Skip to main content
Virologica Sinica logoLink to Virologica Sinica
. 2010 Feb 12;25(1):1–7. doi: 10.1007/s12250-010-3080-x

The herpes simplex virus type 1 infected cell protein 22

Fu-sen Lin 1, Qiong Ding 1, Hong Guo 1, Alan C Zheng 1,
PMCID: PMC8227943  PMID: 20960278

Abstract

As one of the immediate-early (IE) proteins of herpes simplex virus type 1 (HSV-1), ICP22 is a multifunctional viral regulator that localizes in the nucleus of infected cells. It is required in experimental animal systems and some nonhuman cell lines, but not in Vero or HEp-2 cells. ICP22 is extensively phosphorylated by viral and cellular kinases and nucleotidylylated by casein kinase II. It has been shown to be required for efficient expression of early (E) genes and a subset of late (L) genes. ICP22, in conjunction with the UL13 kinase, mediates the phosphorylation of RNA polymerase II. Both ICP22 and UL13 are required for the activation of cdc2, the degradation of cyclins A and B and the acquisition of a new cdc2 partner, the UL42 DNA polymerase processivity factor. The cdc2-UL42 complex mediates postranscriptional modification of topoisomerase IIα in an ICP22-dependent manner to promote L gene expression. In addition, ICP22 interacts with cdk9 in a Us3 kinase dependent fashion to phosphorylate RNA polymerase II.

Key words: Herpes Simplex Virus type 1(HSV-1), ICP22, UL13

Footnotes

Foundation items: The Startup Fund of the Hundred Talents Program of the Chinese Academy of Science (20071010-141); National Natural Science Foundation of China (30870120); Open Research Fund Program of the State Key Laboratory of Virology of China (2007003, 2009 007); Hubei Province Natural Science Foundation of Innovation Groups Project (2008CDA013).

