Abstract
Endometriosis is one of the major gynecological diseases of reproductive-age women. This disease is characterized by the presence of glands and stroma outside the uterine cavity. Several studies have shown the major role of inflammation, angiogenesis, adhesion and invasion, and apoptosis in endometriotic lesions. Nevertheless, the mechanisms underlying endometriotic mechanisms still remain unclear and therapies are not currently efficient. The introduction of new agents can be effective by improving the condition of patients. PPARγ ligands can directly modulate these pathways in endometriosis. However, data in humans remain low. Thus, the purpose of this review is to summarize the potential actions of PPARγ agonists in endometriosis by acting on inflammation, angiogenesis, invasion, adhesion, and apoptosis.
Keywords: endometriosis, PPARγ agonists, inflammation, angiogenesis, apoptosis, invasion, adhesion
1. Introduction
Endometriosis is a gynecological disorder characterized by the presence of glands and stroma outside the uterine cavity [1]. Six to ten percent of reproductive-age women are affected by this disease. The main symptoms of this disease are infertility and pelvic pain, with over 10% of women affected [2]. Other symptoms are listed, such as dysuria, dyspareunia, dysmenorrhea, and irregular uterine bleeding [3,4]. Nevertheless, the diagnosis of this disease remains uncommon [5]. Lesions observed in endometriosis are for the main part observed in the ovaries, fallopian tubes, the ligaments of the uterus, the cervical-vaginal area, the abdominal wall and umbilicus, the urinary tract, and the rectum [6,7]. Several factors have been observed as initiators of endometriosis, including immune, genetic, endocrine, and environmental markers [8,9]. However, the mechanisms of endometriosis initiation and development remain unclear.
Recent studies have shown that inflammation processes are an important factor in endometriosis through their action on angiogenesis, apoptosis, and cell proliferation [1]. The pro-inflammatory hypothesis was reported in several studies showing that peritoneal fluid of endometriotic patients presents high levels of activated macrophages, angiogenic markers, cytokines, and growth factors [10,11]. Moreover, inflammatory cells may be the initiators of endometriotic processes [12].
Hormone therapy, medication, and surgery are used to eradicate the symptoms in endometriotic patients. Pain-relieving, non-steroidal anti-inflammatory drugs, aromatase inhibitors, progestins, combined estrogen–progestin therapy, and selective progesterone receptor modulators are the main common recommended therapies [7,13]. Nevertheless, the mechanisms underlying this disease are still unclear, and therapies are not currently efficient.
The introduction of new agents can be effective by improving the condition of patients [14]. PPARγ ligands can directly modulate inflammation, metabolic processes, fibrosis, angiogenesis, and several other pathways [15,16,17]. In endometrial stromal cells, both rosiglitazone and pioglitazone reduce inflammation process by acting on IL-6 secretion [18]. Moreover, other PPARγ agonists can act by reducing angiogenesis [19], invasion and adhesion [20], and apoptosis [21].
Thus, the purpose of this review is to summarize the potential actions of PPARγ agonists in endometriosis by acting on inflammation, angiogenesis, invasion and adhesion, and apoptosis.
2. PPARγ
PPARs (peroxisome proliferator-activated receptors) belong to the superfamily of nuclear hormone receptors and call for their activation, which is controlled by the peroxisome proliferators. There are three subtypes of PPARs (PPARα, PPARβ, and PPARγ). These subtypes are expressed differently in tissues. PPARγ is mainly expressed in adipose tissue [22]. PPARs consist of four domains (A/B, C, D, and E/F). The A/B region, localized at the N end of the receptor protein, is the active functional region, differs among the PPARs subtypes, and is independent of ligands. Region C is the DNA-binding domain containing two zinc finger structures. Region D is the hinge domain. Region E/F, localized at the end of C, is the ligand-binding domain and contains a ligand-dependent transcriptional activation functional region [23]. The PPARγ gene can be transcribed into different PPARγ mRNAs and translated into two isoforms (PPAR γ1 and PPAR γ2) [24]. PPARs are ligand-activated transcription factors that bind PPRE (PPAR-response elements). In the nucleus, PPARs form a heterodimer with the retinoid X receptor (RXR) [25]. They are composed of a ligand-binding domain that interacts with a DNA-binding domain to modulate it [26]. PPARs are involved in numerous pathophysiological processes, such as cell differentiation, protein metabolism, lipid metabolism, carcinogenesis [27,28], adipocyte differentiation, insulin sensitivity, and inflammation [29,30]. Among the many biological responses involved, PPARγ has a corresponding function by controlling the expression of several pathways, such as JAK-STAT, NF-kB, nuclear factor of activated T cell, AP-1, PI3K, leptin, and adiponectin [31].
PPARγ ligands can be synthetic or natural. PPARγ ligands have hypoglycemic and hypocholesterolemic roles, such as glitazones, which have been used in the treatment of type 2 diabetes [32]. PPARγ ligands, such as thiazolidinediones (TZDs), can also decrease inflammatory activity [32]. Natural ligands include prostaglandins and unsaturated fatty acids [33]. PPARγ ligands can be synthetic or natural. Natural ligands include prostaglandins and unsaturated fatty acids. Moreover, PPARγ ligands, such as thiazolidinediones, can directly decrease inflammatory activity [17], the fibrosis process [34], and lung inflammation [35]. PPARγ agonists have an antiangiogenic role observed in several organs [36,37]. Indeed, PPARγ activation leads to the inhibition of the expression of vascular endothelial growth factor (VEGF), a proangiogenic factor [38]. The expression of PPARγ is observed in the choriocapillaris, choroidal endothelial cells, retinal endothelial cells, and retinal pigmented epithelium [39]. Several animal models have shown the interest of PPARγ agonists in endometriosis [40]. Ciglitazone and rosiglitazone can both prevent and treat endometriosis in a rodent model of the disease [41,42,43,44]. A randomized study also confirmed the effectiveness of rosiglitazone in baboons [45]. Nevertheless, data in humans remain low [21].
3. PPARγ Agonists Actions on the Pathophysiology of Endometriosis
3.1. Inflammation
Inflammation presents a major role in the process of endometriosis [46]. The cascade of the different inflammatory factors stimulates several markers, including metalloproteinases, prostaglandins, cytokines, and chemokines [6]. These markers are stimulated in the peritoneal serum of endometriosis patients and in the endometrium [47,48,49]. However, normal cells of the endometrium are not affected by this mechanism [50]. Interlieukin-10 (IL-10, IL-6, IL-8, COX2 (cyclooxygenase-2)), VEGF, and tumor necrosis factor α (TNF-α) are upregulated in the peritoneal fluid of endometriosis [49,51]. The stroma of the endometrium are correlated with the process of adhesion of extracellular matrix proteins when IL-8 and matrix metalloproteinase (MMP) have been upregulated [52,53,54,55]. Furthermore, endometriosis is associated with the activation of the NF-κB pathway leading to enhance cell growth, proliferation, and apoptosis during the process of endometriosis [56].
The cyclooxygenase-2 (COX-2)/prostaglandin E2 (PGE2) pathway is involved during endometriosis. Pelvic inflammation is closely related to the activation of peritoneal immune cells, such as macrophages [57,58,59]. Women with endometriosis show an increased number of macrophages with dysfunctional phenotype. Peritoneal macrophages have reduced phagocytic capacity due to lower levels and activity of MMP9, which is required for extracellular matrix degradation and is regulated by PGE2 [60]. Elevation of COX-2 expression has a main role in the initiation and development of endometriosis [61,62]. The overexpression of COX-2 contributes to the increase of PGE2 in endometriosis [63] and participates in the control of ectopic implantation and endometrium growth, angiogenesis, and immunosuppression [64]. Thus, PGE2 appears to be one of the main controllers of the immune response in endometriosis [65]. The endometrial glandular epithelium is the localization of COX-2 production. This production varies according to the menstrual cycle. Expression of COX-2 is low in the early proliferative stage and gradually increases thereafter to reach a maximum at the secretory stage [66]. The expression of COX-2 is higher in women affected by endometriosis in the endometrial stroma and glandular epithelium than in non-affected women [67,68,69,70]. Nevertheless, the COX-2 levels vary throughout the menstrual cycle regardless of whether its expression is affected [67]. During the proliferative and secretory phase, in the eutopic endometrium and in ovarian endometriotic tissue, COX-2 expression is higher in endometriosis women compared with healthy women [71]. NF-κB pathway can directly activate the COX-2/PGE2 to increase the production of estrogen in the endometrium [72].
In endometrial stromal cells, both rosiglitazone and pioglitazone can reduce the inflammation process by acting on IL-6 secretion [18] (Table 1). Glitazone can target Il-6 to decrease the activity of the STAT3 pathway [73,74]. Moreover, TZDs can diminish the expression of numerous inflammatory factors, and TZDs could be used as treatment for pain management in endometriosis [44,75,76].
Table 1.
Mechanisms by which PPARγ agonists modulate inflammation, angiogenesis, adhesion and invasion, and apoptosis in endometriosis.
Target | PPARγ agonist | Target | Actions | Model | References |
---|---|---|---|---|---|
Inflammation | Rosiglitazone | - | Decreased symptom severity scale and pain | Women | [75] |
Rosiglitazone | - | Diminution of implant volume, cell proliferation, apoptosis, and inflammation | Female BALB/c mice | [44] | |
Rosiglitazone | - | Diminution of inflammation | Endometriotic stromal cells | [76] | |
Angiogenesis | Ciglitazone | Decrease VEGF | Decreased the size of ectopic uterine tissues and the mean explant wet weight | Rat model of endometriosis | [41] |
Rosiglitazone | Decrease VEGF | Endometriotic lesions were statistically significantly lower in rosiglitazone-treated baboons when compared with the placebo group | Female baboons | [45] | |
Pioglitazone | Decrease VEGF | The surface area and volume of endometriotic lesions were significantly lower in pioglitazone-treated baboons than the placebo group | Female baboons | [77] | |
Ciglitazone | Decrease PGE2 Decrease P450 aromatase |
Inhibition growth cells and cell proliferation | Endometriotic epithelial cells | [21] | |
Pioglitazone | reduction of AT1R proteins | Decrease in density of CD31-positive micro-vessels | Murine endometriosis-like lesions | [78] | |
Rosiglitazone | Decrease VEGF | Reduction of endothelial cell proliferation and migration | Human umbilical vein endothelial cells | [79] | |
Pioglitazone and rosiglitazone | Decrease bFGF and VEGF | Reduction in blood vessel formation | Chorioallantois membrane model | [80] | |
Adhesion and Invasion | Ciglitazone | Decrease CAM | Reduction of invasion | LP9 cells | [81] |
Pioglitazone | Decrease VCAM-1 | Inhibition of vascular cell adhesion | Endothelial cells | [82] | |
15d-PGJ2, Ciglitazone, Troglitazone | Decrease ICAM-1 | b2-integrin-mediated adhesion | Lung epithelial human cells | [83] | |
Rosiglitazone | Modulation promoters of MAT2A gene | Reduction of proliferation, apoptosis, and invasion | In vitro endometrial lesions | [84] | |
Apoptosis | Rosiglitazone | - | Endometriotic implant growth | Female BALB/c mice | [44] |
Rosiglitazone | - | Endometriotic implant growth | Rat model | [42] | |
Rosiglitazone | - | Decrease in height and spherical volumes | Rat model | [43] | |
Pioglitazone | - | Diminution of postsurgical adhesions | Chimeric mouse model | [85] |
3.2. Angiogenesis
Angiogenesis is marked by the formation of new capillaries by proliferative and migrative phenomenon of preexisting differentiated endothelial cells. The angiogenesis process operates in both embryonic initiation and postnatal life [86,87]. Angiogenesis is characterized by the dysfunction of the vessel basement membrane and the surrounding extracellular matrix (ECM) [88]. The MMP enzyme family degrade components of ECM by collagenases, gelatinases, stromelysins, and membrane-associated MMPs. Gelatinase-A (MMP-2) and gelatinase (MMP-9) are present in blood vessels. MMP-2 and MMP-9 have synergistic effects on basement membrane degradation [89]. The angiogenesis process is observed in endometriosis with several angiogenic factors involved, such as IL-8, VEGFA/C, and angiogenin in both clinic specimens and animal models [90,91,92].
