Skip to main content
Life logoLink to Life
. 2021 Jun 15;11(6):562. doi: 10.3390/life11060562

Pygidial Glands in Carabidae, an Overview of Morphology and Chemical Secretion

Anita Giglio 1,*, Maria Luigia Vommaro 1, Pietro Brandmayr 1, Federica Talarico 2
Editor: Dmitry L Musolin
PMCID: PMC8232188  PMID: 34203641

Abstract

Predator community structure is an important selective element shaping the evolution of prey defence traits and strategies. Carabid beetles are one of the most diverse families of Coleoptera, and their success in terrestrial ecosystems is related to considerable morphological, physiological, and behavioural adaptations that provide protection against predators. Their most common form of defence is the chemical secretion from paired abdominal pygidial glands that produce a heterogeneous set of carboxylic acids, quinones, hydrocarbons, phenols, aldehydes, and esters. This review attempts to update and summarise what is known about the pygidial glands, with particular reference to the morphology of the glands and the biological function of the secretions.

Keywords: allomone, chemical ecology, defensive secretion, gas chromatography, ground beetles, microscopy, morphology

1. Introduction

The carabid beetles (Coleoptera, Carabidae) include approximately 40,000 described species that are ecologically important as predators in many ecosystems and range in feeding habits from generalist to specialists [1,2]. Carabids are often used as indicators because they are extremely sensitive to environmental changes [3,4,5]. Their ecological role in the trophic web of agroecosystems [6], makes them particularly suitable for monitoring the impact of agrochemicals [5,7,8] and heavy metals [9,10,11,12,13]. Furthermore, as generalist predators, ground beetles provide important ecosystem services by lowering populations of invertebrate pests and weed seeds [14,15]. However, carabids are consumed by a number of different species, including invertebrates and insectivorous vertebrates such as birds, mammals, amphibians, and reptiles [1]. Predator–prey interactions are likely the major driving force for the evolution of defences against predators in carabid beetles. Strategies to escape predatory attacks primarily include morphological adaptations, such as cryptic or warning coloration [16,17,18,19] and dorso-ventral flattening, large eyes, and long legs to escape [20], as well as secretion of chemical repellents [21,22,23]. Ground beetles possess a pair of abdominal glands called pygidial glands that produce defensive secretions. The main function of the pygidial glands is to defend against predators, but they also engage in biological activities such as facilitating the penetration of the defensive substances into the integument of the predator and inhibiting the growth of fungi and pathogens [24,25]. A few studies to date have examined the chemical compounds of pygidial gland secretions [26,27,28,29,30] and comparatively investigated their taxonomic significance [22,31,32,33,34]. We attempt to review the current state of knowledge on the pygidial glands of carabid beetles by providing an overview of their structure and the chemical compounds of the secretion.

2. General Morphology

Forsyth [35] first proposed a comparative description of pygidial glands in 71 species from 34 tribes to define phylogenetic relationships within Carabidae. Currently, approximately 150 species from 43 tribes have been described (Table 1). The most commonly used examining technique to study pygidial gland morphology is light microscopy (LM). In addition, other techniques such as fluorescence (FM) microscopy, scanning electron microscopy (SEM) and focused ion beam/scanning (FIB/SEM) electron microscopy, (TEM) transition electron microscopy, synchrotron radiation X-ray phase-contrast micro-tomography (SR-PhC micro-CT) are also applied.

Table 1.

Summary of carabid species in which the pygidial gland morphology has been investigated and the method used for analyses. Abbreviations—CLSM: confocal laser scanning microscopy; FIB/SEM: focused ion beam/scanning electron microscopy; FM: fluorescence microscopy; LM: light microscopy; NLM: non linear microscopy; SEM: scanning electron microscopy; SR-PhC micro-CT: synchrotron radiation X-ray phase-contrast micro tomography.