Equal contribution author

References

  • 1.Ackermann M., Sarmiento M., Roizman B. Application of antibody to synthetic peptides for characterization of the intact and truncated alpha 22 protein specified by herpes simplex virus 1 and the R325 alpha 22-deletion mutant. J Virol. 1985;56(1):207–215. doi: 10.1128/jvi.56.1.207-215.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Advani S. J., Brandimarti R., Weichselbaum R. R., et al. The disappearance of cyclins A and B and the increase in activity of the G(2)/M-phase cellular kinase cdc2 in herpes simplex virus 1-infected cells require expression of the alpha22/U (S)1.5 and U (L)13 viral genes. J Viro, l. 2000;74(1):8–15. doi: 10.1128/JVI.74.1.8-15.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Advani S. J., Weichselbaum R. R., Roizman B. cdc2 cyclin-dependent kinase binds and phosphorylates herpes simplex virus 1 U(L)42 DNA synthesis processivity factor. J Virol. 2001;75(21):10326–10333. doi: 10.1128/JVI.75.21.10326-10333.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Advani S. J., Weichselbaum R. R., Roizman B. Herpes simplex virus 1 activates cdc2 to recruit topoisomerase II alpha for post-DNA synthesis expression of late genes. Proc Natl Acad Sci U A. 2003;100(8):4825–4830. doi: 10.1073/pnas.0730735100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Asai R., Ohno T., Kato A., et al. Identification of proteins directly phosphorylated by UL13 protein kinase from herpes simplex virus 1. Microbes Infect. 2007;9(12–13):1434–1438. doi: 10.1016/j.micinf.2007.07.008. [DOI] [PubMed] [Google Scholar]
  • 6.Bastian T. W., Rice S. A. Identification of sequences in herpes simplex virus type 1 ICP22 that influence RNA polymerase II modification and viral late gene expression. J Virol. 2009;83(1):128–139. doi: 10.1128/JVI.01954-08. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Blaho J. A., Zong C. S., Mortimer K. A. Tyrosine phosphorylation of the herpes simplex virus type 1 regulatory protein ICP22 and a cellular protein which shares antigenic determinants with ICP22. J Virol. 1997;71(12):9828–9832. doi: 10.1128/jvi.71.12.9828-9832.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Booher R. N., Holman P. S., Fattaey A. Human Myt1 is a cell cycle-regulated kinase that inhibits Cdc2 but not Cdk2 activity. J Biol Chem. 1997;272(35):22300–22306. doi: 10.1074/jbc.272.35.22300. [DOI] [PubMed] [Google Scholar]
  • 9.Brandt C. R., Kolb A. W. Tyrosine 116 of the herpes simplex virus type 1 IEalpha22 protein is an ocular virulence determinant and potential phosphorylation site. Invest Ophthalmol Vis Sci. 2003;44(11):4601–4607. doi: 10.1167/iovs.03-0582. [DOI] [PubMed] [Google Scholar]
  • 10.Bruni R., Roizman B. Herpes simplex virus 1 regulatory protein ICP22 interacts with a new cell cycle-regulated factor and accumulates in a cell cycle-dependent fashion in infected cells. J Virol. 1998;72(11):8525–8531. doi: 10.1128/jvi.72.11.8525-8531.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Corden J. L., Patturajan M. A CTD function linking transcription to splicing. Trends Biochem Sci. 1997;22(11):413–416. doi: 10.1016/S0968-0004(97)01125-0. [DOI] [PubMed] [Google Scholar]
  • 12.Cun W., Guo L., Zhang Y., et al. Transcriptional regulation of the Herpes Simplex Virus 1alpha-gene by the viral immediate-early protein ICP22 in association with VP16. Sci China C Life Sci. 2009;52(4):344–351. doi: 10.1007/s11427-009-0051-2. [DOI] [PubMed] [Google Scholar]
  • 13.Dai-Ju J. Q., Li L., Johnson L. A., et al. ICP27 interacts with the C-terminal domain of RNA polymerase II and facilitates its recruitment to herpes simplex virus 1 transcription sites, where it undergoes proteasomal degradation during infection. J Virol. 2006;80(7):3567–3581. doi: 10.1128/JVI.80.7.3567-3581.2006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Durand L. O., Advani S. J., Poon A. P., et al. The carboxyl-terminal domain of RNA polymerase II is phosphorylated by a complex containing cdk9 and infected-cell protein 22 of herpes simplex virus 1. J Virol. 2005;79(11):6757–6762. doi: 10.1128/JVI.79.11.6757-6762.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Durand L. O., Roizman B. Role of cdk9 in the optimization of expression of the genes regulated by ICP22 of herpes simplex virus 1. J Virol. 2008;82(21):10591–10599. doi: 10.1128/JVI.01242-08. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Egloff S., Murphy S. Role of the C-terminal domain of RNA polymerase II in expression of small nuclear RNA genes. Biochem Soc Trans. 2008;36(Pt3):537–539. doi: 10.1042/BST0360537. [DOI] [PubMed] [Google Scholar]
  • 17.Fraser K. A., Rice S. A. Herpes simplex virus type 1 infection leads to loss of serine-2 phosphorylation on the carboxyl-terminal domain of RNA polymerase II. J Virol. 2005;79(17):11323–11334. doi: 10.1128/JVI.79.17.11323-11334.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Fraser K. A., Rice S. A. Herpes simplex virus immediate-early protein ICP22 triggers loss of serine 2-phosphorylated RNA polymerase II. J Virol. 2007;81(10):5091–5101. doi: 10.1128/JVI.00184-07. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Fu W., Begley J. G., Killen M. W., et al. Anti-apoptotic role of telomerase in pheochromocytoma cells. J Biol Chem. 1999;274(11):7264–7271. doi: 10.1074/jbc.274.11.7264. [DOI] [PubMed] [Google Scholar]