Several signaling pathways are implicated in angiogenesis initiation [93]. The dysregulation of growth factors has a main function in angiogenesis [94]. VEGF can be activated by physiological stimulators, such as inflammation and hypoxia processes [95,96]. Hypoxia-inducible factor 1 α (HIF-1α)/VEGF signaling leads to the activation of different processes, such as proliferation and migration of endothelial cells [97]. Several stages can define angiogenesis: blood vessel breakdown, basement membrane degradation, a surrounding extracellular matrix (ECM), endothelial cells migration, and new blood vessel formation [98]. From existing vessels, novel blood vessels are generated through the dissolution of aspects of native vessels. Angiopoietin-1 and 2 (ANG-1 and ANG-2) are main endothelial growth factors that operate by the tyrosine kinase with immunoglobulin and EGF homology domains (TIE-2) receptor tyrosine kinase (RTK) expressed in endothelial cells. Under physiological conditions, ANG-1 binds to TIE-2, leading to the association between pericytes and endothelial cells to stabilize the vasculature [99,100]. ANG-1 acts as an activator ligand for TIE-2, whereas ANG-2 inhibits the phosphorylation of TIE-2, even in the presence of ANG-1 [101,102]. TIE-2 is a major marker of the physiological vascular initiation and of mature vasculature homeostasis [103]. Destabilization of the blood vessels’ structure is induced by ANG-2, which acts as an antagonist of TIE-2 phosphorylation [102,104]. Thus, VEGF expression leads to the proliferation and migration of endothelial cells in the presence of ANG-2 to participate in the stimulation of new blood vessel growth [105]. AT1R stimulation involves the increase of VEGF expression to activate angiogenesis [106]. Moreover, AT1R activates inflammation by increasing the expression of leukocytic and endothelial adhesion molecules [107].
In vitro studies have shown interest in using anti-VEGF factors to decrease the growth of endometriosis without impact on ovarian function [108]. The stimulation of VEGF leads to the activation of the phosphatidylinositol 3-kinase-protein kinase B (PI3K/Akt) pathway [109]. This stimulated signaling can initiate the angiogenesis process and can participate in the decrease of apoptosis [110]. Through the stimulation of both hypoxia inducible factor 1 alpha (HIF-1α) and cyclin D1, the PI3K/Akt pathway involves angiogenesis without hypoxia [110,111]. The decrease in NME1 gene expression in the endometrium stimulates both the PI3K/Akt pathway and the expression of VEGF and IL-8 to induce production of new vascular cells in ectopic endometrial lesions [112]. In endometriosis, the stimulation of the PI3K/Akt pathway is associated with NOS expression and oxidative stress [113]. By maintaining the fibrotic environment of endometriosis, the PI3K/Akt pathway stimulates the ERK pathway [114]. Furthermore, in endometriosis, the PI3K/Akt pathway stimulates the NF-κB pathway, a major stimulator of VEGF, leading to cell proliferation and angiogenesis [115].
Several animal studies have shown that the use of PPARγ agonists lead to the prevention of the development of endometriotic-like lesions [21,41,42,43,45,77] (Table 1). TZDs downregulate the proliferation of endothelial cells and lead to the reduction of vasculature lesions by inhibiting VEGF expression [44,76,116,117]. The stimulation of PPARγ expression is associated with the reduction of AT1R proteins in endometriotic lesions leading to a decrease in the density of CD31-positive micro-vessels and to the reduction of immune cells [78].
Telmisartan, a PPARγ agonist possessing anti-atherogenic properties, can block AT1R in endometrial stromal cells [19]. Thus, the AT1R antagonism of telmisartan can downregulate the choroidal inflammation and neovascularization [118] and can prevent hepatocarcinogenesis through the suppression of hepatic blood vessel formation [119]. The anti-angiogenic action of telmisartan is modulated by the stimulation of PPARγ [78,120]. Furthermore, rosiglitazone can diminish endothelial cell proliferation and migration and can decrease the expression of VEGF in human umbilical vein endothelial cells [79]. Pioglitazone and rosiglitazone can decrease the activation of basic fibroblast growth factor (bFGF)- and VEGF-induced blood vessel formation in the chorioallantois membrane model [80].
3.3. Adhesion and Invasion
Molecules adhesion increases the attachment of endometrial-like tissues to ectopic sites [121]. Several findings have shown that ectopic endometriotic cells possess the ability to invade their surrounding environment and that they have the potential to metastasize in lymph nodes and in the abdominal cavity [122].
An increase in the production of MMP, including MMP-1,2,3,9,11, ICAM-1, integrins, and cadherins, has been observed in the peritoneum of endometriotic women. These molecules have a major function in tissue attachment, in the invasion of ectopic lesions, and in implant progression and angiogenesis [123,124]. Thus, MMPs are involved in several reproductive mechanisms, such as ovulation, menstruation, and embryo implantation [125,126]. The expression of endometrial MMPs is low in the proliferative stage, declines in the early secretory stage, but increases in the late secretory stage. One of the main inhibitors of MMPs is progesterone. Progesterone controls many different hormones, growth factors, and cytokines. MMPs can modulate the expression of progesterone by controlling the plasminogen activator (PAI) pathway [127,128,129]. Retinoic acid and transforming growth factor-β (TGF-β) both increase the expression of tissue inhibitors of metalloproteinases (TIMPs), allowing MMP activity to mediate the maintenance and survival of lesions [130].
Moreover, PGE2 acts through G protein-coupled receptors and modulates many cellular pathways. In endometriosis, these G protein-coupled receptors are defined by three subtypes of the PGE receptor (EP2, EP3, and EP4) [131]. Previous findings have shown that EP receptors intracellularly transactivate the MAPK, Wnt, and PI3K/Akt pathways, leading to the modulation of cell apoptosis, proliferation, invasion, migration, angiogenesis, pain, and immunomodulation [132,133]. The administration of COX-2 inhibitors is associated with the decrease in survival, migration, and invasion of endometriotic cells, resulting in a decrease of PGE2 production [134,135]. The inhibition of COX-2 in endometriotic cells is controlled by MMP-2 and MMP-9 [136]. Nevertheless, the underlying molecular processes of COX-2 inhibitors remain unclear [64].
PPARγ activation is associated with a reduction of invasion by acting on LP9 cells and through the co-adhesion molecule (CAM) on peritoneal mesothelial cells [81] (Table 1). Previous findings have explored the potential effects of PPARγ agonists on the inhibition of CAM expression in inflammatory processes. Pioglitazone can influence monocyte–endothelial cell binding by inhibiting vascular cell adhesion molecule-1 (VCAM-1) expression on activated endothelial cells [82]. PPARγ agonists can suppress the vascular adhesion molecule expression in endometriosis [20]. PPARγ agonists can decrease the expression of ICAM-1 in lung epithelial cells, leading to the b2-integrin-mediated adhesion of monocytic effector cells to monolayers of these respiratory syncytial virus-infected human lung cells [83]. Moreover, rosiglitazone can reduce proliferation, apoptosis, and invasion in in vitro endometrial tissues by acting on the promoters of the MAT2A gene [84].
3.4. Apoptosis
The maintenance of tissue homeostasis is modulated by cell death. An imbalance is observed between cell apoptosis and proliferation to maintain this homeostasis against cell disorders. Many findings have shown that apoptosis is upregulated during the menstrual cycle to retain cell homeostasis and to remove aged cells from the functional layer of the endometrium [137,138]. In endometriosis, the diminution in cell death may be the cause of the development of this disease [139,140]. The proportion of cell apoptosis is diminished in endometrial cells [141]. Furthermore, in endometriosis, the stimulation of the NF-κB pathway is correlated with both proliferation and apoptosis [142,143].
The PI3K/Akt pathway is stimulated in endometriotic cells [144] and increases the apoptosis process [145]. A vicious circle is observed between NF-κB and PI3K/Akt pathways to increase the activation of cell apoptosis [146]. The NF-κB pathway decreases the antiapoptotic function of the PI3K/Akt pathway [147]. Xlinked inhibitor of apoptosis protein (XIAP) acts as caspase-3 and caspase-9 inhibitors and modulates the BAX/cytochrome c pathway to involve apoptosis by diminishing the expression of caspase-9 [148]. The PI3K/Akt pathway leads to the activation of XIAP and B cell lymphoma extra-large (BclxL) expressions. Furthermore, Bcl-xL is stimulated by the PI3K/Akt pathway [149,150]. In ectopic endometriotic tissues, Bcl-2 exerts many modulatory functions in both cellular apoptosis and proliferation [151]. Bcl2 can lead to antiapoptotic features [152]. In physiological conditions, the stimulation of extracellular signal-regulated kinases 1 and 2 (ERK1/2) increases the proliferation of cells and then promotes angiogenesis [153,154]. ERK1/2 activation decreases Bcl2 expression, decreasing mitochondrial-dependent cell death [155]. The PI3K/Akt and MAPK pathways both stimulate the process of anti-apoptosis in endometriosis [144,156]. An opposing interplay is observed between the ERK and PI3K/Akt pathways [157,158]. A decrease in the PI3K/Akt pathway is associated with the stimulation of the ERK pathway [159]. The reciprocity is verifiable [160]. Many findings have shown an interest in co-targeting these two signaling pathways in endometriotic cells [161].