§ Subfamily Tribe Genus Species Methodology Refs
Paussinae Metriini Metrius M. contractus LM; FIB/SEM [35,39]
Sinometrius S. turnai LM; FIB/SEM [39]
Ozaeniini Mystropomus M. regularis LM [34]
Paussini Paussus P. favieri LM; FM; FIB/SEM [40]
P. laevifrons LM [35]
Heteropaussus H. jeanneli LM [35]
Cicindelinae Cicindelini Cicindela C. campestris LM [47]
C. hibrida LM [47]
Carabinae Carabini Calosoma C. oceanicum LM [34]
C. schayeri LM [34]
C. senegalense LM [35]
C. sycophanta LM [48]
Carabus C. (Tomocarabus) convexus LM [42]
C. (Procustes) coriaceus LM [42,49]
C. problematicus LM [35]
C. ullrichii LM [49]
C. (Megodontus) violaceus LM [43]
Cychrini Cychrus C. caraboides rostratus LM [35]
Pamborini Pamborus P. alternans LM [34]
Elaphrinae Elaphrini Elaphrus E. cupreus LM [35]
Blethisa B. multipunctata LM [35]
Loricerinae Loricerini Loricera L. pilicornis LM [35]
Omophroninae Omophronini Omophron O. dentatum LM [35]
Nebriinae Nebriini Eurynebria E. complanata LM [35]
Leistus L. ferrugineus LM [35]
Nebria N. brevicollis LM [35]
N. psammodes LM [50]
Notiophilini Notiophilus N. substriatus LM [35]
Scaritinae Clivinini Clivina C. basalis LM [34]
C. collaris LM [35]
C. fossor LM [35]
Schizogenius S. lineolatus LM [31]
Dyschiriini Dyschirius D. globosus LM [35]
Pasimachini Pasimachus P. elongatus LM [35]
P. subsulcatus LM [51,52]
Carenini Carenum C. bonelli LM [34]
C. interruptum LM [34]
C. tinctillatum LM [34]
Laccopterum L. foveigerum LM [34]
Philoscaphus P. tuberculatus LM [34]
Broscinae Broscini Eurylychnus E. blagravei LM [34]
E. ollifi LM [34]
Promecoderus P. sp. LM [34]
Trechinae Trechini Thalassotrechus T. barbarae LM [35]
Trechus T. obtusus LM [35]
Bembidiini Bembidion B. lampros LM [28,35]
B. rupestre LM [35]
Patrobinae Patrobini Amblytelus A. curtus LM [34]
Patrobus P. longicornis LM [31]
P. septentrionis LM [35]
Harpalinae Morionini Morion M. simplex LM [31]
Moriosomus M. seticollis LM [31]
Perigonini Diploharpus D. laevissimo LM [31]
Loxandrini Loxandrus L. icarus LM [31]
L. longiformis LM [34]
L. velocipes LM [31]
Oxycrepis O. sp. LM [31]
Sphodrini Calathus C. ambiguus LM [35]
Pristonychus P. terricola LM [35]
Pterostichini Abacomorphus A. asperulus LM [34]
Abaris A. anaea LM [31]
Blennidus B. liodes LM [31]
Castelnaudia C. superba LM [34]
Cratoferonia C. phylarchus LM [34]
Cratogaster C. melas LM [34]
Cyclotrachelus C. sigillatus LM [31]
Gasterllarius G. honestus LM [31]
Incastichus I. aequidianus LM [31]
Loxodactylus L. carinulatus LM [34]
Myas M. coracinus LM [31]
Notonomus N. angusribasis LM [34]
N. crenulatus LM [34]
N. miles LM [34]
N. muelleri LM [34]
N. opulentus LM [34]
N. rainbowi LM [34]
N. scotti LM [34]
N. triplogenioides LM [34]
N. variicollis LM [34]
Prosopogmus P. harpaloides LM [34]
Pseudoceneus P. iridescens LM [34]
Pterostichus P. (Cophosus) cylindricus LM; NLM [44]
P. (Monoferonia) diligendus LM [31]
P. externepunctatus roccai LM [50]
P. fortis LM [33]
P. luctuosus LM [31]
P. madidus LM [38]
P. melanarius LM [35]
P. melas SR-PHC MICRO-CT [53]
P. (Pseudomaseus) nigrita LM; NLM [44]
Rhytisternus R. laevilaterus LM [34]
Sarticus S. cyaneocinctus LM [34]
Sphodrosomus S. saisseri LM [34]
Trichosternus T. nudipes LM [34]
Platynini Agonum A. dorsale LM [35]
Zabrini Amara A. aenea LM [35]
Curtonotus C. fulvus LM [35]
Zabrus Z. tenebriodes LM [35]
Molopini Abax A. parallelepipedus (sub:A. ater) LM [35,49]
Molops M. (Stenochoromus)montenegrinus LM; NLM [44]
Harpalini Bradycellus B. harpalinus LM [35]
Diaphoromerus D. edwardsi LM [34]
H. aeneus LM [35]
Harpalus H. pensylvanicus CLSM [54]
Pseudophonus P. rufipes (sub:pubescens) LM [35]
Licinini Badister B. bipustulatus LM [35]
Dicrochile D. brevicollis LM [34]
D. goryi LM [34]
Licinus L. depressus LM [35]
Syagonix S. blackburni LM [34]
Chlaeniini Chlaenius C. australis LM [34]
C. cumatilis LM [35]
C. inops LM [33]
C. pallipes LM [33]
C. velutinus LM [50]
C. vestitus LM [35,50]
Oodes O. amaroides LM [31]
O. hehpioides LM [35]
Panagaenini Craspedophorus C. sp. LM [34]
Panagaeus P. crux-major LM [35]
Psecadius P. eustalactus LM [35]
Tefflus T. sp. LM [35]
Masoreini Masoreus M. wetterhlii LM [35]
Odacanthini Colliuris C. melanura LM [35]
C. pensylvanica LM [31]
Lebiini Eudalia E. macleayi LM [34]
Metabletus M. foveatus LM [35]
Movmolyce M. phyllodes LM [35]
Galeritini Galerita G. lecontei LM [45]
Anthiini Anthia A. artemis LM [35]
Helluonini Helluo H. costatus LM [34]
Dercylini Dercylus (s.s.) D. sp. LM [31]
Catapieseini Catapiesis C. attenuata LM [31]
C. sulcipennis LM [31]
Dryptini Drypta D. dentata LM [35]
D. japonica LM [33]
Pseudomorphini Sphallomorpha S. colymbeioides LM [34]
Brachininae Brachinini Aptinus A. bombarda LM; FM; FIB/SEM [41]
A. crepitus LM; FM; FIB/SEM [41]
A. displosor LM [35]
Brachinus B. crepitans LM [35]
B. elongatus LM; FM; FIB/SEM; SEM [41,55]
B. sclopeta LM; FM; FIB/SEM [41]
B. stenoderus LM [33]
P. verticalis LM [34]
Pheropsophus P. africanus LM; FM; FIB/SEM [41]
P. hispanus LM; FM; FIB/SEM [41]
P. lissoderus LM [35]
P. occipitalis LM; FM; FIB/SEM [41]
P. verticalis LM [34]

§ Classification of taxa has been arranged according to Bousquet [56] and Beutel and Ribera [57].

Each pygidial gland consists of a variable number of secretory lobes (acini), collecting duct, reservoir chamber, reaction chamber, and efferent duct (Figure 1). These glands (class 3 according to the classification of Noirot and Qhennedey [36,37]) are variable in structure and have been described in several species [35,38]. The lobe or acinus, which is spherical or elongated and enveloped in a thin basal lamina, is a cluster of secretory units, connected to the collecting duct by a conducting duct that drains secretions outward. The secretory unit consists of two parts, an elongated, cube-shaped secretory cell surrounding a receiving duct and a duct cell surrounding the conducting duct [35,39,40,41]. The receiving duct is a porous tube composed of one or more layers of epicuticle located in its extracellular space and bounded by microvilli. The collecting duct has an epithelial wall of flattened cells, lined by endocuticle, and a thin layer of epicuticle that is regularly folded into spiral ridges, annular arrays, or pointed peg-like projections, that reduce the volume of the lumen to control the free flow of secretion to the reservoir chamber [35,39,41]. The entrance of the collecting duct to the reservoir chamber is of great variability. It is located at the anterior or middle position in Scaritinae, Brachininae, and some Bembidiini, Pterostichini, Amarini, Carabini, Nebriini, Metriini, and Paussini [33,35,39,40,42,43,44]. While it is located near the entrance of the efferent duct in Harpalini, Agonini, Chlaeniini, Dryptini, Anthiini, Lebiini, Trachypachini, Omophronini, Loxandrini, Catapieseini, Galeritini, and Zuphini [31,33,35,45]. The reservoir chamber is a spherical, elongate, or bilobate compartment of variable size. Interwoven muscle bundles cover the outer wall and are connected to tracheal branches. The basal membrane supports flattened epithelial cells covered by a thin uniform layer of endo- and epicuticle. The muscular contraction regulates secretion through a valve that separates the reservoir from the reaction chamber. In Paussinae, Brachininae, and Carabinae, an accessory gland is located below the valve [35]. Secretions from the reservoir chamber are mixed with secretions from the accessory glands in the reaction chamber. The efferent duct leads from the reservoir chamber to the external orifice. The close association of the pygidial glands with the tracheal branches suggests a high aerobic metabolism.

