Abstract
Viral infection begins with the entry of the virus into the host target cell and initiates replication. For this reason, the virus entry machinery is an excellent target for antiviral therapeutics. In general, a virus life cycle includes several major steps: cell-surface attachment, entry, replication, assembly, and egress, while some viruses involve another stage called latency. The early steps of the virus life cycle include virus attachment, receptor binding, and entry. These steps involve the initial interactions between a virus and the host cell and thus are major determinants of the tropism of the virus infection, the nature of the virus replication, and the diseases resulting from the infection. Owing to the pathological importance of these early steps in the progress of viral infectious diseases, the development of inhibitors against these steps has been the focus of the pharmaceutical industry. In this review, Herpes Simplex Virus (HSV), Hepatitis C Virus (HCV), and Human Enterovirus 71 (EV71) were used as representatives of enveloped DNA, enveloped RNA, and non-enveloped viruses, respectively. The current mechanistic understanding of their attachment and entry, and the strategies for antagonist screenings are summarized herein.
Key words: Virus Infection, Antiviral therapeutics, Virus life cycle, Inhibitor screening
Footnotes
Foundation items: National Basic Research Program (973) (2009CB522300, 2010CB530100); Chinese Academy of Sciences (KSCX1-YW-10); Science and Technology Program of Guangzhou, China (2007Z1-E0111).
References
- 1.Agnello V., Abel G., Elfahal M., et al. Hepatitis C virus and other flaviviridae viruses enter cells via low density lipoprotein receptor. Proc Natl Acad Sci USA. 1999;96:12766–12771. doi: 10.1073/pnas.96.22.12766. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 2.Arduino P. G., Porter S. R. Herpes Simplex Virus Type 1 infection: overview on relevant clinicopathological features. J Oral Pathol Med. 2008;37:107–121. doi: 10.1111/j.1600-0714.2007.00586.x. [DOI] [PubMed] [Google Scholar]
- 3.Atanasiu D., Whitbeck J. C., de Leon M.P., et al. Bimolecular complementation defines functional regions of HSV gB that are involved with gH/gL as necessary steps leading to cell fusion. J Virol. 2010;84:3825–3834. doi: 10.1128/JVI.02687-09. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 4.Banerjee M., Khayat R., Walukiewicz H. E., et al. Dissecting the functional domains of a nonenveloped virus membrane penetration peptide. J Virol. 2009;83:6929–6933. doi: 10.1128/JVI.02299-08. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 5.Barth H., Schafer C., Adah M. I., et al. Cellular binding of hepatitis C virus envelope glycoprotein E2 requires cell surface heparan sulfate. J Biol Chem. 2003;278:41003–41012. doi: 10.1074/jbc.M302267200. [DOI] [PubMed] [Google Scholar]
- 6.Bartosch B., Cosset F. L. Cell entry of hepatitis C virus. Virology. 2006;348:1–12. doi: 10.1016/j.virol.2005.12.027. [DOI] [PubMed] [Google Scholar]
- 7.Basu A., Kanda T., Beyene A., et al. Sulfated homologues of heparin inhibit hepatitis C virus entry into mammalian cells. J Virol. 2007;81:3933–3941. doi: 10.1128/JVI.02622-06. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 8.Bender F. C., Whitbeck J. C., Lou H., et al. Herpes simplex virus glycoprotein B binds to cell surfaces independently of heparan sulfate and blocks virus entry. J Virol. 2005;79:11588–11597. doi: 10.1128/JVI.79.18.11588-11597.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9.Bertaux C., Dragic T. Different domains of CD81 mediate distinct stages of hepatitis C virus pseudoparticle entry. J Virol. 2006;80:4940–4948. doi: 10.1128/JVI.80.10.4940-4948.2006. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 10.Bevilacqua F., Marcello A., Toni M., et al. Acyclovir resistance/susceptibility in herpes simplex virus type 2 sequential isolates from an AIDS patient. J Acquir Immune Defic Syndr. 1991;4:967–969. [PubMed] [Google Scholar]