Inhibition of EP2 and EP4, two receptors of PGE2, can facilitate the interactions between antiapoptotic proteins, such as Bcl-2 and Bcl-XX, and proapoptotic proteins, such as Bax and Bad, to increase cytochrome c release and to then activate the caspase-3 pathway [162]. Moreover, the inhibition of both COX-2 and PGE2 is associated with decrease in proliferation in endometriotic epithelial and stromal cells [135]. Thus, the administration of COX-2 inhibitors to the ectopic and eutopic endometrium can participate in decreasing proliferation, growth, and then to increasing apoptosis [163].
PPARγ activation is associated with apoptosis and cell cycle regulation in human endometriotic epithelial and stromal cells [21]. Rosiglitazone can decrease endometriotic implant growth, cell proliferation, and vascularization, and it stimulates the process of apoptosis in the mouse model of endometriosis [44] (Table 1). Rosiglitazone, ciglitazone, or pioglitazone can decrease the growth of implants in a mouse model of endometriosis [41,42,43] and can diminish postsurgical adhesions with endometriotic lesions in a chimeric mouse model [85]. The role of estrogen in the growth of endometriosis is well known. P450 aromatase can catalyze the last stages of the biosynthesis of estrogen from androgens in two ways: (a) from androstenedione into estrone and (b) from testosterone into estradiol [164,165,166,167]. The P450 aromatase protein is highly expressed in endometriosis [165]. In endometriotic stromal cells, PGE2 stimulates the expression P450 aromatase by EP2 [166,167]. TZDs, PPARγ agonists, can diminish the expression of P450 aromatase in human breast tissue and breast cancer [168,169] as well as in ovarian granulosa cells [170]. The function for PGE2 is well-known in the initiation of endometriosis [162,163,171]. Recent findings have shown that PGE2, via EP2 and EP4, can stimulate the cAMP/PKA/CREB pathway, enhancing P450 aromatase transcription and increasing the activity of aromatase [168]. Stimulation of PPARγ by pioglitazone can downregulate P450 aromatase expression through the induction of BRCA1 and through the inhibition of the PGE2/cAMP/KA pathway in breast cancer [168].
4. Conclusions
PPARγ agonists can decrease inflammation, angiogenesis, invasion and adhesion, and can induce apoptosis in endometrial lesions. Nevertheless, these actions are for the main part observed in animals and remain hypothetical in women. However, the use of natural PPARγ ligands could be interesting in dietary prevention and disease management for women. Nevertheless, the limited number of studies focusing on the different interactions of PPARγ agonists in endometriosis restricts its clear and immediate use as a therapeutic strategy. Future clinical trials are needed to better investigate and highlight the role of PPARγ agonists in endometriosis.
Author Contributions
Conceptualization, A.V.; writing—original draft preparation, A.V.; writing—review and editing, J.-N.V., A.L.B. and Y.L. All authors have read and agreed to the published version of the manuscript.
Funding
This research received no external funding.
Institutional Review Board Statement
Not applicable.
Informed Consent Statement
Not applicable.
Data Availability Statement
No new data were created or analyzed in this study. Data sharing is not applicable to this article.
Conflicts of Interest
The authors declare no conflict of interest.
Footnotes
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.
References
- 1.Burney R.O., Giudice L.C. Pathogenesis and Pathophysiology of Endometriosis. Fertil. Steril. 2012;98:511–519. doi: 10.1016/j.fertnstert.2012.06.029. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 2.As-Sanie S., Black R., Giudice L.C., Gray Valbrun T., Gupta J., Jones B., Laufer M.R., Milspaw A.T., Missmer S.A., Norman A., et al. Assessing Research Gaps and Unmet Needs in Endometriosis. Am. J. Obstet. Gynecol. 2019;221:86–94. doi: 10.1016/j.ajog.2019.02.033. [DOI] [PubMed] [Google Scholar]
- 3.Darling A.M., Chavarro J.E., Malspeis S., Harris H.R., Missmer S.A. A Prospective Cohort Study of Vitamins B, C, E, and Multivitamin Intake and Endometriosis. J. Endometr. 2013;5:17–26. doi: 10.5301/JE.5000151. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 4.Tariverdian N., Theoharides T.C., Siedentopf F., Gutiérrez G., Jeschke U., Rabinovich G.A., Blois S.M., Arck P.C. Neuroendocrine-Immune Disequilibrium and Endometriosis: An Interdisciplinary Approach. Semin. Immunopathol. 2007;29:193–210. doi: 10.1007/s00281-007-0077-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 5.Ballard K., Lowton K., Wright J. What’s the Delay? A Qualitative Study of Women’s Experiences of Reaching a Diagnosis of Endometriosis. Fertil. Steril. 2006;86:1296–1301. doi: 10.1016/j.fertnstert.2006.04.054. [DOI] [PubMed] [Google Scholar]
- 6.Vetvicka V., Laganà A.S., Salmeri F.M., Triolo O., Palmara V.I., Vitale S.G., Sofo V., Králíčková M. Regulation of Apoptotic Pathways during Endometriosis: From the Molecular Basis to the Future Perspectives. Arch. Gynecol. Obstet. 2016;294:897–904. doi: 10.1007/s00404-016-4195-6. [DOI] [PubMed] [Google Scholar]
- 7.Laganà A.S., Vitale S.G., Salmeri F.M., Triolo O., Ban Frangež H., Vrtačnik-Bokal E., Stojanovska L., Apostolopoulos V., Granese R., Sofo V. Unus pro Omnibus, Omnes pro Uno: A Novel, Evidence-Based, Unifying Theory for the Pathogenesis of Endometriosis. Med. Hypotheses. 2017;103:10–20. doi: 10.1016/j.mehy.2017.03.032. [DOI] [PubMed] [Google Scholar]
- 8.Kobayashi H., Yamada Y., Morioka S., Niiro E., Shigemitsu A., Ito F. Mechanism of Pain Generation for Endometriosis-Associated Pelvic Pain. Arch. Gynecol. Obstet. 2014;289:13–21. doi: 10.1007/s00404-013-3049-8. [DOI] [PubMed] [Google Scholar]
- 9.Trovó de Marqui A.B. Genetic Polymorphisms and Endometriosis: Contribution of Genes That Regulate Vascular Function and Tissue Remodeling. Rev. Assoc. Med. Bras. 2012;58:620–632. doi: 10.1016/S0104-4230(12)70259-2. [DOI] [PubMed] [Google Scholar]
- 10.Lousse J.-C., Van Langendonckt A., Defrere S., Ramos R.G., Colette S., Donnez J. Peritoneal Endometriosis Is an Inflammatory Disease. Front. Biosci. 2012;4:23–40. doi: 10.2741/e358. [DOI] [PubMed] [Google Scholar]
- 11.Dull A.-M., Moga M.A., Dimienescu O.G., Sechel G., Burtea V., Anastasiu C.V. Therapeutic Approaches of Resveratrol on Endometriosis via Anti-Inflammatory and Anti-Angiogenic Pathways. Molecules. 2019;24:667. doi: 10.3390/molecules24040667. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 12.Kobayashi H., Higashiura Y., Shigetomi H., Kajihara H. Pathogenesis of Endometriosis: The Role of Initial Infection and Subsequent Sterile Inflammation (Review) Mol. Med. Rep. 2014;9:9–15. doi: 10.3892/mmr.2013.1755. [DOI] [PubMed] [Google Scholar]
- 13.Laganà A.S., Vitale S.G., Granese R., Palmara V., Ban Frangež H., Vrtačnik-Bokal E., Chiofalo B., Triolo O. Clinical Dynamics of Dienogest for the Treatment of Endometriosis: From Bench to Bedside. Expert Opin. Drug Metab. Toxicol. 2017;13:593–596. doi: 10.1080/17425255.2017.1297421. [DOI] [PubMed] [Google Scholar]
- 14.Vallée A., Lecarpentier Y. Curcumin and Endometriosis. Int. J. Mol. Sci. 2020;21:2440. doi: 10.3390/ijms21072440. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 15.Vallée A., Lecarpentier Y., Guillevin R., Vallée J.-N. Interactions between TGF-Β1, Canonical WNT/β-Catenin Pathway and PPAR γ in Radiation-Induced Fibrosis. Oncotarget. 2017;8:90579–90604. doi: 10.18632/oncotarget.21234. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 16.Vallée A., Vallée J.-N., Lecarpentier Y. PPARγ Agonists: Potential Treatment for Autism Spectrum Disorder by Inhibiting the Canonical WNT/β-Catenin Pathway. Mol. Psychiatry. 2018 doi: 10.1038/s41380-018-0131-4. [DOI] [PubMed] [Google Scholar]
- 17.Vallée A., Lecarpentier Y. Crosstalk Between Peroxisome Proliferator-Activated Receptor Gamma and the Canonical WNT/β-Catenin Pathway in Chronic Inflammation and Oxidative Stress During Carcinogenesis. Front. Immunol. 2018;9:745. doi: 10.3389/fimmu.2018.00745. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 18.Rocha A.L.L., Reis F.M., Petraglia F. New Trends for the Medical Treatment of Endometriosis. Expert Opin. Investig. Drugs. 2012;21:905–919. doi: 10.1517/13543784.2012.683783. [DOI] [PubMed] [Google Scholar]