Figure 1.

Figure 1

Schematic drawing of a pygidial gland. cd: collecting duct; ed: efferent duct; r: reservoir chamber; rc: reaction chamber; sl: secretory lobe; VIII: eighth tergite; IX: ninth tergite (for more details of species listed in the text, see Forsyth (1972) [35]).

The external orifice is located dorso-laterally in the posterior part of the abdomen, near to the antero-lateral margin of the ninth tergite, and close to the tergo-sternal suture in Carabinae, Scaritinae, Paussinae, Elaphrinae, Broscinae, and Brachinini, or at the posterolateral margin of the eighth tergite in derived lineages, e.g., Trechinae and Harpalinae, and including Licinini, Chlaeniini, Panagaeini, Anthiini, Zabrini, Oodini, Pterostichini, and Agonini [35,46]. Differences in pygidial gland morphology between sexes have been reported in Cicindela campestris [47].

3. Excretory Mechanisms

Oozing, spraying, and crepitation are the main types of external excretory mechanisms observed in carabid beetles in response to disturbance [58]. Oozing of secretion over the cuticle of the hind segments occurs in species that have relatively weakly developed muscles on the wall of the reservoir chamber, i.e., in the tribes Nebriini, Notiophilini, Loricerini, Elaphrini, and the subfamilies Scaritinae, Cicindelinae, and Broscinae [32,35]. This is probably the plesiomorphic mode of discharge, whereas the secretion expelled by strong muscle pressure on the reservoirs is an apomorphic adaptation. The discharge of a directional secretion by turning the tip of the abdomen has been observed in many taxa that exhibit a variable secretion discharge, such as Trechini, Bembidiini, Galeritini, Carabini, Cychrini, Harpalini, Agonini, Anthiini, and Pterostichini (except the genus Abax) [32,45,59]. Bombardier beetles discharge secretion by crepitation [60,61], with the exception of Metrius contractus, which discharges its secretion using the oozing ancestral discharge mechanism [39,62]. This discharge has evolved independently in Ozaenini and Paussini on the one hand and in Brachinini on the other. In the tribe Brachinini, the explosive defence is an active enzymatic exothermic reaction that produces benzoquinones, free oxygen, water, and heat up to 100 °C [55]. The process begins with muscle contraction of the reservoir chamber, which allows stored hydroquinones and hydrogen peroxide, to move through the one-way valve, enter the reaction chamber, and mix with catalases and peroxidases produced by the accessory glands. In Paussinae, fluids are directed via a cuticular fold (Coanda flange) located at the posterolateral angle of the elytra, which serves as a launching guide for rapid anterior discharge [60,61,63]. The ability to direct the sprayed secretion has also been observed in Calosoma prominens [64].

4. Chemical Compounds of Secretion

To date, over 363 species from 45 tribes have been studied by gas chromatography-mass spectrometry (GC-MS) (Table 2) in dichloromethane or hexane extracts. The semiochemicals, listed in Table 2, belong to one of the following classes: aliphatic and aromatic carboxylic acids, phenols (m-cresol and xylenol), aldehydes, quinones, hydrocarbons, ketones, terpenes, and esters. The biosynthetic pathways of these compounds have been extensively studied in arthropods [27,65]. However, studies addressing their biogenesis in the pygidial gland of carabids are lacking. The enzymatic derivation of quinones is one of the few metabolic pathways investigated. The bombardier beetle Brachinus elongatulus has the ability to convert m-cresol to 2-methyl-1,4-hydroquinone, which is then oxidised to 2-methyl-1,4-benzoquinone (toluquinone), within 24 h in its defensive spray, when added to food or injected into the haemocoel [66]. An origin from amino acids has been demonstrated for carboxylic acids. Valine is converted into methacrylic and isobutyric acids in Carabus taedatus [67] and Scarites subterraneus [68]. Biosynthesis of both tiglic and ethacrylic acid from isoleucine via 2-methylbutyric acid has been demonstrated in Pterostichus californicus [69]. Indeed, valine and isoleucine are essential amino acids, diet-dependent and strictly regulated by the availability of resources [70].

Table 2.

Components of pygidial gland secretions in Carabidae. Classification of taxa has been arranged according to Bousquet [56] and Beutel and Ribera [57].