- 11.Brandenburg B., Lee L. Y., Lakadamyali M., et al. Imaging poliovirus entry in live cells. PLoS Biol. 2007;5:e183. doi: 10.1371/journal.pbio.0050183. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 12.Budkowska A. Mechanism of cell infection with hepatitis C virus (HCV)-a new paradigm in virus-cell interaction. Pol J Microbiol. 2009;58:93–98. [PubMed] [Google Scholar]
- 13.Burlone M. E., Budkowska A. Hepatitis C virus cell entry: role of lipoproteins and cellular receptors. J Gen Virol. 2009;90:1055–1070. doi: 10.1099/vir.0.008300-0. [DOI] [PubMed] [Google Scholar]
- 14.Campadelli-Fiume G., Amasio M., Avitabile E., et al. The multipartite system that mediates entry of herpes simplex virus into the cell. Rev Med Virol. 2007;17:313–326. doi: 10.1002/rmv.546. [DOI] [PubMed] [Google Scholar]
- 15.Chandran K., Farsetta D. L., Nibert M. L. Strategy for nonenveloped virus entry: a hydrophobic conformer of the reovirus membrane penetration protein micro 1 mediates membrane disruption. J Virol. 2002;76:9920–9933. doi: 10.1128/JVI.76.19.9920-9933.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 16.Codran A., Royer C., Jaeck D., et al. Entry of hepatitis C virus pseudotypes into primary human hepatocytes by clathrin-dependent endocytosis. J Gen Virol. 2006;87:2583–2593. doi: 10.1099/vir.0.81710-0. [DOI] [PubMed] [Google Scholar]
- 17.Cole N. L., Grose C. Membrane fusion mediated by herpesvirus glycoproteins: the paradigm of varicella-zoster virus. Rev Med Virol. 2003;13:207–222. doi: 10.1002/rmv.377. [DOI] [PubMed] [Google Scholar]
- 18.De Clercq E. Antiviral drugs in current clinical use. J Clin Virol. 2004;30:115–133. doi: 10.1016/j.jcv.2004.02.009. [DOI] [PubMed] [Google Scholar]
- 19.Dicker I. B., Blasecki J. W., Seetharam S. Herpes simplex type1:lacZ recombinant viruses. II. Microtiter plate-based colorimetric assays for the discovery of new antiherpes agents and the points at which such agents disrupt the viral replication cycle. Antiviral Res. 1995;28:213–224. doi: 10.1016/0166-3542(95)00049-R. [DOI] [PubMed] [Google Scholar]
- 20.Dreux M., Dao Thi V. L., Fresquet J., et al. Receptor complementation and mutagenesis reveal SR-BI as an essential HCV entry factor and functionally imply its intra- and extra-cellular domains. PLoS Pathog. 2009;5:e1000310. doi: 10.1371/journal.ppat.1000310. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 21.Duan R., de Vries R. D., Osterhaus A. D., et al. Acyclovir-resistant corneal HSV-1 isolates from patients with herpetic keratitis. J Infect Dis. 2008;198:659–663. doi: 10.1086/590668. [DOI] [PubMed] [Google Scholar]
- 22.Dubuisson J., Helle F., Cocquerel L. Early steps of the hepatitis C virus life cycle. Cell Microbiol. 2008;10:821–827. doi: 10.1111/j.1462-5822.2007.01107.x. [DOI] [PubMed] [Google Scholar]
- 23.Falanga A., Cantisani M., Pedone C., et al. Membrane fusion and fission: enveloped viruses. Protein Pept Lett. 2009;16:751–759. doi: 10.2174/092986609788681760. [DOI] [PubMed] [Google Scholar]
