC of foot-and-mouth disease virus and the application of tandem epitopes tests are particularly useful for the surveillance following an outbreak to identify silent infections in species like sheep and goat which show little or no signs of disease. J Virol Methods. 2004;119(2):79–86. doi: 10.1016/j.jviromet.2004.02.016. [DOI] [PubMed] [Google Scholar]
  • 26.Wang G. H., Du J. Z., Chang H. Y., et al. Establishment of Indirect ELISA Diagnose Based on the VP1 Structural Protein of Foot-and-mouth Disease Virus (FMDV) in Pigs. Chin J Biotechnol. 2007;23(5):961–966. [PubMed] [Google Scholar]
  • 27.Wong H. T., Cheng S. C., Xie Y., et al. Plasmids encoding foot-and-mouth disease virus VP1 epitopes elicited immune responses in mice and swine and protected swine against viral infection. Virology. 2000;278(1):27–35. doi: 10.1006/viro.2000.0607. [DOI] [PubMed] [Google Scholar]
  • 28.Zamorano P. I., Wigdorovitz A., Perez Filgueira D. M., et al. Induction of anti foot and mouth disease virus T and B cell responses in cattle immunized with a peptide representing ten amino acids of VP1. Vaccine. 1998;16(6):558–563. doi: 10.1016/S0264-410X(97)00244-2. [DOI] [PubMed] [Google Scholar]

Articles from Virologica Sinica are provided here courtesy of Wuhan Institute of Virology, Chinese Academy of Sciences

RESOURCES