Subfamily Tribe Genus Species Substances * Refs
Paussinae Metriini Metrius M. contractus H18, H19, H20, H21, H22, H23, H25, H26, H27, H28, H29, H36, H35, H37, H41, H42, H52, H53, H54, H55, H56, H62, Q2, Q3, Q8, Q11, Q13 [62]
Ozaeniini Arthropterus A. sp. Q6, Q11 [34]
Mystropomus M. regularis Q2, Q6, Q11 [34]
Pachyteles P. longicornis H52, Q2 [59]
P. striola H52, Q2 [59]
Physea P. hirta H52, Q2 [59]
Platycerozaena P. panamensis H52, Q2, Q8, Q11 [59]
Paussini Homopterus H. arrawi H52, Q2 [59]
Paussus P. favieri Q2, Q11 [92]
Cicindelinae Cicindelini Cicindela C. flexuosa E9, E19 [93]
C. haemorrhagica A1, B1, E19, H52, H62 [79]
C. marutha E9 [79]
C. nigrocoerulea E19 [79]
C. punctulata chihuahuae A1, E19 [79]
C. sedecimpunctata A1, T3 [79]
C. sexguttata T3 [79]
C. abdominalis, C. andrewesi,
C. angulata, C. assamensis, C. aurofasciata, C. belfragei, C. bicolor, C. bigemina, C. calligramma, C. cancellata, C. cardoni, C. catena, C. celeripes, C. chloris, C. circumpicta, C. cuprascens, C. depressula, C. duodecimguttata, 
C. duponti, C. erudita, C. f. generosa, C. f. manitoba, C. fabriciana, C. fastidiosa, C. fowleri, C. fulgida, C. grammophora, C. hamata, C. hamiltoniana, C. hirticollis, C. horni, C. intermedia, C. lemniscata, C. limbata, C. macra, 
C. melancholica, C. minuta, C. motschulskyana, C. multiguttata, C. nevadica, C. o. rectilatera, C. obsoleta, C. ocellata ocellata, C. oregona, 
C. pamphila, C. pimeriana, 
C. pulchra, C. punctulata punctulata, C. purpurea, C. repanda, C. rufiventris, C. rugosiceps, C. s. lecontei, 
C. s. rugifrons, C. schauppi, C. severa, C. severini, C. striatifrons, C. striolata, C. sumatrensis, C. togata globicollis, C. tranquebarica, C. venosa, C. virgula, C. westermanni, C. willistoni, C. lengi
A1 [79]
Odontocheila O. annulicornis, O. cayennensis, O. confuse, O. luridipes A1, H52 [79]
Pentacomia P. egregia A1, H52 [79]
Cicindelinae Collyridini Neocollyris N. variitarsus A1 [79]
Megacephalini Megacephala M. carolina A1, B8, N1 [79]
Omus O. audouini B15 [79]
Carabinae Carabini Calosoma C. (Campalita) chinense C4, F27, A2 [33]
C. externuum C4 [28]
C. marginalis C4 [28]
C. oceanicum A2, C4, F5 [34]
C. prominens A2 [30,64]
C. schayeri A2, C4, F5 [34]
C. sycophanta A2, C4, C5, B1, F2, F6, F11, F17, F25, F27 [30,48]
Carabus C. auratus C4, F27 [28,30,78,94]
C. auronitens C4, F27 [30,78,94,95]
C. (Damastes) blaptoides C2, C4, F27 [33]
C. (Megodontus) caelatus B1, C1, C4, F1, F2, F8, F11, F17, F25, F27 [43]
C. (Tachypus) cancellatus C4, F27 [30]
C. cansellatus C4, F27 [78]
C. cyaneus C4, F27 [30]
C. (Tomogarabus) convexus B1, C4, F27 [30,42,78,94]
C. (Procustes) coriaceus B1, C4, F27 [30,42,49,94]
C. (Apotomopterus) dehaanii C2, C4, F27 [33]
C. granulatus C4, F27 [30,78,94]
C. intricatus C4, F27 [94]
C. (Platycarabus) irregularis C4, F27 [30,94]
C. (Apotomopterus) japonicus C2, C4, F27 [33]
C. (Archicarabus) montivagus C4, F27 [43]
C. porrecticollis C2, C4, F27 [33]
C. problematicus C4, F27 [28,78]
C. procelus C2, C4, F27 [30,33]
C. taedutus C2, C4 [67]
C. ullrichii B1, C4, F1, F2, F11, F17, F27 [30,49,94]
C. (M.) violaceus B1, C4, F1, F11, F17, F25, F27 [30,43,94]
C. (Apotomopterus) yaconinus C2, C4, F27 [33]
Hemicarabus H. tuberculosus C2, C4 [33]
Carabinae Ceroglossini Ceroglossus C. buqueti B1, C1, C2, C4, C5, F3, F11, F14, F27, H61, S1 [96]
C. chilensis B1, C2, C4, F3, F11, F14, F27, H61 [96]
C. magellanicus B1, C2, C4, F3, F11, S1 [96]
Cychrini Cychrus C. caraboides rostratus C4, F27 [28,30,94]
Scaphinotus S. andrewsi germari, S. andrewsi montana, S. virdus, S. webbi C4, F27 [77]
Pamborini Pamborus P. alternans, P. guerini, P. pradieri, P. viridis C2, C4 [34]
Elaphrinae Elaphrini Elaphrus E. riparius F11, F14 [28]
Loricerinae Loricerini Loricera L. pilicornis F11, F14 [28]
Omophroninae Omophronini Omophron O. limbatum F11, F14 [28]
Nebriinae Nebriini Leistus L. ferrugineus C4, F27 [28,78]
Nebria N. chinensis C2, C4, F27 [33]
N. lewisi C2, C4, F27 [33]
N. livida C4, F27 [28,78]
N. macrogona C2, C4, F27 [33]
N. psammodes C4, F27 [50]
Nebriinae Notiophilini Notiophilus N. biguttatus F11, F14 [28]
N. impressifrons C4, F27 [33]
Scaritinae Scaritini Scarites S. aterrimus C4, F1, F6, F13, F27 [33]
S. subterraneus C4, F1, F6, F11, F13, F27 [68]
S. cutidens C4, F1, F13, F27 [33]
S. sulcatus C4, F1, F13, F27 [33]
S. terricola C4, F1, F13, F27 [33]
Clivinini Ardistomis A. schaumii Q11, T1, T4 [75]
Clivina C. basalis Q1, Q11 [34]
C. fossor Q1, Q6, Q2, Q11, Q12, Q13 [78]
Semiardistomis S. puncticollis Q2, Q11, T2, T4, T5, T6, T7 [75]
Schizogenius S. lineolatus F8, F9, F10 [31]
Dyschiriini Dyschirius D. wilsoni B9, K2, K7, T3 [97]
Pasimachini Pasimachus P. subsulcatus C4, F1, F11, F14, F17, F25, F27 [51,52]
Carenini Carenum C. bonelli C4, F1, F7, F13 [34]
C. interruptum C4, F1, F13 [34]
C. tinctillatum C4, F1, F13, F27 [34]
Laccopterum L. foveigerum C2, C4, F5, F6, F7, F13, F27 [34]
Philoscaphus P. tuberculatus C4, F6, F12, F13, F27 [34]
Broscinae Broscini Broscosoma B. doenitzi F2, F14 [33]
Broscus B. cephalotes F11, F14 [28,98,99]
Craspedonotus C. tibialis F1, F11, F14 [33]
Eurylychnus E. blagravei C4, F27 [34]
E. ollifi C4, F17, F27 [34]
Trechinae Trechini Duvalius D. (Paraduvalius) milutini B1, F4, F5, F15, F18, F22, F23, F24, F26 [100]
Pheggomisetes P. ninae A1, C1, C5, F2, F11, F12, F14, F16, F18, F22, F23, F26, H12, H16, H17, H24, H34, H38, H39, H40, H45, H48, H49, H62, H65 [100]
Trechoblemus T. postilenatus F11, F14 [33]
Bembidiini Bembidion B. lampros F11, F14 [28]
B. lissonotum C4, F27 [33]
B. morawitzi C4, F27 [33]
B. quadriguttatum A2, F28 [78]
B. semilunium C4, F27 [33]
B. stenoderum C4, F27 [33]
Tachys T. sericans F11, F14 [33]
Patrobinae Patrobini Amblytelus A. curtus C3 [34]
Asaphidion A. semilucidum F2, F14 [33]
Diplous D. caligatus C4, F27 [33]
D. depressus C4, F27 [33]
Patrobus P. flavipes C4, F1, F13, F27 [33]
P. longicornis C1, C4, F27, K6 [31]
Harpalinae Morionini Morion M. simplex C1, C3, C4, F25, F27, H3, H4, H5, H6 [31]
Moriosomus M. seticollis B1, C1, C3, E6, E19, E20, E21, H3, H5, H6, H7 [31]
Perigonini Diploharpus D. laevissimo C1, C3, E1, E3, E4, E12, H1, H3 [31]
Loxandrini Loxandrus L. icarus C1, C3, F7, H2, H3 [31]
L. longiformis A2 [34]
L. velocipes C1, C3, F7, H3, H7 [31]
Sphodrini Calathus C. fuscipes C3 [98,99]
Dolichus D. halensis K8 [101]
Laemostenus L. punctatus C1, C3, E6, E20, F22, F23, F26, G2, H30, H32, H65 [87,100]
Synuchus S. callitheres C3 [33]
S. cycloderus C3, K8 [33]
S. dulcigradus C3, K8 [33,101]
Pterostichini Abacomorphus A. asperulus C3, C4, F1, F27 [34]
Abaris A. anaea C4, F27, H3, H4, H5 [31]
Blennidus
B. liodes
C4, F14, F27, H4 [31]
Castelnaudia C. superba C1, C4, F27 [34]
Cratoferonia C. phylarchus C4, F27 [34]
Cratogaster C. melas C4, F27 [34]
Cyclotrachelus C. sigillatus C1, C3 [31]
Gasterllarius G. honestus C4, F25 [31]
Incastichus
I. aequidianus
C1, C3 [31]
Lesticus L. magnus C4, F27 [33]
Loxodactylus L. carinulatus C3 [34]
Myas M. coracinus C4, F25, F27 [31]
Notonomus N. angustibasis, N. crenulatus, N. miles, N. muelleri, N. opulentus, N. rainbowi, N. scotti, N. triplogenioides, N. variicollis C3 [34]
Poecilus P. coerulescens C4, F27 [33]
P. cupreus C4, F27, H8, H62, H65 [78]
P. fortipes C4, F27 [33]
Prosopogmus P. harpaloides C4 [34]
Pseudoceneus P. iridescens C4, F27 [34]
Pterostichus P. (Hypherpes) californicus C2, F17, F27 [69]
P. (Cophosus) cylindricus C4, F27 [44]
P. daisenicus C2, C4, F27 [33]
P. (Monoferonia) diligendus C4, F27 [31]
P. externepunctatus
roccai
C4, F11, F27, H62, H65 [50]
P. fortis C2, C4, F27 [33]
P. fujimurai C2, C4, F27 [33]
P. longinquus C2, C4, F27 [33]