- 24.Falconer M. M., Gilbert J. M., Roper A. M., et al. Rotavirus-induced fusion from without in tissue culture cells. J Virol. 1995;69:5582–5591. doi: 10.1128/jvi.69.9.5582-5591.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 25.Feng Z. H., Wang Q. C., Nie Q. H., et al. DC-SIGN: binding receptor for HCV? World J Gastroenterol. 2004;10:925–929. doi: 10.3748/wjg.v10.i7.925. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 26.Field H., McMillan A., Darby G. The sensitivity of acyclovir-resistant mutants of herpes simplex virus to other antiviral drugs. J Infect Dis. 1981;143:281–285. doi: 10.1093/infdis/143.2.281. [DOI] [PubMed] [Google Scholar]
- 27.Garner J. A. Herpes simplex virion entry into and intracellular transport within mammalian cells. Adv Drug Deliv Rev. 2003;55:1497–1513. doi: 10.1016/j.addr.2003.07.006. [DOI] [PubMed] [Google Scholar]
- 28.Ghukasyan V., Hsu Y. Y., Kung S. H., et al. Application of fluorescence resonance energy transfer resolved by fluorescence lifetime imaging microscopy for the detection of enterovirus 71 infection in cells. J Biomed Opt. 2007;12:1–8. doi: 10.1117/1.2718582. [DOI] [PubMed] [Google Scholar]
- 29.Grondin B., DeLuca N. Herpes simplex virus type 1 ICP4 promotes transcription preinitiation complex formation by enhancing the binding of TFIID to DNA. J Virol. 2000;74:11504–11510. doi: 10.1128/JVI.74.24.11504-11510.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 30.Heo H. T. A potential role of the heparan sulfate in the hepatitis C virus attachment. Acta Virol. 2008;52:7–15. [PubMed] [Google Scholar]
- 31.Han Q., Xu C., Wu C., et al. Compensatory mutations in NS3 and NS5A proteins enhance the virus production capability of hepatitis C reporter virus. Virus Res. 2009;145:63–73. doi: 10.1016/j.virusres.2009.06.005. [DOI] [PubMed] [Google Scholar]
- 32.Hannah B. P., Cairns T. M., Bender F. C., et al. Herpes simplex virus glycoprotein B associates with target membranes via its fusion loops. J Virol. 2009;83:6825–6836. doi: 10.1128/JVI.00301-09. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 33.Heldwein E. E., Krummenacher C. Entry of herpesviruses into mammalian cells. Cell Mol Life Sci. 2008;65:1653–1668. doi: 10.1007/s00018-008-7570-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 34.Helle F., Dubuisson J. Hepatitis C virus entry into host cells. Cell Mol Life Sci. 2008;65:100–112. doi: 10.1007/s00018-007-7291-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 35.Hsu M., Zhang J., Flint M., et al. Hepatitis C virus glycoproteins mediate pH-dependent cell entry of pseudotyped retroviral particles. Proc Natl Acad Sci USA. 2003;100:7271–7276. doi: 10.1073/pnas.0832180100. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 36.Iro M., Witteveldt J., Angus A. G., et al. A reporter cell line for rapid and sensitive evaluation of hepatitis C virus infectivity and replication. Antiviral Res. 2009;83:148–155. doi: 10.1016/j.antiviral.2009.04.007. [DOI] [PubMed] [Google Scholar]
- 37.Kalia M, Jameel S. 2009. Virus entry paradigms. Amino Acids, DOI: 10.1007/s00726-009-0363-3. [DOI] [PMC free article] [PubMed]
- 38.Koutsoudakis G., Kaul A., Steinmann E., et al. Characterization of the early steps of hepatitis C virus infection by using luciferase reporter viruses. J Virol. 2006;80:5308–5320. doi: 10.1128/JVI.02460-05. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 39.Laquerre S., Argnani R., Anderson D. B., et al. Heparan sulfate proteoglycan binding by herpes simplex virus type 1 glycoproteins B and C, which differ in their contributions to virus attachment, penetration, and cell-to-cell spread. J Virol. 1998;72:6119–6130. doi: 10.1128/jvi.72.7.6119-6130.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 40.Lavanchy D. The global burden of hepatitis C. Liver Int. 2009;29(Suppl1):74–81. doi: 10.1111/j.1478-3231.2008.01934.x. [DOI] [PubMed] [Google Scholar]
