Skip to main content
Virologica Sinica logoLink to Virologica Sinica
. 2010 Dec 21;25(6):432–439. doi: 10.1007/s12250-010-3131-3

Antiviral activity of recombinant cyanovirin-N against HSV-1

Hong Yu 1,, Zong-tao Liu 1,2, Rui Lv 1, Wen-qing Zhang 1
PMCID: PMC8227942  PMID: 21221922

Abstract

In this study, a standard strain of HSV-1 (strain SM44) was used to investigate the antiviral activity of the recombinant Cyanovirin-N (CV-N) against Herpes simplex virus type 1 (HSV-1) in vitro and in vivo. Cytopathic effect (CPE) and MTT assays were used to evaluate the effect of CV-N on HSV-1 in Vero cells. The number of copies of HSV-DNA was detected by real-time fluorescence quantitative PCR (FQ-PCR). The results showed that CV-N had a low cytotoxicity on Vero cells with a CC50 of 359.03±0.56 μg/mL, and that it could not directly inactivate HSV-1 infectivity. CV-N not only reduced the CPE of HSV-1 when added before or after viral infection, with a 50% inhibitory concentration (IC50) with 2.26 and 30.16μg/mL respectively, but it also decreased the copies of HSV-1 DNA in infected host cells. The encephalitis model for HSV-1 infection was conducted in Kunming mice, and treated with three dosages of CV-N (0.5, 5 & 10 mg/kg) which was administered intraperitoneally at 2h, 3d, 5d, 7d post infection. The duration for the appearance of symptoms of encephalitis and the survival days were recorded and brain tissue samples were obtained for pathological examination (HE staining). Compared with the untreated control group, in the 5mg/kg CV-N and 10mg/kg CV-N treated groups, the mice suffered light symptoms and the number of survival days were more than 9d and 14d respectively. HE staining also showed that in 5mg/kg CV-N and 10mg/kg CV-N treated groups, the brain cells did not show visible changes, except for a slight inflammation. Our results demonstrated that CV-N has pronounced antiviral activity against HSV-1 both in vitro and in vivo, and it would be a promising new candidate for anti-HSV therapeutics.

Key words: Recombinant cyanovirin-N, Herpes simplex virus type 1(HSV-1), Antiviral activity, Real-time FQ-PCR, Encephalitis

Footnotes

Foundation item: Science and Technology Development Project of Shandong province (2005GG3202068).