P. luctuosus
C4, F27 [31]
P. macer C4, F27, H8, H62, H65 [28,78]
P. masidai C2, C4, F27 [33]
P. (Ferodinius) melas C4, F11, F17, F25, F27, H8, H62, H65 [28,44,78]
P. metallicus C4, F27, H8, H62, H65 [28,30,78,94]
P. microcephalus C2, C4, F27 [33]
P. niger C4, F27, H8, H62, H65 [28,30,78,94]
P. (Pseudomaseus) nigrita C1, C4, C5, F9, F11, F17, F27, H13, H14, H15, H57, H60, H62, H64, H65 [44]
P. prolongatus C2, C4, F27 [33]
P. rotundangulus C2, C4, F27 [33]
P. vulgaris C4, F27, H8, H62, H65 [30,78,94]
Rhytisternus R. laevilaterus C4, F27 [34]
Sarticus S. cyaneocinctus C3 [34]
Sphodrosomus S. saisseri C3 [34]
Trichosternus T. nudipes C4, F27 [34]
Trigonotoma T. lewisii C4, F27 [33]
Trigonognatha T. cuprescens C4, F27 [33]
Platynini Agonum A. chalcomum C3, K8 [33,101]
A. daimio C3 [33]
Anchomenus A. (Idiochroma) dorsalis H14, H58, H60, H65 [28]
A. leucopus C3 [33]
Colpodes C. atricomes C3 [33]
C. japonicus C3 [33]
Loxocrepis L. rubriola C3 [33]
Lorostemma L. ogurae C3 [33]
Platynus P. brunneomarginatus C3, F18, F23, H52, H62, H65, K1, K3, K6, K8 [31]
P. magnus C3 [33]
P. ovipennis C3, F19, H52, H62, H65, K1, K3, K6, K8 [102]
P. protensus C3, K8 [33,101]
Zabrini Amara A. chalcites C2, C4, F1, F27 [33]
A. chalcophaea C2, C4, F1, F27 [33]
A. familiaris C4, F27, H8, H62, H65 [28,78]
A. similata C4, F27, H8, H62, H65 [28,78]
Bradytus B. ampliatus, B. simplicidens C2, C4, F1, F27 [33]
Curtonotus C. giganteus C2, C4, F1, F27 [33]
Molopini Abax A. ovalis C4, F27 [28,30,78]
A. parallelepipedus
(sub:A. ater)
C4, C5, F6, F11, F25, F27 [28,30,49,78]
A. parallelus C4, F27 [30,78,95]
Molops M. elatus C4, F27 [28,78]