- 41.Lavillette D., Bartosch B., Nourrisson D., et al. Hepatitis C virus glycoproteins mediate low pH-dependent membrane fusion with liposomes. J Biol Chem. 2006;281:3909–3917. doi: 10.1074/jbc.M509747200. [DOI] [PubMed] [Google Scholar]
- 42.Lee J. C., Shih Y. F., Hsu S. P., et al. Development of a cell-based assay for monitoring specific hepatitis C virus NS3/4A protease activity in mammalian cells. Anal Biochem. 2003;316:162–170. doi: 10.1016/S0003-2697(03)00053-8. [DOI] [PubMed] [Google Scholar]
- 43.Lee J. C., Yu M. C., Lien T. W., et al. High-throughput cell-based screening for hepatitis C virus NS3/4A protease inhibitors. Assay Drug Dev Technol. 2005;3:385–392. doi: 10.1089/adt.2005.3.385. [DOI] [PubMed] [Google Scholar]
- 44.Leung W. C. Cooperation between herpes simplex virus specific alpha protein and host cell RNA polymerase II in the transcription of viral deoxypyrimidine kinase. Can J Microbiol. 1980;26:401–404. doi: 10.1139/m80-066. [DOI] [PubMed] [Google Scholar]
- 45.Liu Y. X., Xie J. J., He Y. X., et al. Study of the clinical and laboratory features of hand-foot-mouth disease] Chinese J Exp Clin Virol. 2008;22:475–477. [PubMed] [Google Scholar]
- 46.Lozach P. Y., Amara A., Bartosch B., et al. C-type lectins L-SIGN and DC-SIGN capture and transmit infectious hepatitis C virus pseudotype particles. J Biol Chem. 2004;279:32035–45. doi: 10.1074/jbc.M402296200. [DOI] [PubMed] [Google Scholar]
- 47.Ludwig I. S., Lekkerkerker A. N., Depla E., et al. Hepatitis C virus targets DC-SIGN and L-SIGN to escape lysosomal degradation. J Virol. 2004;78:8322–8332. doi: 10.1128/JVI.78.15.8322-8332.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 48.Madan R. P., Mesquita P. M., Cheshenko N., et al. Molecular umbrellas: a novel class of candidate topical microbicides to prevent human immunodeficiency virus and herpes simplex virus infections. J Virol. 2007;81:7636–7646. doi: 10.1128/JVI.02851-06. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 49.Mann A. M., Rusert P., Berlinger L., et al. HIV sensitivity to neutralization is determined by target and virus producer cell properties. AIDS. 2009;23:1659–1667. doi: 10.1097/QAD.0b013e32832e9408. [DOI] [PubMed] [Google Scholar]
- 50.Morfin F., Thouvenot D. Herpes simplex virus resistance to antiviral drugs. J Clin Virol. 2003;26:29–37. doi: 10.1016/S1386-6532(02)00263-9. [DOI] [PubMed] [Google Scholar]
- 51.Morikawa K., Zhao Z., Date T., et al. The roles of CD81 and glycosaminoglycans in the adsorption and uptake of infectious HCV particles. J Med Virol. 2007;79:714–723. doi: 10.1002/jmv.20842. [DOI] [PubMed] [Google Scholar]
- 52.Mudhakir D., Harashima H. Learning from the viral journey: how to enter cells and how to overcome intracellular barriers to reach the nucleus. AAPS J. 2009;11:65–77. doi: 10.1208/s12248-009-9080-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 53.Netski D. M., Mosbruger T., Depla E., et al. Humoral immune response in acute hepatitis C virus infection. Clin Infect Dis. 2005;41:667–675. doi: 10.1086/432478. [DOI] [PubMed] [Google Scholar]
- 54.Nishimura Y., Shimojima M., Tano Y., et al. Human P-selectin glycoprotein ligand-1 is a functional receptor for enterovirus 71. Nat Med. 2009;15:794–797. doi: 10.1038/nm.1961. [DOI] [PubMed] [Google Scholar]
- 55.O’Donnell C. D., Tiwari V., Oh M. J., et al. A role for heparan sulfate 3-O-sulfotransferase isoform 2 in herpes simplex virus type 1 entry and spread. Virology. 2006;346:452–459. doi: 10.1016/j.virol.2005.11.003. [DOI] [PubMed] [Google Scholar]