- 19.Braileanu G.T., Simasko S.M., Speth R.C., Daubert D., Hu J., Mirando M.A. Angiotensin II Increases Intracellular Calcium Concentration in Pig Endometrial Stromal Cells through Type 1 Angiotensin Receptors, but Does Not Stimulate Phospholipase C Activity or Prostaglandin F2alpha Secretion. Reprod. Fertil. Dev. 2002;14:199–205. doi: 10.1071/rd02003. [DOI] [PubMed] [Google Scholar]
- 20.Wang N., Verna L., Chen N.-G., Chen J., Li H., Forman B.M., Stemerman M.B. Constitutive Activation of Peroxisome Proliferator-Activated Receptor-Gamma Suppresses pro-Inflammatory Adhesion Molecules in Human Vascular Endothelial Cells. J. Biol. Chem. 2002;277:34176–34181. doi: 10.1074/jbc.M203436200. [DOI] [PubMed] [Google Scholar]
- 21.Lebovic D.I., Kavoussi S.K., Lee J., Banu S.K., Arosh J.A. PPARγ Activation Inhibits Growth and Survival of Human Endometriotic Cells by Suppressing Estrogen Biosynthesis and PGE2 Signaling. Endocrinology. 2013;154:4803–4813. doi: 10.1210/en.2013-1168. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 22.Semple R.K., Chatterjee V.K.K., O’Rahilly S. PPAR Gamma and Human Metabolic Disease. J. Clin. Investig. 2006;116:581–589. doi: 10.1172/JCI28003. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 23.Hallenborg P., Petersen R.K., Kouskoumvekaki I., Newman J.W., Madsen L., Kristiansen K. The Elusive Endogenous Adipogenic PPARγ Agonists: Lining up the Suspects. Prog. Lipid Res. 2016;61:149–162. doi: 10.1016/j.plipres.2015.11.002. [DOI] [PubMed] [Google Scholar]
- 24.Goto T., Kim Y.-I., Takahashi N., Kawada T. Natural Compounds Regulate Energy Metabolism by the Modulating the Activity of Lipid-Sensing Nuclear Receptors. Mol. Nutr. Food Res. 2013;57:20–33. doi: 10.1002/mnfr.201200522. [DOI] [PubMed] [Google Scholar]
- 25.Smirnov A.N. Nuclear Receptors: Nomenclature, Ligands, Mechanisms of Their Effects on Gene Expression. Biochem. Mosc. 2002;67:957–977. doi: 10.1023/A:1020545200302. [DOI] [PubMed] [Google Scholar]
- 26.Kota B.P., Huang T.H.-W., Roufogalis B.D. An Overview on Biological Mechanisms of PPARs. Pharmacol. Res. 2005;51:85–94. doi: 10.1016/j.phrs.2004.07.012. [DOI] [PubMed] [Google Scholar]
- 27.Lee C.-H., Olson P., Evans R.M. Minireview: Lipid Metabolism, Metabolic Diseases, and Peroxisome Proliferator-Activated Receptors. Endocrinology. 2003;144:2201–2207. doi: 10.1210/en.2003-0288. [DOI] [PubMed] [Google Scholar]
- 28.Marx N., Duez H., Fruchart J.-C., Staels B. Peroxisome Proliferator-Activated Receptors and Atherogenesis: Regulators of Gene Expression in Vascular Cells. Circ. Res. 2004;94:1168–1178. doi: 10.1161/01.RES.0000127122.22685.0A. [DOI] [PubMed] [Google Scholar]
- 29.Cunard R., Ricote M., DiCampli D., Archer D.C., Kahn D.A., Glass C.K., Kelly C.J. Regulation of Cytokine Expression by Ligands of Peroxisome Proliferator Activated Receptors. J. Immunol. 2002;168:2795–2802. doi: 10.4049/jimmunol.168.6.2795. [DOI] [PubMed] [Google Scholar]
- 30.Ricote M., Li A.C., Willson T.M., Kelly C.J., Glass C.K. The Peroxisome Proliferator-Activated Receptor-Gamma Is a Negative Regulator of Macrophage Activation. Nature. 1998;391:79–82. doi: 10.1038/34178. [DOI] [PubMed] [Google Scholar]
- 31.Wu L., Guo C., Wu J. Therapeutic Potential of PPARγ Natural Agonists in Liver Diseases. J. Cell Mol. Med. 2020;24:2736–2748. doi: 10.1111/jcmm.15028. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 32.Giannini S., Serio M., Galli A. Pleiotropic Effects of Thiazolidinediones: Taking a Look beyond Antidiabetic Activity. J. Endocrinol. Investig. 2004;27:982–991. doi: 10.1007/BF03347546. [DOI] [PubMed] [Google Scholar]
- 33.Rogue A., Spire C., Brun M., Claude N., Guillouzo A. Gene Expression Changes Induced by PPAR Gamma Agonists in Animal and Human Liver. PPAR Res. 2010;2010:325183. doi: 10.1155/2010/325183. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 34.Vallée A., Lecarpentier Y., Vallée J.-N. Thermodynamic Aspects and Reprogramming Cellular Energy Metabolism during the Fibrosis Process. Int. J. Mol. Sci. 2017;18:2537. doi: 10.3390/ijms18122537. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 35.Aoki Y., Maeno T., Aoyagi K., Ueno M., Aoki F., Aoki N., Nakagawa J., Sando Y., Shimizu Y., Suga T., et al. Pioglitazone, a Peroxisome Proliferator-Activated Receptor Gamma Ligand, Suppresses Bleomycin-Induced Acute Lung Injury and Fibrosis. Respiration. 2009;77:311–319. doi: 10.1159/000168676. [DOI] [PubMed] [Google Scholar]
- 36.Bishop-Bailey D. PPARs and Angiogenesis. Biochem. Soc. Trans. 2011;39:1601–1605. doi: 10.1042/BST20110643. [DOI] [PubMed] [Google Scholar]
- 37.Panigrahy D., Edin M.L., Lee C.R., Huang S., Bielenberg D.R., Butterfield C.E., Barnés C.M., Mammoto A., Mammoto T., Luria A., et al. Epoxyeicosanoids Stimulate Multiorgan Metastasis and Tumor Dormancy Escape in Mice. J. Clin. Investig. 2012;122:178–191. doi: 10.1172/JCI58128. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 38.Xin X., Yang S., Kowalski J., Gerritsen M.E. Peroxisome Proliferator-Activated Receptor Gamma Ligands Are Potent Inhibitors of Angiogenesis in Vitro and in Vivo. J. Biol. Chem. 1999;274:9116–9121. doi: 10.1074/jbc.274.13.9116. [DOI] [PubMed] [Google Scholar]
- 39.Sarayba M.A., Li L., Tungsiripat T., Liu N.H., Sweet P.M., Patel A.J., Osann K.E., Chittiboyina A., Benson S.C., Pershadsingh H.A., et al. Inhibition of Corneal Neovascularization by a Peroxisome Proliferator-Activated Receptor-Gamma Ligand. Exp. Eye Res. 2005;80:435–442. doi: 10.1016/j.exer.2004.10.009. [DOI] [PubMed] [Google Scholar]
- 40.Fedele L., Somigliana E., Frontino G., Benaglia L., Vigano P. New Drugs in Development for the Treatment of Endometriosis. Expert Opin. Investig. Drugs. 2008;17:1187–1202. doi: 10.1517/13543784.17.8.1187. [DOI] [PubMed] [Google Scholar]
- 41.Lebovic D.I., Kir M., Casey C.L. Peroxisome Proliferator-Activated Receptor-Gamma Induces Regression of Endometrial Explants in a Rat Model of Endometriosis. Fertil. Steril. 2004;82(Suppl. 3):1008–1013. doi: 10.1016/j.fertnstert.2004.02.148. [DOI] [PubMed] [Google Scholar]
- 42.Demirturk F., Aytan H., Caliskan A.C., Aytan P., Koseoglu D.R. Effect of Peroxisome Proliferator-Activated Receptor-Gamma Agonist Rosiglitazone on the Induction of Endometriosis in an Experimental Rat Model. J. Soc. Gynecol. Investig. 2006;13:58–62. doi: 10.1016/j.jsgi.2005.10.002. [DOI] [PubMed] [Google Scholar]
- 43.Aytan H., Caliskan A.C., Demirturk F., Aytan P., Koseoglu D.R. Peroxisome Proliferator-Activated Receptor-Gamma Agonist Rosiglitazone Reduces the Size of Experimental Endometriosis in the Rat Model. Aust. N. Z. J. Obstet. Gynaecol. 2007;47:321–325. doi: 10.1111/j.1479-828X.2007.00744.x. [DOI] [PubMed] [Google Scholar]
- 44.Olivares C., Ricci A., Bilotas M., Barañao R.I., Meresman G. The Inhibitory Effect of Celecoxib and Rosiglitazone on Experimental Endometriosis. Fertil. Steril. 2011;96:428–433. doi: 10.1016/j.fertnstert.2011.05.063. [DOI] [PubMed] [Google Scholar]
- 45.Lebovic D.I., Mwenda J.M., Chai D.C., Mueller M.D., Santi A., Fisseha S., D’Hooghe T. PPAR-Gamma Receptor Ligand Induces Regression of Endometrial Explants in Baboons: A Prospective, Randomized, Placebo- and Drug-Controlled Study. Fertil. Steril. 2007;88:1108–1119. doi: 10.1016/j.fertnstert.2006.12.072. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 46.Santulli P., Marcellin L., Noël J.-C., Borghese B., Fayt I., Vaiman D., Chapron C., Méhats C. Sphingosine Pathway Deregulation in Endometriotic Tissues. Fertil. Steril. 2012;97:904–911. doi: 10.1016/j.fertnstert.2011.12.051. [DOI] [PubMed] [Google Scholar]
- 47.Barcz E., Milewski Ł., Dziunycz P., Kamiński P., Płoski R., Malejczyk J. Peritoneal Cytokines and Adhesion Formation in Endometriosis: An Inverse Association with Vascular Endothelial Growth Factor Concentration. Fertil. Steril. 2012;97:1380–1386.e1. doi: 10.1016/j.fertnstert.2012.03.057. [DOI] [PubMed] [Google Scholar]
- 48.Fan Y.-Y., Chen H.-Y., Chen W., Liu Y.-N., Fu Y., Wang L.-N. Expression of Inflammatory Cytokines in Serum and Peritoneal Fluid from Patients with Different Stages of Endometriosis. Gynecol. Endocrinol. 2018;34:507–512. doi: 10.1080/09513590.2017.1409717. [DOI] [PubMed] [Google Scholar]
- 49.Sikora J., Smycz-Kubańska M., Mielczarek-Palacz A., Kondera-Anasz Z. Abnormal Peritoneal Regulation of Chemokine Activation-The Role of IL-8 in Pathogenesis of Endometriosis. Am. J. Reprod. Immunol. 2017;77 doi: 10.1111/aji.12622. [DOI] [PubMed] [Google Scholar]