M. (Stenochoromus) montenegrinus
C1, C4, C5, F1, F2, F5, F8, F9, F11, F17, F28 [44]
Harpalini Anisodactylus A. signatus C3, K8 [33,101]
A. tricuspidatus C3 [33]
Anoplogenius A. cyanescens C3 [33]
Bradycellus B. inornatus C3 [33]
Diaphoromerus D. edwardsi C3 [34]
Harpalus H. atratus C3 [98,99]
H. capito C3, K8 [33,101]
H. dimidiatus C3 [30]
H. distinguendus C3 [98,99]
H. luteicornis C3 [98,99]
H. platynotus C3 [33]
H. sinicus C3 [33]
H. tardus C3 [98,99]
Platymetopus P. flavibarbis C3 [33]
Pseudophonus P. griseus C3 [30,33,94]
P. rufipes (sub:pubescens) C3 [30,94]
Stenolophus S. agonoides C3, H63 [33,101]
S. difficilis C3 [33]
S. iridicolor C3 [33]
Trichocellus T. tenuimanus C3 [33]
Trichotichnus T. longitarsis C3, H63 [33,101]
Licinini Dicrochile D. brevicollis C3 [34]
D. goryi C3 [34]
Diplocheila D. elongata C3 [33]
D. zeelandica C3, H63 [33,101]
Syagonix S. blackburni C3 [34]
Chlaeniini Callistoides C. delciolus B2 [33]
Callistus C. lunatus Q2, Q11 [28]
C. basalis Q2 [28]
Chlaenius C. australis B2 [34]
C. circumdatus B2 [33]
C. cordicollis B2, B4, B3, B5, B7, B11, B12 [30,91]
C. (Chlaeniellus) inops Q1, Q6, Q10 [33]
C. noguchii B2 [33]
C. pallipes B2 [33]
C. (Chlaeniellus) postemus Q1, Q6, Q10 [33]
C. spoliatus B2 [33]
C. velutinus B2, B4, B6, H22, H52, Q1, Q7, Q11 [50]
C. vestitus B2, Q2 [28,50]
C. virgulifer B2 [33]
Epomis E. nigricans B2 [33]
Macrochlaenites M. costiger B2 [33]
Oodes O. amaroides A2, B1, C1, F11, F14 [31]
O. americanus B1, C1, C4, C5, F11, F2, F5, F6, F8, F14, F17, F21, F27 [89]
Panagaenini Dischissus D. mirandus B2 [33]
Panagaeus P. bipustulatus B2 [98,99]
P. japonicus B2 [33]
Peronomerus P. auripilis B2 [33]
P. nigrinus B2 [33]
Odacanthini Archiocolliuris A. bimaculata nipponica H63 [101]
Colliuris C. pensylvanica C1, C3, H3, K6 [31]
Odacantha O. melanura C3 [28]
Lebiini Apristus A. grandis C3, H63 [33,101]
Callida C. lepida C3 [33]
Lebia L. retrofasciata C3 [33]
Eudalia E. macleayi C3 [34]
Coptodera C. japonica C3 [33]
C. subapicalis C3 [33]
Cymindis C. daimio H63 [101]
Dolichoctis D. striatus C3, H63 [33,101]
Helluomorphoides H. clairvillei H43, H9, H8, H65, E8, H11, E17, E14, E16, E12, E3, E15, E1, E21, E3, E22, E13, E5, E20, E7, E6, H14, H31, H58, H33 [85]
H. ferrugineus C3, E12 [84]
H. latitarsis C3, E12 [84]
Lebidia L. octoguttata C3, H63 [33,101]
Galeritini Galerita G. lecontei C3, E1, E2, E3, E5, E6, E13, E12, E17, E20, G1, H8, H43, H44, H46, H62, H65, H66, H67 [45]
Galeritula G. japonica C3, E1, E3, E12 [33,101]
Planetes P. puncticeps C3, E1, E3, E12 [33,101]
Anthiini Anthia A. thoracica A3, C1, C3, F1, F27 [103]
Thermophilum T. burchelli C1, C3, F1, F27 [103]
T. homoplatum A3, C1, C3, F1, F27 [103]
Helluonini Helluo H. costatus C3, E12, E13 [34]
Catapieseini Catapiesis C. attenuata C3, E1, H1, H3 [31]
C. sulcipennis E1 [31]
Dryptini Drypta D. japonica C3, E1, E3, E12 [33,101]
Pseudomorphini Sphallomorpha S. colymbeioides C3 [34]
Brachininae Brachinini Brachinus B. chuji Q1, Q9 [33]
B. crepitans Q2, Q11 [28,30]
B. elongatus H10, H14, H60, Q2, Q4, Q5, Q8, Q11, Q12 [41,55,66]
B. explodens Q2, Q11 [28,30]
B. sclopeta Q2, Q11 [30,41]
B. scotomedes Q1, Q9 [33]
B. stenoderus Q1, Q9 [33]
Pheropsophus P. africanus N2, N3 [30,41]
P. agnatus C3 [30]
P. catoirei Q2, Q11 [104]
P. verticalis Q1, Q11 [34]
P. jessoensis Q1, Q9 [33]