- 56.Ortner B., Huang C. W., Schmid D., et al. Epidemiology of enterovirus types causing neurological disease in Austria 1999–2007: detection of clusters of echovirus 30 and enterovirus 71 and analysis of prevalent genotypes. J Med Virol. 2009;81:317–324. doi: 10.1002/jmv.21374. [DOI] [PubMed] [Google Scholar]
- 57.Owsianka A. M., Timms J. M., Tarr A. W., et al. Identification of conserved residues in the E2 envelope glycoprotein of the hepatitis C virus that are critical for CD81 binding. J Virol. 2006;80:8695–704. doi: 10.1128/JVI.00271-06. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 58.Patel K. P., Bergelson J. M. Receptors identified for hand, foot and mouth virus. Nat Med. 2009;15:728–729. doi: 10.1038/nm0709-728. [DOI] [PubMed] [Google Scholar]
- 59.Pietschmann T., Kaul A., Koutsoudakis G., et al. Construction and characterization of infectious intragenotypic and intergenotypic hepatitis C virus chimeras. Proc Natl Acad Sci USA. 2006;103:7408–7413. doi: 10.1073/pnas.0504877103. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 60.Ploss A., Evans M. J., Gaysinskaya V. A., et al. Human occludin is a hepatitis C virus entry factor required for infection of mouse cells. Nature. 2009;457:882–886. doi: 10.1038/nature07684. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 61.Popescu C I, Dubuisson J. Role of lipid metabolism in hepatitis C virus assembly and entry. Biol Cell, 102:63–74. [DOI] [PubMed]
- 62.Rajcani J., Vojvodova A. The role of herpes simplex virus glycoproteins in the virus replication cycle. Acta Virol. 1998;42:103–118. [PubMed] [Google Scholar]
- 63.Ranganathan S., Singh S., Poh C. L., et al. The hand, foot and mouth disease virus capsid: sequence analysis and prediction of antigenic sites from homology modelling. Appl Bioinformatics. 2002;1:43–52. [PubMed] [Google Scholar]
- 64.Reske A., Pollara G., Krummenacher C., et al. Understanding HSV-1 entry glycoproteins. Rev Med Virol. 2007;17:205–215. doi: 10.1002/rmv.531. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 65.Schinazi R. F., Nahmias A. J. Different in vitro effects of dual combinations of anti-herpes simplex virus compounds. Am J Med. 1982;73:40–48. doi: 10.1016/0002-9343(82)90061-4. [DOI] [PubMed] [Google Scholar]
- 66.Schwarz A. K., Grove J., Hu K., et al. Hepatoma cell density promotes claudin-1 and scavenger receptor BI expression and hepatitis C virus internalization. J Virol. 2009;83:12407–12414. doi: 10.1128/JVI.01552-09. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 67.Smith J. S., Robinson N. J. Age-specific prevalence of infection with herpes simplex virus types 2 and 1: a global review. J Infect Dis. 2002;186(Suppl1):S3–28. doi: 10.1086/343739. [DOI] [PubMed] [Google Scholar]
- 68.Spear P.G. Herpes simplex virus: receptors and ligands for cell entry. Cell Microbiol. 2004;6:401–410. doi: 10.1111/j.1462-5822.2004.00389.x. [DOI] [PubMed] [Google Scholar]
- 69.Stranska R., Schuurman R., Scholl D. R., et al. ELVIRA HSV, a yield reduction assay for rapid herpes simplex virus susceptibility testing. Antimicrob Agents Chemother. 2004;48:2331–2333. doi: 10.1128/AAC.48.6.2331-2333.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 70.Tanaka M., Kodaira H., Nishiyama Y., et al. Construction of recombinant herpes simplex virus type I expressing green fluorescent protein without loss of any viral genes. Microbes Infect. 2004;6:485–493. doi: 10.1016/j.micinf.2004.01.011. [DOI] [PubMed] [Google Scholar]