- 50.Lebovic D.I., Baldocchi R.A., Mueller M.D., Taylor R.N. Altered Expression of a Cell-Cycle Suppressor Gene, Tob-1, in Endometriotic Cells by CDNA Array Analyses. Fertil. Steril. 2002;78:849–854. doi: 10.1016/S0015-0282(02)03319-8. [DOI] [PubMed] [Google Scholar]
- 51.Sikora J., Mielczarek-Palacz A., Kondera-Anasz Z. Association of the Precursor of Interleukin-1β and Peritoneal Inflammation-Role in Pathogenesis of Endometriosis. J. Clin. Lab. Anal. 2016;30:831–837. doi: 10.1002/jcla.21944. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 52.Hsiao K.-Y., Chang N., Lin S.-C., Li Y.-H., Wu M.-H. Inhibition of Dual Specificity Phosphatase-2 by Hypoxia Promotes Interleukin-8-Mediated Angiogenesis in Endometriosis. Hum. Reprod. 2014;29:2747–2755. doi: 10.1093/humrep/deu255. [DOI] [PubMed] [Google Scholar]
- 53.Arici A., Tazuke S.I., Attar E., Kliman H.J., Olive D.L. Interleukin-8 Concentration in Peritoneal Fluid of Patients with Endometriosis and Modulation of Interleukin-8 Expression in Human Mesothelial Cells. Mol. Hum. Reprod. 1996;2:40–45. doi: 10.1093/molehr/2.1.40. [DOI] [PubMed] [Google Scholar]
- 54.Ryan I.P., Tseng J.F., Schriock E.D., Khorram O., Landers D.V., Taylor R.N. Interleukin-8 Concentrations Are Elevated in Peritoneal Fluid of Women with Endometriosis. Fertil. Steril. 1995;63:929–932. doi: 10.1016/S0015-0282(16)57506-2. [DOI] [PubMed] [Google Scholar]
- 55.Kalu E., Sumar N., Giannopoulos T., Patel P., Croucher C., Sherriff E., Bansal A. Cytokine Profiles in Serum and Peritoneal Fluid from Infertile Women with and without Endometriosis. J. Obstet. Gynaecol. Res. 2007;33:490–495. doi: 10.1111/j.1447-0756.2007.00569.x. [DOI] [PubMed] [Google Scholar]
- 56.Taniguchi F., Harada T., Miyakoda H., Iwabe T., Deura I., Tagashira Y., Miyamoto A., Watanabe A., Suou K., Uegaki T., et al. TAK1 Activation for Cytokine Synthesis and Proliferation of Endometriotic Cells. Mol. Cell. Endocrinol. 2009;307:196–204. doi: 10.1016/j.mce.2009.04.012. [DOI] [PubMed] [Google Scholar]
- 57.Gazvani R., Templeton A. Peritoneal Environment, Cytokines and Angiogenesis in the Pathophysiology of Endometriosis. Reproduction. 2002;123:217–226. doi: 10.1530/rep.0.1230217. [DOI] [PubMed] [Google Scholar]
- 58.Lousse J.-C., Van Langendonckt A., González-Ramos R., Defrère S., Renkin E., Donnez J. Increased Activation of Nuclear Factor-Kappa B (NF-KappaB) in Isolated Peritoneal Macrophages of Patients with Endometriosis. Fertil. Steril. 2008;90:217–220. doi: 10.1016/j.fertnstert.2007.06.015. [DOI] [PubMed] [Google Scholar]
- 59.Ahn S.H., Monsanto S.P., Miller C., Singh S.S., Thomas R., Tayade C. Pathophysiology and Immune Dysfunction in Endometriosis. BioMed Res. Int. 2015;2015:795976. doi: 10.1155/2015/795976. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 60.Wu M.-H., Shoji Y., Wu M.-C., Chuang P.-C., Lin C.-C., Huang M.-F., Tsai S.-J. Suppression of Matrix Metalloproteinase-9 by Prostaglandin E(2) in Peritoneal Macrophage Is Associated with Severity of Endometriosis. Am. J. Pathol. 2005;167:1061–1069. doi: 10.1016/S0002-9440(10)61195-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 61.Lousse J.-C., Defrère S., Colette S., Van Langendonckt A., Donnez J. Expression of Eicosanoid Biosynthetic and Catabolic Enzymes in Peritoneal Endometriosis. Hum. Reprod. 2010;25:734–741. doi: 10.1093/humrep/dep408. [DOI] [PubMed] [Google Scholar]
- 62.Bulun S.E., Monsavais D., Pavone M.E., Dyson M., Xue Q., Attar E., Tokunaga H., Su E.J. Role of Estrogen Receptor-β in Endometriosis. Semin. Reprod. Med. 2012;30:39–45. doi: 10.1055/s-0031-1299596. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 63.Smyth E.M., Grosser T., Wang M., Yu Y., FitzGerald G.A. Prostanoids in Health and Disease. J. Lipid Res. 2009;50:S423–S428. doi: 10.1194/jlr.R800094-JLR200. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 64.Banu S.K., Lee J., Speights V.O., Starzinski-Powitz A., Arosh J.A. Cyclooxygenase-2 Regulates Survival, Migration, and Invasion of Human Endometriotic Cells through Multiple Mechanisms. Endocrinology. 2008;149:1180–1189. doi: 10.1210/en.2007-1168. [DOI] [PubMed] [Google Scholar]
- 65.Park G.Y., Christman J.W. Involvement of Cyclooxygenase-2 and Prostaglandins in the Molecular Pathogenesis of Inflammatory Lung Diseases. Am. J. Physiol. Lung Cell Mol. Physiol. 2006;290:L797–L805. doi: 10.1152/ajplung.00513.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 66.Maia H., Maltez A., Studard E., Zausner B., Athayde C., Coutinho E. Effect of the Menstrual Cycle and Oral Contraceptives on Cyclooxygenase-2 Expression in the Endometrium. Gynecol. Endocrinol. 2005;21:57–61. doi: 10.1080/09513590500099602. [DOI] [PubMed] [Google Scholar]
- 67.Ota H., Igarashi S., Sasaki M., Tanaka T. Distribution of Cyclooxygenase-2 in Eutopic and Ectopic Endometrium in Endometriosis and Adenomyosis. Hum. Reprod. 2001;16:561–566. doi: 10.1093/humrep/16.3.561. [DOI] [PubMed] [Google Scholar]
- 68.Chishima F., Hayakawa S., Sugita K., Kinukawa N., Aleemuzzaman S., Nemoto N., Yamamoto T., Honda M. Increased Expression of Cyclooxygenase-2 in Local Lesions of Endometriosis Patients. Am. J. Reprod. Immunol. 2002;48:50–56. doi: 10.1034/j.1600-0897.2002.01101.x. [DOI] [PubMed] [Google Scholar]
- 69.Wu M.-H., Wang C.-A., Lin C.-C., Chen L.-C., Chang W.-C., Tsai S.-J. Distinct Regulation of Cyclooxygenase-2 by Interleukin-1β in Normal and Endometriotic Stromal Cells. J. Clin. Endocrinol. Metab. 2005;90:286–295. doi: 10.1210/jc.2004-1612. [DOI] [PubMed] [Google Scholar]
- 70.Wu M.-H., Sun H.S., Lin C.-C., Hsiao K.-Y., Chuang P.-C., Pan H.-A., Tsai S.-J. Distinct Mechanisms Regulate Cyclooxygenase-1 and -2 in Peritoneal Macrophages of Women with and without Endometriosis. Mol. Hum. Reprod. 2002;8:1103–1110. doi: 10.1093/molehr/8.12.1103. [DOI] [PubMed] [Google Scholar]
- 71.Cho S., Park S.H., Choi Y.S., Seo S.K., Kim H.Y., Park K.H., Cho D.J., Lee B.S. Expression of Cyclooxygenase-2 in Eutopic Endometrium and Ovarian Endometriotic Tissue in Women with Severe Endometriosis. Gynecol. Obstet. Investig. 2010;69:93–100. doi: 10.1159/000261017. [DOI] [PubMed] [Google Scholar]
- 72.Wu M.-H., Lin S.-C., Hsiao K.-Y., Tsai S.-J. Hypoxia-Inhibited Dual-Specificity Phosphatase-2 Expression in Endometriotic Cells Regulates Cyclooxygenase-2 Expression. J. Pathol. 2011;225:390–400. doi: 10.1002/path.2963. [DOI] [PubMed] [Google Scholar]
- 73.Kim B.G., Yoo J.-Y., Kim T.H., Shin J.-H., Langenheim J.F., Ferguson S.D., Fazleabas A.T., Young S.L., Lessey B.A., Jeong J.-W. Aberrant Activation of Signal Transducer and Activator of Transcription-3 (STAT3) Signaling in Endometriosis. Hum. Reprod. 2015;30:1069–1078. doi: 10.1093/humrep/dev050. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 74.Ren P., Zhang Y., Huang Y., Yang Y., Jiang M. Functions of Peroxisome Proliferator-Activated Receptor Gamma (PPARγ) in Gynecologic Disorders. Clin. Med. Insights Oncol. 2015;9:CMO.S23527. doi: 10.4137/CMO.S23527. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 75.Moravek M.B., Ward E.A., Lebovic D.I. Thiazolidinediones as Therapy for Endometriosis: A Case Series. Gynecol. Obstet. Investig. 2009;68:167–170. doi: 10.1159/000230713. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 76.Sharma I., Dhawan V., Saha S.C., Dhaliwal L.K. In Vitro Effects of Peroxisome Proliferator-Activated Receptor-γ Ligands on Gene Expression in Lipopolysaccharide-Induced Endometrial and Endometriotic Stromal Cells. Fertil. Steril. 2011;95:829–831.e5. doi: 10.1016/j.fertnstert.2010.09.008. [DOI] [PubMed] [Google Scholar]
- 77.Lebovic D.I., Mwenda J.M., Chai D.C., Santi A., Xu X., D’Hooghe T. Peroxisome Proliferator-Activated Receptor-(Gamma) Receptor Ligand Partially Prevents the Development of Endometrial Explants in Baboons: A Prospective, Randomized, Placebo-Controlled Study. Endocrinology. 2010;151:1846–1852. doi: 10.1210/en.2009-1076. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 78.Nenicu A., Körbel C., Gu Y., Menger M.D., Laschke M.W. Combined Blockade of Angiotensin II Type 1 Receptor and Activation of Peroxisome Proliferator-Activated Receptor-γ by Telmisartan Effectively Inhibits Vascularization and Growth of Murine Endometriosis-like Lesions. Hum. Reprod. 2014;29:1011–1024. doi: 10.1093/humrep/deu035. [DOI] [PubMed] [Google Scholar]
- 79.Sheu W.H.-H., Ou H.-C., Chou F.-P., Lin T.-M., Yang C.-H. Rosiglitazone Inhibits Endothelial Proliferation and Angiogenesis. Life Sci. 2006;78:1520–1528. doi: 10.1016/j.lfs.2005.07.046. [DOI] [PubMed] [Google Scholar]