* Abbreviations [Aldehydes (A)A1: benzaldehyde; A2: salicylaldehyde; A3: iso-valeraldehyde. Benzene, substituted derivatives and phenols (B)B1: benzoic acid; B2: cresols, (m-cresol), (3-methylphenol); B3: 2,3-dimethylphenol; B4: 2,5-dimethylphenol; B5: 3,4-dimethylphenol; B6: 3,5-dimethylphenol; B7: 3-ethylphenol; B8: mandelonitril; B9: methyl 2-hydroxy-6-methylbenzoate; B10: methyl salicylate; B11: 2-methoxy-5-methylphenol; B12: 2-methoxy-4-m-cresol; B13: 2-phenylethanol; B14: 2-phenylethyl; B15: phenylacetic acid; B16: xylenol isomer. Carboxylic acids and derivatives (C)C1: acetic acid; C2: ethacrylic acid; C3: formic acid; C4: methacrylic acid; C5: propanoic acid (propionic acid). Fatty alcohol esters (E)E1: decyl acetate; E2: decyl butyrate; E3: decyl formate; E4: decyl hexanoate; E5: decyl propionate; E6: dodecyl acetate; E7: dodecyl formate; E8: heptyl acetate; E9: hexadecyl acetate; E10: isopropyl ethacrylate; E11: isopropyl methacrylate; E12: nonyl acetate; E13: nonyl butyrate; E14: nonyl formate; E15: nonyl propionate; E16: 3-nonen-l-yl acetate; E17: octyl acetate; E18: 2-phenylethyl ethacrylate; E19: tetradecyl acetate; E20: undecyl acetate; E21: undecyl formate; E22: 4-undecen-l-yl acetate. Fatty acids and conjugates (F)F1: angelic acid; F2: butyric acid; F3: n-butanoic acid; F4: capric acid; F5: caproic acid (hexanoic acid); F6: crotonic acid; F7: hexenoic acid; F8: 2-hexenoic acid; F9: 3-hexenoic acid; F10: 3,5-hexadienoic; F11: isobutyric acid; F12: isocaproic acid; F13: isocrotonic acid; F14: isovaleric acid (3-methylbutyric acid); F15: lauric acid; F16: linoleic acid; F17: 2-methylbutyric acid; F18: myristic acid; F19: nonanoic acid; F20: octanoic acid (caprylic acid); F21: 2-octenoic acid; F22: oleic acid; F23: palmitic acid; F24: pelargonic acid; F25: senecioic acid; F26: stearic acid; F27: tiglic acid; F28: valeric acid. Fatty alcohol (G)G1: 1-decanol; G2: dodecan-1-ol. Hydrocarbons (H)H1: C9:0; H2: C10:0; H3: C11:0; H4: C12:0; H5: C13:0; H6: C15:0; H7: C17:0; H8: decane; H9: 1-decene + 3-decene; H10: 9-docosene; H11: dodecane; H12: 3-ethyltetracosane; H13: heneicosadiene; H14: heneicosane; H15: heneicosene; H16: heptacosadiene; H17: heptacosene; H18: 5,7-heptadecadiene; H19: 7,9-heptadecadiene; H20: (6Z,9Z)-6,9-heptadecadiene; H21: (7Z,9Z)-7,9-heptadecadiene; H22: heptadecane; H23: (Z)-8-heptadecene; H24: hexacosane; H25: hexadecadiene; H26: 6,8-hexadecadiene; H27: 7,9-hexadecadiene; H28: hexadecane; H29: hexadecene; H30: 7-hexyldocosane; H31: 9-methylheneicosane; H32: 9-methyltetracosane; H33: 9-methyltricosane; H34: 11-methylheptacosane; H35: 3-methylpentadecane; H36: 4-methylpentadecane; H37: 5-methylpentadecane; H38: nonacosapentaene; H39: nonacosatetraene; H40: nonacosene; H41: nonadecane; H42: 7,9-nonadecadiene; H43: nonane; H44: 1-nonene; H45: octacosane; H46: octane; H47: pentacosadiene; H48: pentacosane; H49: pentacosene; H50: (Z)-7-pentacosene; H51: (Z)-9-pentacosene; H52: pentadecane; H53: 5,7-pentadecadiene; H54: 6,8-pentadecadiene; H55: 7-pentadecene; H56: tetradecane; H57: tricosadiene; H58: tricosane; H59: (Z)-7-tricosene; H60: (Z)-9-tricosene; H61: 11-tricosene; H62: tridecane; H63: 2-tridecane; H64: tricosatriene; H65: undecane; H66: 4-undecene; H67: 5-undecene. Ketone (K)K1: 2-dodecanone; K2: 2-heptanone; K3: 2-heptadecanone; K4: 2-hexanone; K5: 3-hexanone; K6: 2-pentadecanone; K7: 2-pentanone; K8: 2-tridecanone. Non-metal oxoanionic compounds and organonitrogen compounds (N)N1: hydrogen cyanide; N2: nitrites; N3: nitrous acid. Quinone (Q)Q1: benzoquinone; Q2: 1,4-benzoquinone; Q3: 2-chloro-1,4-benzoquinone; Q4: 2,5-dimethyl-1,4-benzoquinone; Q5: 2,3-dimethyl-1,4-benzoquinone; Q6: 2-ethylquinone; Q7: ethylbenzoquinone; Q8: 2-ethyl-1,4-benzoquinone; Q9: 2-methylbenzoquinone; Q10: 2-methylquinone; Q11: 2-methyl-1,4-benzoquinone (toluquinone); Q12: methoxy-1,4-benzoquinone; Q13: 2-methoxy-3-methyl-1,4-benzoquinone. Terpenes (T)T1: 1,8-cineole; T2: p-cymene; T3: iridodial; T4: (R)-(+)-limonene, (S)-(-)-limonene; T5: sabinene; T6: β-phellandrene; T7: β-pinene. Thioethers (S)S1: 3-methyl-1-(methylthio)-2-butene.].

4.1. Interspecific Adaptations

The chemical composition of pygidial gland secretions exhibits interspecific variability within and among subfamilies (Table 2). This variability is the result of a trade-off between the diversity of predators in different habitats and the fitness costs of resource allocation in life traits such as behavioural defences against these enemies [2,71].

The chemicals found in secretions belong to two different functional categories, allomones and bacteriostats. Allomones are primarily involved in the secondary antipredator responses that carabids exhibit as prey to actively defend themselves against predators. Ground beetles emit volatile substances directed at specific groups of arthropods or vertebrates that act as repellents on the chemoreception of predators or interfere with physiological processes as irritants (emesis, vesication) [58]. Deterrent, toxic, and irritant properties of pygidial gland secretions are known in bombardier beetles (Brachinini), which release irritant quinones by a hot, pulsed spray mechanism [55,61,66] as an antipredator defence [72,73]. Quinones are the main class of compounds also found in the secretions of obligate or facultative myrmecophilous species belonging to Metrini, Ozaenini, and Paussini [34,74]. In the defensive secretions of Clivinini [75] and Metrius contractus [62], they are associated with complex mixtures of monoterpenes or hydrocarbons (Table 2). Saturated and unsaturated aliphatic carboxylic acids and fatty acids are widely distributed in the subfamilies Carabinae, Loricerinae, Nebrinae, Scaritinae, Scaritinae, and Harpalinae. They are recorded as a separate compound class in some species that belong to the tribes Pamborini, Elaphrini, Loricerini, Omophronini, Notiophilini, Broscini, Patrobini, Sphodrini, Pterostichini, Platynini, Harpalini, Licinini, and Lebiini. In Cychrini, irritant carboxylic acids (i.e., methacrylic acid) and fatty acids (i.e., tiglic acid) are released, associated with a stridulatory elytra-abdominal mechanism acting as an acoustic warning signal against predators [76,77]. Behavioural analyses showed that Pasimachus subsulcatus (Scaritinae) secretes a mixture of methacrylic acid and fatty acids to protect itself from lizards [51,52]. Carboxylic acids are also found in variable associations with terpenes, quinones, and hydrocarbons in Trechinae, and Harpalinae (Table 2). The repellent effect of salicylaldehyde in the secretion of Calosoma prominens has been tested against ants and vertebrates [64]. This chemical has also been detected in C. sycophanta, C. schayeri, C. oceanicum [34,48], C. prominens [64], C. chinenses [33], Loxandrus longiformis [34], and Bembidion quadriguttatum, A. flavipes [78] in a mixture with carboxylic acids. Benzaldehyde is the typical component of secretion in Cicindelinae [79,80]. It is produced via a cyanogenetic pathway that is absent in the other carabid subfamilies [81]. In tiger beetles, secretion of benzaldehyde may be associated with several antipredator characters, including aposematic camouflage, flight, and gregarious behaviour to avoid predators such as robber flies, lizards, and birds [17,82,83].