References

  • 1.Barrientos L. G., O’Keefe B. R., Bray M., Sanchez A., et al. Cyanovirin-N binds to the viral surface glycoprotein, gp1,2 and inhibits infectivity of Ebola virus. Antiviral Res. 2003;58(1):47–56. doi: 10.1016/S0166-3542(02)00183-3. [DOI] [PubMed] [Google Scholar]
  • 2.Bewley C. A., Gustafson K. R., Boyd M. R., et al. Solution structure of cyanovirin-N, a potent HIV-inactivating protein. Nat Struct Bio. 1998;15(7):571–578. doi: 10.1038/828. [DOI] [PubMed] [Google Scholar]
  • 3.Bolmstedt A. J., O’Keefe B. R., Shenoy S. R., et al. Cyanovirin-N defines a new class of antiviral agent targeting N-linked, high-mannose glycans in an oligosaccharidespecific manner. Mol Pharmacol. 2001;59(5):949–954. doi: 10.1124/mol.59.5.949. [DOI] [PubMed] [Google Scholar]
  • 4.Boyd M. R., Gustafson K. R., McMahon J. B., et al. Discovery of cyanovirin-N, a novel human immunodeficiency virus-inactivating protein that binds viral surface envelope glycoprotein gp120: potential applications to microbicide development. Antimicrob Agents Chemother. 1997;41(7):1521–1530. doi: 10.1128/aac.41.7.1521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Campling B. G., Pym J., Galbraith P. R., et al. Use of the MTT assay for rapid determination of chemosensitivity of human leukemic blast cells. Leuk Res. 1988;12(10):823–831. doi: 10.1016/0145-2126(88)90036-7. [DOI] [PubMed] [Google Scholar]
  • 6.Cunha B. A., Eisenstein L. E., Dillard T., et al. Herpes simplex virus (HSV) pneumonia in a heart transplant: diagnosis and therapy. Heart Lung. 2007;36(1):72–78. doi: 10.1016/j.hrtlng.2006.07.005. [DOI] [PubMed] [Google Scholar]
  • 7.De Clercq E. Antiviral drugs in current clinical use. J Clin Virol. 2004;30(2):115–133. doi: 10.1016/j.jcv.2004.02.009. [DOI] [PubMed] [Google Scholar]
  • 8.Dey B., Lerner D. L., Lusso P., et al. Multiple antiviral activities of cyanovirin-N: blocking of human immunodeficiency virus type 1 gp120 interaction with CD4 and coreceptor and inhibition of diverse enveloped viruses. Virology. 2000;74(10):4562–4569. doi: 10.1128/JVI.74.10.4562-4569.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Ferrari A., Luppi M., Potenza L., et al. Herpes simplex virus pneumonia during standard induction chemotherapy for acute leukemia: case report and review of literature. Leukemia. 2005;19(11):2019–2021. doi: 10.1038/sj.leu.2403893. [DOI] [PubMed] [Google Scholar]
  • 10.Frobert E., Ooka T., Cortay J. C., et al. Herpes simplex virus thymidine kinase mutations associated with resistance to acyclovir: a site-directed mutagenesis study. Antimicrob Agents Chemother. 2005;49(3):1055–1059. doi: 10.1128/AAC.49.3.1055-1059.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Frobert E., Ooka T., Cortay J. C., et al. Resistance of herpes simplex virus type 1 to acyclovir: thymidine kinase gene mutagenesis study. Antiviral Res. 2007;73(2):147–150. doi: 10.1016/j.antiviral.2006.08.001. [DOI] [PubMed] [Google Scholar]
  • 12.Gustafson K. R., Sowder R. C., Henderson L. E., et al. Isolation, primary sequence determination, and disulfide bond structure of cyanovirin-N, an anti-HIV (human immunodeficiency virus) protein from the cyanobacterium Nostoc ellipsosporum. Biochem Biophys Res Commun. 1997;238(1):223–228. doi: 10.1006/bbrc.1997.7203. [DOI] [PubMed] [Google Scholar]
  • 13.Han Z., Simpson J. T., Fivash M. J., et al. Identification and characterization of peptides that bind to cyanovirin-N, a potent human immunodeficiency virusinactivating protein. Peptides. 2004;25(4):551–561. doi: 10.1016/j.peptides.2004.02.018. [DOI] [PubMed] [Google Scholar]
  • 14.Koharudin L. M., Viscomi A. R., Jee J. G., et al. The evolutionarily conserved family of cyanovirin-N homologs: structures and carbohydrate specificity. Structure. 2008;16(4):570–584. doi: 10.1016/j.str.2008.01.015. [DOI] [PubMed] [Google Scholar]
  • 15.Lv R., Yu H., Liu Z.T., et al. Prokaryotic expression of the CV-N gene, purification and renaturation of its recombinant protein. J Med Postgrad. 2007;20(11):1139–1142. [Google Scholar]
  • 16.Mori T., Barrientos L. G., Han Z., et al. Functional homologs of cyanovirin-N amenable to mass production in prokaryotic and eukaryotic hosts. Protein Expr Purif. 2002;26(1):42–49. doi: 10.1016/S1046-5928(02)00513-2. [DOI] [PubMed] [Google Scholar]
  • 17.Mori T., Gustafson K. R., Pannell L. K., et al. Recombinant production of cyanovirin-N, a potent human immunodeficiency virus-inactivating protein derived from a cultured cyanobacterium. Protein Expr Purif. 1998;12(2):151–158. doi: 10.1006/prep.1997.0838. [DOI] [PubMed] [Google Scholar]
  • 18.O’Keefe B. R., Shenoy S. R., Xie D., et al. Analysis of the interaction between the HIV-inactivating protein cyanovirin-N and soluble forms of the envelope glycoproteins gp120 and gp41. Mol Pharmacol. 2000;58(5):982–992. doi: 10.1124/mol.58.5.982. [DOI] [PubMed] [Google Scholar]
  • 19.O’Keefe B. R., Smee D. F., Turpin J. A., et al. Potent anti-influenza activity of cyanovirin-N and interactions with viral hemagglutinin. Antimicrob Agent Chemother. 2003;47(8):2518–2525. doi: 10.1128/AAC.47.8.2518-2525.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Russel D. B., Tabrizi S. N., Russel J. M., et al. Seroprevalence of herpes simplex virus types 1 and 2 in HIV-infected and uninfected homosexual men in a primary care setting. J Clin Virol. 2001;22(3):305–313. doi: 10.1016/S1386-6532(01)00203-7. [DOI] [PubMed] [Google Scholar]
  • 21.Severson J. L., Tyring S. K. Relation between herpes simplex viruses and human immunodeficiency virus infections. Arch Dermatol. 1999;135(11):1393–1397. doi: 10.1001/archderm.135.11.1393. [DOI] [PubMed] [Google Scholar]
  • 22.Smee D. F., Bailey K. W., Wong M. H., et al. Treatment of influenza A (H1N1) virus infections in mice and ferrets with cyanovirin-N. Antiviral Res. 2008;80(3):266–271. doi: 10.1016/j.antiviral.2008.06.003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Tiwari V., Shukla S. Y., Shukla D. A sugar binding protein cyanovirin-N blocks herpes simplex virus type-1 entry and cell fusion. Antiviral Res. 2009;84(1):67–75. doi: 10.1016/j.antiviral.2009.07.014. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Waggoner-Fountain L. A., Grossman L. B. Herpes simplex virus. Pediatr Rev. 2004;25(3):86–93. doi: 10.1542/pir.25-3-86. [DOI] [PubMed] [Google Scholar]
  • 25.Wang K., Mahalingam G., Hoover S. E., et al. Diverse herpes simplex virus type 1 thymidine kinase mutants in individual human neurons and Ganglia. J Virol. 2007;81(13):6817–6826. doi: 10.1128/JVI.00166-07. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Whitely R. J., Roizman B. Herpes simplex virus infections. Lancet. 2001;357:1513–1538. doi: 10.1016/S0140-6736(00)04638-9. [DOI] [PubMed] [Google Scholar]
  • 27.Yi M., Wei K., Wang X. F., et al. Primary studies on the establishment of herpes simplex encephalitis in murine model. Pediatr Emerg Med. 2000;7(2):26–27. [Google Scholar]

Articles from Virologica Sinica are provided here courtesy of Wuhan Institute of Virology, Chinese Academy of Sciences

RESOURCES