- 80.Aljada A., O’Connor L., Fu Y.-Y., Mousa S.A. PPAR Gamma Ligands, Rosiglitazone and Pioglitazone, Inhibit BFGF- and VEGF-Mediated Angiogenesis. Angiogenesis. 2008;11:361–367. doi: 10.1007/s10456-008-9118-0. [DOI] [PubMed] [Google Scholar]
- 81.Kavoussi S.K., Witz C.A., Binkley P.A., Nair A.S., Lebovic D.I. Peroxisome-Proliferator Activator Receptor-Gamma Activation Decreases Attachment of Endometrial Cells to Peritoneal Mesothelial Cells in an in Vitro Model of the Early Endometriotic Lesion. Mol. Hum. Reprod. 2009;15:687–692. doi: 10.1093/molehr/gap061. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 82.Imamoto E., Yoshida N., Uchiyama K., Kuroda M., Kokura S., Ichikawa H., Naito Y., Tanigawa T., Yoshikawa T. Inhibitory Effect of Pioglitazone on Expression of Adhesion Molecules on Neutrophils and Endothelial Cells. Biofactors. 2004;20:37–47. doi: 10.1002/biof.5520200104. [DOI] [PubMed] [Google Scholar]
- 83.Arnold R., Neumann M., König W. Peroxisome Proliferator-Activated Receptor-Gamma Agonists Inhibit Respiratory Syncytial Virus-Induced Expression of Intercellular Adhesion Molecule-1 in Human Lung Epithelial Cells. Immunology. 2007;121:71–81. doi: 10.1111/j.1365-2567.2006.02539.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 84.Zhang S., Zhuang L., Liu Q., Yu X., Min Q., Chen M., Chen Q. PPARγ Induces the Paroxysm of Endometriosis by Regulating the Transcription of MAT2A Gene. Am. J. Transl. Res. 2021;13:1377–1388. [PMC free article] [PubMed] [Google Scholar]
- 85.Herington J.L., Crispens M.A., Carvalho-Macedo A.C., Camargos A.F., Lebovic D.I., Bruner-Tran K.L., Osteen K.G. Development and Prevention of Postsurgical Adhesions in a Chimeric Mouse Model of Experimental Endometriosis. Fertil. Steril. 2011;95:1295–1301.e1. doi: 10.1016/j.fertnstert.2010.09.017. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 86.Folkman J., Shing Y. Angiogenesis. J. Biol. Chem. 1992;267:10931–10934. doi: 10.1016/S0021-9258(19)49853-0. [DOI] [PubMed] [Google Scholar]
- 87.Risau W. Mechanisms of Angiogenesis. Nature. 1997;386:671–674. doi: 10.1038/386671a0. [DOI] [PubMed] [Google Scholar]
- 88.Rooprai H.K., McCormick D. Proteases and Their Inhibitors in Human Brain Tumours: A Review. Anticancer. Res. 1997;17:4151–4162. [PubMed] [Google Scholar]
- 89.Lakka S.S., Gondi C.S., Rao J.S. Proteases and Glioma Angiogenesis. Brain Pathol. 2005;15:327–341. doi: 10.1111/j.1750-3639.2005.tb00118.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 90.Laschke M.W., Menger M.D. Basic Mechanisms of Vascularization in Endometriosis and Their Clinical Implications. Hum. Reprod. Update. 2018;24:207–224. doi: 10.1093/humupd/dmy001. [DOI] [PubMed] [Google Scholar]
- 91.Anastasiu C.V., Moga M.A., Elena Neculau A., Bălan A., Scârneciu I., Dragomir R.M., Dull A.-M., Chicea L.-M. Biomarkers for the Noninvasive Diagnosis of Endometriosis: State of the Art and Future Perspectives. Int. J. Mol. Sci. 2020;21:1750. doi: 10.3390/ijms21051750. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 92.Rocha A.L.L., Reis F.M., Taylor R.N. Angiogenesis and Endometriosis. Obstet. Gynecol. Int. 2013;2013 doi: 10.1155/2013/859619. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 93.Zimna A., Kurpisz M. Hypoxia-Inducible Factor-1 in Physiological and Pathophysiological Angiogenesis: Applications and Therapies. BioMed Res. Int. 2015;2015:549412. doi: 10.1155/2015/549412. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 94.Chung A.S., Lee J., Ferrara N. Targeting the Tumour Vasculature: Insights from Physiological Angiogenesis. Nat. Rev. Cancer. 2010;10:505–514. doi: 10.1038/nrc2868. [DOI] [PubMed] [Google Scholar]
- 95.Ferrara N., Kerbel R.S. Angiogenesis as a Therapeutic Target. Nature. 2005;438:967–974. doi: 10.1038/nature04483. [DOI] [PubMed] [Google Scholar]
- 96.Kerbel R.S. Tumor Angiogenesis. N. Engl. J. Med. 2008;358:2039–2049. doi: 10.1056/NEJMra0706596. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 97.Safran M., Kaelin W.G. HIF Hydroxylation and the Mammalian Oxygen-Sensing Pathway. J. Clin. Investig. 2003;111:779–783. doi: 10.1172/JCI200318181. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 98.Onishi M., Ichikawa T., Kurozumi K., Date I. Angiogenesis and Invasion in Glioma. Brain Tumor Pathol. 2011;28:13–24. doi: 10.1007/s10014-010-0007-z. [DOI] [PubMed] [Google Scholar]
- 99.Bergers G., Song S. The Role of Pericytes in Blood-Vessel Formation and Maintenance. Neuro-Oncology. 2005;7:452–464. doi: 10.1215/S1152851705000232. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 100.Reiss Y., Machein M.R., Plate K.H. The Role of Angiopoietins during Angiogenesis in Gliomas. Brain Pathol. 2005;15:311–317. doi: 10.1111/j.1750-3639.2005.tb00116.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 101.Jones N., Iljin K., Dumont D.J., Alitalo K. Tie Receptors: New Modulators of Angiogenic and Lymphangiogenic Responses. Nat. Rev. Mol. Cell Biol. 2001;2:257–267. doi: 10.1038/35067005. [DOI] [PubMed] [Google Scholar]
- 102.Maisonpierre P.C., Suri C., Jones P.F., Bartunkova S., Wiegand S.J., Radziejewski C., Compton D., McClain J., Aldrich T.H., Papadopoulos N., et al. Angiopoietin-2, a Natural Antagonist for Tie2 That Disrupts in Vivo Angiogenesis. Science. 1997;277:55–60. doi: 10.1126/science.277.5322.55. [DOI] [PubMed] [Google Scholar]
- 103.Dumont D.J., Gradwohl G., Fong G.H., Puri M.C., Gertsenstein M., Auerbach A., Breitman M.L. Dominant-Negative and Targeted Null Mutations in the Endothelial Receptor Tyrosine Kinase, Tek, Reveal a Critical Role in Vasculogenesis of the Embryo. Genes Dev. 1994;8:1897–1909. doi: 10.1101/gad.8.16.1897. [DOI] [PubMed] [Google Scholar]
- 104.Zagzag D., Amirnovin R., Greco M.A., Yee H., Holash J., Wiegand S.J., Zabski S., Yancopoulos G.D., Grumet M. Vascular Apoptosis and Involution in Gliomas Precede Neovascularization: A Novel Concept for Glioma Growth and Angiogenesis. Lab. Investig. 2000;80:837–849. doi: 10.1038/labinvest.3780088. [DOI] [PubMed] [Google Scholar]
- 105.Hardee M.E., Zagzag D. Mechanisms of Glioma-Associated Neovascularization. Am. J. Pathol. 2012;181:1126–1141. doi: 10.1016/j.ajpath.2012.06.030. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 106.Carbajo-Lozoya J., Lutz S., Feng Y., Kroll J., Hammes H.-P., Wieland T. Angiotensin II Modulates VEGF-Driven Angiogenesis by Opposing Effects of Type 1 and Type 2 Receptor Stimulation in the Microvascular Endothelium. Cell Signal. 2012;24:1261–1269. doi: 10.1016/j.cellsig.2012.02.005. [DOI] [PubMed] [Google Scholar]
- 107.MacKenzie A. Endothelium-Derived Vasoactive Agents, AT1 Receptors and Inflammation. Pharmacol. Ther. 2011;131:187–203. doi: 10.1016/j.pharmthera.2010.11.001. [DOI] [PubMed] [Google Scholar]
- 108.Liu S., Xin X., Hua T., Shi R., Chi S., Jin Z., Wang H. Efficacy of Anti-VEGF/VEGFR Agents on Animal Models of Endometriosis: A Systematic Review and Meta-Analysis. PLoS ONE. 2016;11:e0166658. doi: 10.1371/journal.pone.0166658. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 109.Vallée A., Lecarpentier Y., Vallée J.-N. Curcumin: A Therapeutic Strategy in Cancers by Inhibiting the Canonical WNT/β-Catenin Pathway. J. Exp. Clin. Cancer Res. 2019;38:323. doi: 10.1186/s13046-019-1320-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 110.Vallée A., Guillevin R., Vallée J.-N. Vasculogenesis and Angiogenesis Initiation under Normoxic Conditions through Wnt/β-Catenin Pathway in Gliomas. Rev. Neurosci. 2018;29:71–91. doi: 10.1515/revneuro-2017-0032. [DOI] [PubMed] [Google Scholar]
- 111.Mayerhofer M., Valent P., Sperr W.R., Griffin J.D., Sillaber C. BCR/ABL Induces Expression of Vascular Endothelial Growth Factor and Its Transcriptional Activator, Hypoxia Inducible Factor-1alpha, through a Pathway Involving Phosphoinositide 3-Kinase and the Mammalian Target of Rapamycin. Blood. 2002;100:3767–3775. doi: 10.1182/blood-2002-01-0109. [DOI] [PubMed] [Google Scholar]
- 112.Chang K.-K., Liu L.-B., Jin L.-P., Meng Y.-H., Shao J., Wang Y., Mei J., Li M.-Q., Li D.-J. NME1 Suppression of Endometrial Stromal Cells Promotes Angiogenesis in the Endometriotic Milieu via Stimulating the Secretion of IL-8 and VEGF. Int. J. Clin. Exp. Pathol. 2013;6:2030–2038. [PMC free article] [PubMed] [Google Scholar]