- 71.Tani H., Komoda Y., Matsuo E., et al. Replication-competent recombinant vesicular stomatitis virus encoding hepatitis C virus envelope proteins. J Virol. 2007;81:8601–8612. doi: 10.1128/JVI.00608-07. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 72.Taylor T. J., Knipe D. M. The use of green fluorescent fusion proteins to monitor herpes simplex virus replication. Methods Mol Biol. 2009;515:239–248. doi: 10.1007/978-1-59745-559-6_16. [DOI] [PubMed] [Google Scholar]
- 73.Trybala E., Liljeqvist J. A., Svennerholm B., et al. Herpes simplex virus types 1 and 2 differ in their interaction with heparan sulfate. J Virol. 2000;74:9106–9114. doi: 10.1128/JVI.74.19.9106-9114.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 74.Tscherne D. M., Jones C. T., Evans M. J., et al. Time- and temperature-dependent activation of hepatitis C virus for low-pH-triggered entry. J Virol. 2006;80:1734–1741. doi: 10.1128/JVI.80.4.1734-1741.2006. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 75.Wang Q. C., Feng Z. H., Nie Q. H., et al. DC-SIGN: binding receptors for hepatitis C virus. Chin Med J (Engl) 2004;117:1395–1400. [PubMed] [Google Scholar]
- 76.Wang S. M., Ho T. S., Shen C. F., et al. Enterovirus 71, one virus and many stories. Pediatr Neonatol. 2008;49:113–115. doi: 10.1016/S1875-9572(08)60024-8. [DOI] [PubMed] [Google Scholar]
- 77.Wang Y. C., Kao C. L., Liu W. T., et al. A cell line that secretes inducibly a reporter protein for monitoring herpes simplex virus infection and drug susceptibility. J Med Virol. 2002;68:599–605. doi: 10.1002/jmv.10230. [DOI] [PubMed] [Google Scholar]
- 78.Whidby J., Mateu G., Scarborough H., et al. Blocking hepatitis C virus infection with recombinant form of envelope protein 2 ectodomain. J Virol. 2009;83:11078–11089. doi: 10.1128/JVI.00800-09. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 79.Wright C. C., Wisner T. W., Hannah B. P., et al. Fusion between perinuclear virions and the outer nuclear membrane requires the fusogenic activity of herpes simplex virus gB. J Virol. 2009;83:11847–11856. doi: 10.1128/JVI.01397-09. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 80.Wymer J. P., Chung T. D., Chang Y. N., et al. Identification of immediate-early-type cis-response elements in the promoter for the ribonucleotide reductase large subunit from herpes simplex virus type 2. J Virol. 1989;63:2773–2784. doi: 10.1128/jvi.63.6.2773-2784.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 81.Yamayoshi S., Yamashita Y., Li J., et al. Scavenger receptor B2 is a cellular receptor for enterovirus 71. Nat Med. 2009;15:798–801. doi: 10.1038/nm.1992. [DOI] [PubMed] [Google Scholar]
- 82.Yang B., Chuang H., Yang K. D. Sialylated glycans as receptor and inhibitor of enterovirus 71 infection to DLD-1 intestinal cells. Virol J. 2009;6:141. doi: 10.1186/1743-422X-6-141. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 83.Zahn A., Allain J. P. Hepatitis C virus and hepatitis B virus bind to heparin: purification of largely IgG-free virions from infected plasma by heparin chromatography. J Gen Virol. 2005;86:677–685. doi: 10.1099/vir.0.80614-0. [DOI] [PubMed] [Google Scholar]
- 84.Zeisel M. B., Barth H., Schuster C., et al. Hepatitis C virus entry: molecular mechanisms and targets for antiviral therapy. Front Biosci. 2009;14:3274–3285. doi: 10.2741/3450. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 85.Zeisel M. B., Baumert T. F. HCV entry and neutralizing antibodies: lessons from viral variants. Future Microbiol. 2009;4:511–517. doi: 10.2217/fmb.09.34. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 86.Ziegler S., Kronenberger B., Albrecht B. A., et al. Development and evaluation of a FACS-based medium-throughput assay for HCV entry inhibitors. J Biomol Screen. 2009;14:620–626. doi: 10.1177/1087057109337161. [DOI] [PubMed] [Google Scholar]