  • 20.Hagglund R., Munger J., Poon A. P., et al. U(S)3 protein kinase of herpes simplex virus 1 blocks caspase 3 activation induced by the products of U(S)1.5 and U(L)13 genes and modulates expression of transduced U(S)1.5 open reading frame in a cell type-specific manner. J Virol. 2002;76(2):743–754. doi: 10.1128/JVI.76.2.743-754.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Jacob R. J., Roizman B. Anatomy of herpes simplex virus DNA VIII. Properties of the replicating DNA. J Virol. 1977;23(2):394–411. doi: 10.1128/jvi.23.2.394-411.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Kawaguchi Y., Van Sant C., Roizman B. Herpes simplex virus 1 alpha regulatory protein ICP0 interacts with and stabilizes the cell cycle regulator cyclin D3. J Virol. 1997;71(10):7328–7336. doi: 10.1128/jvi.71.10.7328-7336.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Leopardi R., Ward P. L., Ogle W. O., et al. Association of herpes simplex virus regulatory protein ICP22 with transcriptional complexes containing EAP, ICP4, RNA polymerase II, and viral DNA requires posttranslational modification by the U(L)13 proteinkinase. J Virol. 1997;71(2):1133–1139. doi: 10.1128/jvi.71.2.1133-1139.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Long M. C., Leong V., Schaffer P. A., et al. ICP22 and the UL13 protein kinase are both required for herpes simplex virus-induced modification of the large subunit of RNA polymerase II. J Virol. 1999;73(7):5593–5604. doi: 10.1128/jvi.73.7.5593-5604.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Lu H., Flores O., Weinmann R., et al. The nonphosphorylated form of RNA polymerase II preferentially associates with the preinitiation complex. Proc Natl Acad Sci USA. 1991;88(22):10004–10008. doi: 10.1073/pnas.88.22.10004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Markovitz N. S. The herpes simplex virus type 1 UL3 transcript starts within the UL3 open reading frame and encodes a 224-amino-acid protein. J Virol. 2007;81(19):10524–10531. doi: 10.1128/JVI.00123-07. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Markovitz N. S., Roizman B. Small dense nuclear bodies are the site of localization of herpes simplex virus 1 U(L)3 and U(L)4 proteins and of ICP22 only when the latter protein is present. J Virol. 2000;74(1):523–528. doi: 10.1128/JVI.74.1.523-528.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Mitchell C., Blaho J. A., McCormick A. L., et al. The nucleotidylylation of herpes simplex virus 1 regulatory protein alpha22 by human casein kinase II. J Biol Chem. 1997;272(40):25394–25400. doi: 10.1074/jbc.272.40.25394. [DOI] [PubMed] [Google Scholar]
  • 29.Ng T. I., Chang Y. E., Roizman B. Infected cell protein 22 of herpes simplex virus 1 regulates the expression of virion host shutoff gene U (L)41. Virology. 1997;234(2):226–234. doi: 10.1006/viro.1997.8659. [DOI] [PubMed] [Google Scholar]
  • 30.O’Toole J. M., Aubert M., Kotsakis A., et al. Mutation of the protein tyrosine kinase consensus site in the herpes simplex virus 1 alpha22 gene alters ICP22 posttranslational modification. Virology. 2003;305(1):153–167. doi: 10.1006/viro.2002.1746. [DOI] [PubMed] [Google Scholar]
  • 31.Parker L. L., Sylvestre P. J., Byrnes M. J., 3rd, et al. Identification of a 95-kDa WEE1-like tyrosine kinase in HeLa cells. Proc Natl Acad Sci USA. 1995;92(21):9638–9642. doi: 10.1073/pnas.92.21.9638. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.Payne J. M., Laybourn P. J., Dahmus M. E. The transition of RNA polymerase II from initiation to elongation is associated with phosphorylation of the carboxyl-terminal domain of subunit IIa. J Biol Chem. 1989;264(33):19621–19629. [PubMed] [Google Scholar]
  • 33.Peng J., Zhu Y., Milton J. T., et al. Identification of multiple cyclin subunits of human P-TEFb. Genes Dev. 1998;12(5):755–762. doi: 10.1101/gad.12.5.755. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.Poon A. P., Roizman B. Herpes simplex virus 1 ICP22 regulates the accumulation of a shorter mRNA and of a truncated US3 protein kinase that exhibits altered functions. J Virol. 2005;79(13):8470–8479. doi: 10.1128/JVI.79.13.8470-8479.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35.Prod’hon C., Machuca I., Berthomme H., et al. Characterization of regulatory functions of the HSV-1 immediate-early protein ICP22. Virology. 1996;226(2):393–402. doi: 10.1006/viro.1996.0667. [DOI] [PubMed] [Google Scholar]
  • 36.Rice S. A., Long M. C., Lam V., et al. Herpes simplex virus immediate-early protein ICP22 is required for viral modification of host RNA polymerase II and establishment of the normal viral transcription program. J Virol. 1995;69(9):5550–5559. doi: 10.1128/jvi.69.9.5550-5559.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37.Rice S. A., Long M. C., Lam V., et al. RNA polymerase II is aberrantly phosphorylated and localized to viral replication compartments following herpes simplex virus infection. J Virol. 1994;68(2):988–1001. doi: 10.1128/jvi.68.2.988-1001.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38.Spencer C. A., Dahmus M. E., Rice S. A. Repression of host RNA polymerase II transcription by herpes simplex virus type 1. J Virol. 1997;71(3):2031–2040. doi: 10.1128/jvi.71.3.2031-2040.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39.Steinmetz E. J. Pre-mRNA processing and the CTD of RNA polymerase II: the tail that wags the dog? Cell. 1997;89(4):491–494. doi: 10.1016/S0092-8674(00)80230-5. [DOI] [PubMed] [Google Scholar]
  • 40.Stelz G., Rucker E., Rosorius O., et al. Identification of two nuclear import signals in the alpha-gene product ICP22 of herpes simplex virus 1. Virology. 2002;295(2):360–370. doi: 10.1006/viro.2002.1384. [DOI] [PubMed] [Google Scholar]
  • 41.Van Sant C., Kawaguchi Y., Roizman B. A single amino acid substitution in the cyclin D binding domain of the infected cell protein no. 0 abrogates the neuroinvasiveness of herpes simplex virus without affecting its ability to replicate. Proc Natl Acad Sci USA. 1999;96(14):8184–8489. doi: 10.1073/pnas.96.14.8184. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42.Ward P. L., Taddeo B., Markovitz N. S., et al. Identification of a novel expressed open reading frame situated between genes U(L)20 and U(L)21 of the herpes simplex virus 1 genome. Virology. 2000;266(2):275–285. doi: 10.1006/viro.1999.0081. [DOI] [PubMed] [Google Scholar]

Articles from Virologica Sinica are provided here courtesy of Wuhan Institute of Virology, Chinese Academy of Sciences

RESOURCES