- 113.Yeo S.G., Won Y.S., Lee H.Y., Kim Y.I., Lee J.-W., Park D.C. Increased Expression of Pattern Recognition Receptors and Nitric Oxide Synthase in Patients with Endometriosis. Int. J. Med. Sci. 2013;10:1199–1208. doi: 10.7150/ijms.5169. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 114.Matsuzaki S., Darcha C. Co-Operation between the AKT and ERK Signaling Pathways May Support Growth of Deep Endometriosis in a Fibrotic Microenvironment in Vitro. Hum. Reprod. 2015;30:1606–1616. doi: 10.1093/humrep/dev108. [DOI] [PubMed] [Google Scholar]
- 115.Zhang H., Zhao X., Liu S., Li J., Wen Z., Li M. 17betaE2 Promotes Cell Proliferation in Endometriosis by Decreasing PTEN via NFkappaB-Dependent Pathway. Mol. Cell. Endocrinol. 2010;317:31–43. doi: 10.1016/j.mce.2009.11.009. [DOI] [PubMed] [Google Scholar]
- 116.Peeters L.L.H., Vigne J.-L., Tee M.K., Zhao D., Waite L.L., Taylor R.N. PPAR Gamma Represses VEGF Expression in Human Endometrial Cells: Implications for Uterine Angiogenesis. Angiogenesis. 2005;8:373–379. doi: 10.1007/s10456-005-9027-4. [DOI] [PubMed] [Google Scholar]
- 117.Streuli I., de Ziegler D., Borghese B., Santulli P., Batteux F., Chapron C. New Treatment Strategies and Emerging Drugs in Endometriosis. Expert Opin. Emerg. Drugs. 2012 doi: 10.1517/14728214.2012.668885. [DOI] [PubMed] [Google Scholar]
- 118.Nagai N., Oike Y., Izumi-Nagai K., Urano T., Kubota Y., Noda K., Ozawa Y., Inoue M., Tsubota K., Suda T., et al. Angiotensin II Type 1 Receptor-Mediated Inflammation Is Required for Choroidal Neovascularization. Arter. Thromb. Vasc. Biol. 2006;26:2252–2259. doi: 10.1161/01.ATV.0000240050.15321.fe. [DOI] [PubMed] [Google Scholar]
- 119.Tamaki Y., Nakade Y., Yamauchi T., Makino Y., Yokohama S., Okada M., Aso K., Kanamori H., Ohashi T., Sato K., et al. Angiotensin II Type 1 Receptor Antagonist Prevents Hepatic Carcinoma in Rats with Nonalcoholic Steatohepatitis. J. Gastroenterol. 2013;48:491–503. doi: 10.1007/s00535-012-0651-7. [DOI] [PubMed] [Google Scholar]
- 120.Desouza C.V., Rentschler L., Fonseca V. Peroxisome Proliferator-Activated Receptors as Stimulants of Angiogenesis in Cardiovascular Disease and Diabetes. Diabetes Metab. Syndr. Obes. 2009;2:165–172. doi: 10.2147/DMSO.S4170. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 121.Kyama C.M., Overbergh L., Mihalyi A., Meuleman C., Mwenda J.M., Mathieu C., D’Hooghe T.M. Endometrial and Peritoneal Expression of Aromatase, Cytokines, and Adhesion Factors in Women with Endometriosis. Fertil. Steril. 2008;89:301–310. doi: 10.1016/j.fertnstert.2007.02.057. [DOI] [PubMed] [Google Scholar]
- 122.Borghese B., Mondon F., Noël J.-C., Fayt I., Mignot T.-M., Vaiman D., Chapron C. Gene Expression Profile for Ectopic versus Eutopic Endometrium Provides New Insights into Endometriosis Oncogenic Potential. Mol. Endocrinol. 2008;22:2557–2562. doi: 10.1210/me.2008-0322. [DOI] [PubMed] [Google Scholar]
- 123.Hadler-Olsen E., Winberg J.-O., Uhlin-Hansen L. Matrix Metalloproteinases in Cancer: Their Value as Diagnostic and Prognostic Markers and Therapeutic Targets. Tumour Biol. 2013;34:2041–2051. doi: 10.1007/s13277-013-0842-8. [DOI] [PubMed] [Google Scholar]
- 124.Jana S., Rudra D.S., Paul S., Snehasikta S. Curcumin Delays Endometriosis Development by Inhibiting MMP-2 Activity. Indian J. Biochem. Biophys. 2012;49:342–348. [PubMed] [Google Scholar]
- 125.Marbaix E., Kokorine I., Henriet P., Donnez J., Courtoy P.J., Eeckhout Y. The Expression of Interstitial Collagenase in Human Endometrium Is Controlled by Progesterone and by Oestradiol and Is Related to Menstruation. Biochem. J. 1995;305 Pt 3:1027–1030. doi: 10.1042/bj3051027. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 126.Hulboy D.L., Rudolph L.A., Matrisian L.M. Matrix Metalloproteinases as Mediators of Reproductive Function. Mol. Hum. Reprod. 1997;3:27–45. doi: 10.1093/molehr/3.1.27. [DOI] [PubMed] [Google Scholar]
- 127.Rodgers W.H., Matrisian L.M., Giudice L.C., Dsupin B., Cannon P., Svitek C., Gorstein F., Osteen K.G. Patterns of Matrix Metalloproteinase Expression in Cycling Endometrium Imply Differential Functions and Regulation by Steroid Hormones. J. Clin. Investig. 1994;94:946–953. doi: 10.1172/JCI117461. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 128.Bruner K.L., Eisenberg E., Gorstein F., Osteen K.G. Progesterone and Transforming Growth Factor-Beta Coordinately Regulate Suppression of Endometrial Matrix Metalloproteinases in a Model of Experimental Endometriosis. Steroids. 1999;64:648–653. doi: 10.1016/S0039-128X(99)00048-3. [DOI] [PubMed] [Google Scholar]
- 129.Spuijbroek M.D., Dunselman G.A., Menheere P.P., Evers J.L. Early Endometriosis Invades the Extracellular Matrix. Fertil. Steril. 1992;58:929–933. doi: 10.1016/S0015-0282(16)55437-5. [DOI] [PubMed] [Google Scholar]
- 130.Stamenkovic I. Extracellular Matrix Remodelling: The Role of Matrix Metalloproteinases. J. Pathol. 2003;200:448–464. doi: 10.1002/path.1400. [DOI] [PubMed] [Google Scholar]
- 131.Sun H.S., Hsiao K.-Y., Hsu C.-C., Wu M.-H., Tsai S.-J. Transactivation of Steroidogenic Acute Regulatory Protein in Human Endometriotic Stromalcells Is Mediated by the Prostaglandin EP2 Receptor. Endocrinology. 2003;144:3934–3942. doi: 10.1210/en.2003-0289. [DOI] [PubMed] [Google Scholar]
- 132.Buchanan F.G., Wang D., Bargiacchi F., DuBois R.N. Prostaglandin E2 Regulates Cell Migration via the Intracellular Activation of the Epidermal Growth Factor Receptor. J. Biol. Chem. 2003;278:35451–35457. doi: 10.1074/jbc.M302474200. [DOI] [PubMed] [Google Scholar]
- 133.Wang D., DuBois R.N. The Role of Prostaglandin E(2) in Tumor-Associated Immunosuppression. Trends Mol. Med. 2016;22:1–3. doi: 10.1016/j.molmed.2015.11.003. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 134.Lucidi R.S., Witz C.A., Chrisco M., Binkley P.A., Shain S.A., Schenken R.S. A Novel in Vitro Model of the Early Endometriotic Lesion Demonstrates That Attachment of Endometrial Cells to Mesothelial Cells Is Dependent on the Source of Endometrial Cells. Fertil. Steril. 2005;84:16–21. doi: 10.1016/j.fertnstert.2004.10.058. [DOI] [PubMed] [Google Scholar]
- 135.Laschke M.W., Elitzsch A., Scheuer C., Vollmar B., Menger M.D. Selective Cyclo-Oxygenase-2 Inhibition Induces Regression of Autologous Endometrial Grafts by down-Regulation of Vascular Endothelial Growth Factor-Mediated Angiogenesis and Stimulation of Caspase-3-Dependent Apoptosis. Fertil. Steril. 2007;87:163–171. doi: 10.1016/j.fertnstert.2006.05.068. [DOI] [PubMed] [Google Scholar]
- 136.Yao M., Kargman S., Lam E.C., Kelly C.R., Zheng Y., Luk P., Kwong E., Evans J.F., Wolfe M.M. Inhibition of Cyclooxygenase-2 by Rofecoxib Attenuates the Growth and Metastatic Potential of Colorectal Carcinoma in Mice. Cancer Res. 2003;63:586–592. [PubMed] [Google Scholar]
- 137.Kokawa K., Shikone T., Nakano R. Apoptosis in the Human Uterine Endometrium during the Menstrual Cycle. J. Clin. Endocrinol. Metab. 1996;81:4144–4147. doi: 10.1210/jcem.81.11.8923873. [DOI] [PubMed] [Google Scholar]
- 138.Shikone T., Yamoto M., Kokawa K., Yamashita K., Nishimori K., Nakano R. Apoptosis of Human Corpora Lutea during Cyclic Luteal Regression and Early Pregnancy. J. Clin. Endocrinol. Metab. 1996;81:2376–2380. doi: 10.1210/jcem.81.6.8964880. [DOI] [PubMed] [Google Scholar]
- 139.Gebel H.M., Braun D.P., Tambur A., Frame D., Rana N., Dmowski W.P. Spontaneous Apoptosis of Endometrial Tissue Is Impaired in Women with Endometriosis. Fertil. Steril. 1998;69:1042–1047. doi: 10.1016/S0015-0282(98)00073-9. [DOI] [PubMed] [Google Scholar]
- 140.Harada A., Kimura Y., Kojima C., Kono K. Effective Tolerance to Serum Proteins of Head-Tail Type Polycation Vectors by PEGylation at the Periphery of the Head Block. Biomacromolecules. 2010;11:1036–1042. doi: 10.1021/bm1000108. [DOI] [PubMed] [Google Scholar]
- 141.Vaskivuo T.E., Stenbäck F., Karhumaa P., Risteli J., Dunkel L., Tapanainen J.S. Apoptosis and Apoptosis-Related Proteins in Human Endometrium. Mol. Cell. Endocrinol. 2000;165:75–83. doi: 10.1016/S0303-7207(00)00261-6. [DOI] [PubMed] [Google Scholar]
- 142.Iba Y., Harada T., Horie S., Deura I., Iwabe T., Terakawa N. Lipopolysaccharide-Promoted Proliferation of Endometriotic Stromal Cells via Induction of Tumor Necrosis Factor Alpha and Interleukin-8 Expression. Fertil. Steril. 2004;82(Suppl. 3):1036–1042. doi: 10.1016/j.fertnstert.2004.04.038. [DOI] [PubMed] [Google Scholar]
- 143.Khan K.N., Masuzaki H., Fujishita A., Kitajima M., Hiraki K., Sekine I., Matsuyama T., Ishimaru T. Interleukin-6- and Tumour Necrosis Factor Alpha-Mediated Expression of Hepatocyte Growth Factor by Stromal Cells and Its Involvement in the Growth of Endometriosis. Hum. Reprod. 2005;20:2715–2723. doi: 10.1093/humrep/dei156. [DOI] [PubMed] [Google Scholar]
