Abstract
Nuclear proteins often form punctiform structures, but the precise mechanism for this process is unknown. As a preliminary study, we investigated the aggregation of an HSV-1 immediate-early protein, infected-cell protein 22 (ICP22), in the nucleus by observing the localization of ICP22-EGFP fusion protein. Results showed that, in high-level expression conditions, ICP22-EGFP gradually concentrates in the nucleus, persists throughout the cell cycle without disaggregation even in the cell division phase, and is finally distributed to daughter cells. We subsequently constructed a mammalian cell expression system, which had tetracycline-dependent transcriptional regulators. Consequently, the location of ICP22-EGFP in the nucleus changed with distinct induction conditions. This suggests that the cellular location of ICP22 is also influenced by promoter regulation, in addition to its own structure. Our findings provide new clues for the investigation of transcriptional regulation of viral genes. In addition, the non-protease reporter system we constructed could be utilized to evaluate the role of internal ribosome entry sites (IRES) on transcriptional regulation.
Key words: Herpes Simplex Virus 1 (HSV-1), ICP22, Transcriptional regulation, Cellular localization, Nuclear functional domain
Footnotes
Foundation items: The National Natural Science Foundation of China (30670094, 30700028) and the Ph.D. Programs Foundation of Ministry of Education of China (2006-0023008)
Equal contribution author.
Reference
- 1.Cardoso M. C., Leonhardt H., Nadal-Ginard B. Reversal of terminal differentiation and control of DNA replication: cyclin A and Cdk2 specifically localize at subnuclear sites of DNA replication. Cell. 1993;74(6):979–992. doi: 10.1016/0092-8674(93)90721-2. [DOI] [PubMed] [Google Scholar]
- 2.Carter K. L., Roizman B. Alternatively spliced mRNAs predicted to yield frame-shift proteins and stable intron 1 RNAs of the herpes simplex virus 1 regulatory gene alpha 0 accumulate in the cytoplasm of infected cells. Proc Natl Acad Sci USA. 1996;93(22):12535–12540. doi: 10.1073/pnas.93.22.12535. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 3.Chalfie M., Tu Y., Euskirchen G., et al. Green fluorescent protein as a marker for gene expression. Science. 1994;263(5148):802–805. doi: 10.1126/science.8303295. [DOI] [PubMed] [Google Scholar]
- 4.Cremer T., Cremer C. Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nat Rev Genet. 2001;2(4):292–301. doi: 10.1038/35066075. [DOI] [PubMed] [Google Scholar]
- 5.Cun W., Hong M., Liu L. D., et al. Structural and functional characterization of herpes simplex virus 1 immediate-early protein infected-cell protein 22. J Biochem (Tokyo) 2006;140(1):67–73. doi: 10.1093/jb/mvj135. [DOI] [PubMed] [Google Scholar]
- 6.Elefanty A. G., Antoniou M., Custodio N., et al. GATA transcription factors associate with a novel class of nuclear bodies in erythroblasts and megakaryocytes. EMBO J. 1996;15(2):319–333. [PMC free article] [PubMed] [Google Scholar]
- 7.Espada J., Esteller M. Epigenetic control of nuclear architecture. Cell Mol Life Sci. 2007;64(4):449–457. doi: 10.1007/s00018-007-6358-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 8.Fraser K. A., Rice S. A. Herpes simplex virus type 1 infection leads to loss of serine-2 phosphorylation on the carboxyl-terminal domain of RNA polymerase II. J Virol. 2005;79(17):11323–11334. doi: 10.1128/JVI.79.17.11323-11334.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9.Gossen M., Freundlieb S., Bender G., et al. Transcriptional activation by tetracyclines in mammalian cells. Science. 1995;268(5218):1766–1769. doi: 10.1126/science.7792603. [DOI] [PubMed] [Google Scholar]
- 10.Grande M. A., van der Kraan I., de Jong L., et al. Nuclear distribution of transcription factors in relation to sites of transcription and RNA polymerase II. J Cell Sci. 1997;110(Pt15):1781–1791. doi: 10.1242/jcs.110.15.1781. [DOI] [PubMed] [Google Scholar]
- 11.Hirota T., Morisaki T., Nishiyama Y., et al. Zyxin, a regulator of actin filament assembly, targets the mitotic apparatus by interacting with h-warts/LATS1 tumor suppressor. J Cell Biol. 2000;149(5):1073–1086. doi: 10.1083/jcb.149.5.1073. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 12.Jahedi S., Markovitz N. S., Filatov F., et al. Colocalization of the herpes simplex virus 1 UL4 protein with infected cell protein 22 in small, dense nuclear structures formed prior to onset of DNA synthesis. J Virol. 1999;73(6):5132–5138. doi: 10.1128/jvi.73.6.5132-5136.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 13.Jiang L., Li P. Z., Dong C. H., et al. Functional analysis of SR-15 protein of human fibroblast induced by HSV I infection. Virologica Sinica. 2006;21(6):546–550. [Google Scholar]
- 14.Leopardi R., Michael N., Roizman B. Repression of the herpes simplex virus 1 alpha 4 gene by its gene product (ICP4) within the context of the viral genome is conditioned by the distance and stereoaxial alignment of the ICP4 DNA binding site relative to the TATA box. J Virol. 1995;69(5):3042–3048. doi: 10.1128/jvi.69.5.3042-3048.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 15.Leopardi R., Ward P. L., Ogle W. O., et al. Association of herpes simplex virus regulatory protein ICP22 with transcriptional complexes EAP, ICP4, RNA polymerase II, and viral DNA requires posttranslational modification by the UL13 protein kinase. J Virol. 1997;71:1133–1139. doi: 10.1128/jvi.71.2.1133-1139.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 16.Pombo A., Cuello P., Schul W., et al. Regional and temporal specialization in the nucleus: a transcriptionally-active nuclear domain rich in PTF, Oct1 and PIKA antigens associates with specific chromosomes early in the cell cycle. EMBO J. 1998;17(6):1768–1778. doi: 10.1093/emboj/17.6.1768. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 17.Prod’hon C., Machuca I., Berthomme H., et al. Characterization of regulatory functions of the HSV-1 immediate-early protein ICP22. Virology. 1996;226(2):393–402. doi: 10.1006/viro.1996.0667. [DOI] [PubMed] [Google Scholar]
- 18.Spann T. P., Goldman A. E., Wang C., et al. Alteration of nuclear lamin organization inhibits RNA polymerase II-dependent transcription. J Cell Biol. 2002;156(4):603–608. doi: 10.1083/jcb.200112047. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 19.Stelz G., Rucker E., Rosorius O., et al. Identification of two nuclear import signals in the alpha-gene product ICP22 of herpes simplex virus 1. Virology. 2002;295(2):360–370. doi: 10.1006/viro.2002.1384. [DOI] [PubMed] [Google Scholar]
- 20.Taddei A., Hediger F., Neumann F. R., et al. The function of nuclear architecture: a genetic approach. Annu Rev Genet. 2004;38:305–345. doi: 10.1146/annurev.genet.37.110801.142705. [DOI] [PubMed] [Google Scholar]
- 21.Tsien R. Y. The green fluorescent protein. Annu Rev Biochem. 1998;67:509–544. doi: 10.1146/annurev.biochem.67.1.509. [DOI] [PubMed] [Google Scholar]
- 22.Ward C. M., Stern P. L. The human cytomegalovirus immediate-early promoter is transcriptionally active in undifferentiated mouse embryonic stem cells. Stem Cells. 2002;20(5):472–475. doi: 10.1634/stemcells.20-5-472. [DOI] [PubMed] [Google Scholar]