- 144.Cinar O., Seval Y., Uz Y.H., Cakmak H., Ulukus M., Kayisli U.A., Arici A. Differential Regulation of Akt Phosphorylation in Endometriosis. Reprod. BioMed Online. 2009;19:864–871. doi: 10.1016/j.rbmo.2009.10.001. [DOI] [PubMed] [Google Scholar]
- 145.Brazil D.P., Yang Z.-Z., Hemmings B.A. Advances in Protein Kinase B Signalling: AKTion on Multiple Fronts. Trends Biochem. Sci. 2004;29:233–242. doi: 10.1016/j.tibs.2004.03.006. [DOI] [PubMed] [Google Scholar]
- 146.Meng F., Liu L., Chin P.C., D’Mello S.R. Akt Is a Downstream Target of NF-Kappa B. J. Biol. Chem. 2002;277:29674–29680. doi: 10.1074/jbc.M112464200. [DOI] [PubMed] [Google Scholar]
- 147.Romashkova J.A., Makarov S.S. NF-KappaB Is a Target of AKT in Anti-Apoptotic PDGF Signalling. Nature. 1999;401:86–90. doi: 10.1038/43474. [DOI] [PubMed] [Google Scholar]
- 148.Deveraux Q.L., Roy N., Stennicke H.R., Van Arsdale T., Zhou Q., Srinivasula S.M., Alnemri E.S., Salvesen G.S., Reed J.C. IAPs Block Apoptotic Events Induced by Caspase-8 and Cytochrome c by Direct Inhibition of Distinct Caspases. EMBO J. 1998;17:2215–2223. doi: 10.1093/emboj/17.8.2215. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 149.Jones R.G., Parsons M., Bonnard M., Chan V.S., Yeh W.C., Woodgett J.R., Ohashi P.S. Protein Kinase B Regulates T Lymphocyte Survival, Nuclear Factor KappaB Activation, and Bcl-X(L) Levels in Vivo. J. Exp. Med. 2000;191:1721–1734. doi: 10.1084/jem.191.10.1721. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 150.Zong W.X., Edelstein L.C., Chen C., Bash J., Gélinas C. The Prosurvival Bcl-2 Homolog Bfl-1/A1 Is a Direct Transcriptional Target of NF-KappaB That Blocks TNFalpha-Induced Apoptosis. Genes Dev. 1999;13:382–387. doi: 10.1101/gad.13.4.382. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 151.Subramaniam S., Unsicker K. ERK and Cell Death: ERK1/2 in Neuronal Death. FEBS J. 2010;277:22–29. doi: 10.1111/j.1742-4658.2009.07367.x. [DOI] [PubMed] [Google Scholar]
- 152.Mourtzikou A., Kosmas K., Marouga A., Stamouli M., Pouliakis A., Karakitsos P. The Use of an Immunocytochemical Double-Labeling Staining Can Display the Distribution of Bcl-2/Ki-67 Cells in Endometrial Adenocarcinomas as Well as in Normal Endometrium. Clin. Lab. 2012;58:133–144. [PubMed] [Google Scholar]
- 153.Andradas C., Caffarel M.M., Pérez-Gómez E., Salazar M., Lorente M., Velasco G., Guzmán M., Sánchez C. The Orphan G Protein-Coupled Receptor GPR55 Promotes Cancer Cell Proliferation via ERK. Oncogene. 2011;30:245–252. doi: 10.1038/onc.2010.402. [DOI] [PubMed] [Google Scholar]
- 154.Cai W.-J., Wang M.-J., Ju L.-H., Wang C., Zhu Y.-C. Hydrogen Sulfide Induces Human Colon Cancer Cell Proliferation: Role of Akt, ERK and P21. Cell Biol. Int. 2010;34:565–572. doi: 10.1042/CBI20090368. [DOI] [PubMed] [Google Scholar]
- 155.Wu Z., Wu L., Tashiro S., Onodera S., Ikejima T. Phosphorylated Extracellular Signal-Regulated Kinase up-Regulated P53 Expression in Shikonin-Induced HeLa Cell Apoptosis. Chin. Med. J. 2005;118:671–677. [PubMed] [Google Scholar]
- 156.Yin X., Pavone M.E., Lu Z., Wei J., Kim J.J. Increased Activation of the PI3K/AKT Pathway Compromises Decidualization of Stromal Cells from Endometriosis. J. Clin. Endocrinol. Metab. 2012;97:E35–E43. doi: 10.1210/jc.2011-1527. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 157.Saini K.S., Loi S., de Azambuja E., Metzger-Filho O., Saini M.L., Ignatiadis M., Dancey J.E., Piccart-Gebhart M.J. Targeting the PI3K/AKT/MTOR and Raf/MEK/ERK Pathways in the Treatment of Breast Cancer. Cancer Treat. Rev. 2013;39:935–946. doi: 10.1016/j.ctrv.2013.03.009. [DOI] [PubMed] [Google Scholar]
- 158.De Luca A., Maiello M.R., D’Alessio A., Pergameno M., Normanno N. The RAS/RAF/MEK/ERK and the PI3K/AKT Signalling Pathways: Role in Cancer Pathogenesis and Implications for Therapeutic Approaches. Expert Opin. Ther. Targets. 2012;16(Suppl. 2):S17–S27. doi: 10.1517/14728222.2011.639361. [DOI] [PubMed] [Google Scholar]
- 159.Serra V., Scaltriti M., Prudkin L., Eichhorn P.J.A., Ibrahim Y.H., Chandarlapaty S., Markman B., Rodriguez O., Guzman M., Rodriguez S., et al. PI3K Inhibition Results in Enhanced HER Signaling and Acquired ERK Dependency in HER2-Overexpressing Breast Cancer. Oncogene. 2011;30:2547–2557. doi: 10.1038/onc.2010.626. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 160.Hoeflich K.P., O’Brien C., Boyd Z., Cavet G., Guerrero S., Jung K., Januario T., Savage H., Punnoose E., Truong T., et al. In Vivo Antitumor Activity of MEK and Phosphatidylinositol 3-Kinase Inhibitors in Basal-like Breast Cancer Models. Clin. Cancer Res. 2009;15:4649–4664. doi: 10.1158/1078-0432.CCR-09-0317. [DOI] [PubMed] [Google Scholar]
- 161.Ngô C., Chéreau C., Nicco C., Weill B., Chapron C., Batteux F. Reactive Oxygen Species Controls Endometriosis Progression. Am. J. Pathol. 2009;175:225–234. doi: 10.2353/ajpath.2009.080804. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 162.Banu S.K., Lee J., Speights V.O., Starzinski-Powitz A., Arosh J.A. Selective Inhibition of Prostaglandin E2 Receptors EP2 and EP4 Induces Apoptosis of Human Endometriotic Cells through Suppression of ERK1/2, AKT, NFkappaB, and Beta-Catenin Pathways and Activation of Intrinsic Apoptotic Mechanisms. Mol. Endocrinol. 2009;23:1291–1305. doi: 10.1210/me.2009-0017. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 163.Lee J., Banu S.K., Subbarao T., Starzinski-Powitz A., Arosh J.A. Selective Inhibition of Prostaglandin E2 Receptors EP2 and EP4 Inhibits Invasion of Human Immortalized Endometriotic Epithelial and Stromal Cells through Suppression of Metalloproteinases. Mol. Cell Endocrinol. 2011;332:306–313. doi: 10.1016/j.mce.2010.11.022. [DOI] [PubMed] [Google Scholar]
- 164.Bulun S.E., Yang S., Fang Z., Gurates B., Tamura M., Sebastian S. Estrogen Production and Metabolism in Endometriosis. Ann. N. Y. Acad. Sci. 2002;955:75–85. doi: 10.1111/j.1749-6632.2002.tb02767.x. discussion 86–88, 396–406. [DOI] [PubMed] [Google Scholar]
- 165.Bulun S.E., Fang Z., Imir G., Gurates B., Tamura M., Yilmaz B., Langoi D., Amin S., Yang S., Deb S. Aromatase and Endometriosis. Semin. Reprod. Med. 2004;22:45–50. doi: 10.1055/s-2004-823026. [DOI] [PubMed] [Google Scholar]
- 166.Bulun S.E., Yilmaz B.D., Sison C., Miyazaki K., Bernardi L., Liu S., Kohlmeier A., Yin P., Milad M., Wei J. Endometriosis. Endocr. Rev. 2019;40:1048–1079. doi: 10.1210/er.2018-00242. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 167.Attar E., Tokunaga H., Imir G., Yilmaz M.B., Redwine D., Putman M., Gurates B., Attar R., Yaegashi N., Hales D.B., et al. Prostaglandin E2 via Steroidogenic Factor-1 Coordinately Regulates Transcription of Steroidogenic Genes Necessary for Estrogen Synthesis in Endometriosis. J. Clin. Endocrinol. Metab. 2009;94:623–631. doi: 10.1210/jc.2008-1180. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 168.Rubin G.L., Zhao Y., Kalus A.M., Simpson E.R. Peroxisome Proliferator-Activated Receptor Gamma Ligands Inhibit Estrogen Biosynthesis in Human Breast Adipose Tissue: Possible Implications for Breast Cancer Therapy. Cancer Res. 2000;60:1604–1608. [PubMed] [Google Scholar]
- 169.Subbaramaiah K., Howe L.R., Zhou X.K., Yang P., Hudis C.A., Kopelovich L., Dannenberg A.J. Pioglitazone, a PPARγ Agonist, Suppresses CYP19 Transcription: Evidence for Involvement of 15-Hydroxyprostaglandin Dehydrogenase and BRCA1. Cancer Prev. Res. 2012;5:1183–1194. doi: 10.1158/1940-6207.CAPR-12-0201. [DOI] [PMC free article] [PubMed] [Google Scholar] [Retracted]
- 170.Fan W., Yanase T., Morinaga H., Mu Y.-M., Nomura M., Okabe T., Goto K., Harada N., Nawata H. Activation of Peroxisome Proliferator-Activated Receptor-Gamma and Retinoid X Receptor Inhibits Aromatase Transcription via Nuclear Factor-KappaB. Endocrinology. 2005;146:85–92. doi: 10.1210/en.2004-1046. [DOI] [PubMed] [Google Scholar]
- 171.Banu S.K., Lee J., Satterfield M.C., Spencer T.E., Bazer F.W., Arosh J.A. Molecular Cloning and Characterization of Prostaglandin (PG) Transporter in Ovine Endometrium: Role for Multiple Cell Signaling Pathways in Transport of PGF2alpha. Endocrinology. 2008;149:219–231. doi: 10.1210/en.2007-1087. [DOI] [PubMed] [Google Scholar]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Data Availability Statement
No new data were created or analyzed in this study. Data sharing is not applicable to this article.