Synergism between polar volatile irritant compounds and lipophilic components of secretion has been demonstrated. Nonpolar lipophilic components from Galerita lecontei (long-chain hydrocarbons and esters) act as wetting and penetration enhancers and facilitate the spread of volatile polar compounds such as formic and acetic acids in the cuticle of predators [45]. In Helluomorphoides clairvillei, n-nonyl acetate facilitates the spread of formic acid through the epidermis or cuticle of predators [84]. The same surfactant effect has been attributed to hydrocarbons [85] for the uptake of repellent quinones in Metrius contractus [62].

The mixture of substances in glandular secretions also has biological functions. In vitro assays have shown that the pygidial gland secretion inhibits cell proliferation [86]. The mixture of aromatic (benzoic acid) and aliphatic carboxylic acids, esters, and terpenes have antimicrobial and fungicidal activity in Carabus ullrichii, C. coriaceus, Abax parallelepipedus [49], caterpillar hunter Calosoma sycophanta [48], and troglophilic and guanophilic Laemostenus (Pristonychus) punctatus [87]. Complex mixtures of monoterpenes are found in the defensive secretions of a large number of the species reported here (Table 2). Terpenes are volatile and are present in glandular secretions of many taxa, acting as chemical deterrents, trail scents, mating attractants, or alarm pheromones [22]. In carabid beetles, they have also been detected in the pupal stages of Carabus lefebvrei [88].

4.2. Intraspecific Adaptations

Little is known about intraspecific variation in secretion as a function of sex, age, and resource availability. Nevertheless, data collected to date suggest that chemical secretion plays a parsimonious role in both antipredation and mating behaviour. In Oodes americanus, defensive secretion shows qualitative differences in males and females [89]. The sexual dimorphism of carboxylic acids found in the defensive secretion of Chlaenius cordicollis depends on the reproductive status and age of both sexes and provides a means of chemical communication between the sexes [89,90]. Sex-specific variation likely protects mates during copulation, and the flower number of compounds in female secretions saves females the cost of synthesising them [90]. Although compounds that act as pheromones, such as pentacosadiene, 7-hexyldocosane, 9-methyltetracosane, have been detected in Laemostenus punctatus, Trachypachus gibbsi, and Helluomorphoides clairvillei, studies on their role in alarm or sex-aggregation reproductive behaviour are limited [27].

Intra- and inter-population variation in defensive secretion has also been documented to reflect genetic variability at the population level in responses to selective habitat pressure, as observed in Chaenius cordicollis [91], Pasimachus subsulcatus [51], and Cicindelinae [80]. On the other hand, the shift in secretion composition may have a dietary origin, as observed in species of the genus Scaphinotus [77]. These findings suggest the role of dietary chemical precursors in the biosynthesis of chemical secretions.

5. Concluding Remarks

Pygidial glands are homologous structures in the Carabidae. They show a range of morphological variations in structural elements, i.e., number of acini, the morphology of ducts and reservoir chamber, and mode of secretion discharge, among carabid species, regardless of habitat and associated ecological differences. Chemical defences are an important part of antipredator strategies in ground beetles. Prey–predator coevolution likely influences glandular secretion composition, which is the result of a trade-off between the predator diversity and the fitness costs of defending against these enemies. A great deal of interspecific diversity in the distribution of substances has been found in subfamilies. Some chemicals are readily identifiable as specific to particular taxa, while others show great species-level diversity among genera or tribes. These results are broadly consistent with previous studies in which the taxonomic distribution of compound secretion was reviewed according to habitat diversification and by mapping chemical classes in a phylogenetic context [31,33]. However, some elements need to be considered in the future interpretation of the taxonomic distribution of chemicals. The findings pertain to only the 4% of carabid species so far described, and further studies are needed to clarify differences in chemical composition in additional taxa. A large number of studies reported only the most abundant chemicals, neglecting compounds that are present in smaller percentages and have additional biological functions in the mixture, e.g., surfactants, pheromones, and antiseptic agents. In addition, the differences found in some chemical profiles may be related to the number of samples analysed as single or mixed samples or to the accuracy of the gas chromatographic equipment used in early studies. Finally, we recommend that further research should address to elucidate: (1) the biogenesis of all chemicals described in the pygidial glands and their function in an ecological context; (2) clarify the phylogenetic distribution patterns of chemicals by studying as many species as possible using comparable protocols; (3) the sexual dimorphism of the secretion with regard to the different degree of resource allocation between the sexes under the pressure of environmental selection.

Author Contributions

Conceptualisation, A.G.; data curation, F.T. and M.L.V.; validation of taxonomy, P.B.; writing—original draft preparation, A.G.; writing—review and editing: A.G., M.L.V. and F.T. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

No new data were created or analyzed in this study. Data sharing is not applicable to this article.

Conflicts of Interest

The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

Footnotes

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  • 1.Holland J.M. The Agroecology of Carabid Beetles. Volume 62. Intercept Limited; Andover, UK: 2002. [Google Scholar]
  • 2.Lövei G.L., Sunderland K.D. Ecology and behavior of ground beetles (Coleoptera: Carabidae) Annu. Rev. Entomol. 1996;41:231–256. doi: 10.1146/annurev.en.41.010196.001311. [DOI] [PubMed] [Google Scholar]
  • 3.Koivula M.J. Useful model organisms, indicators, or both? Ground beetles (Coleoptera, Carabidae) reflecting environmental conditions. ZooKeys. 2011:287–317. doi: 10.3897/zookeys.100.1533. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Rainio J., Niemelä J. Ground beetles (Coleoptera: Carabidae) as bioindicators. Biodivers. Conserv. 2003;12:487–506. doi: 10.1023/A:1022412617568. [DOI] [Google Scholar]
  • 5.Avgın S.S., Luff M.L. Ground beetles (Coleoptera: Carabidae) as bioindicators of human impact. Munis Entomol. Zool. 2010;5:209–215. [Google Scholar]
  • 6.Ghannem S., Touaylia S., Boumaiza M. Beetles (Insecta: Coleoptera) as bioindicators of the assessment of environmental pollution. Hum. Ecol. Risk Assess. Int. J. 2018;24:456–464. doi: 10.1080/10807039.2017.1385387. [DOI] [Google Scholar]
  • 7.Tooming E., Merivee E., Must A., Merivee M.-I., Sibul I., Nurme K., Williams I.H. Behavioural effects of the neonicotinoid insecticide thiamethoxam on the predatory insect Platynus assimilis. Ecotoxicology. 2017;26:902–913. doi: 10.1007/s10646-017-1820-5. [DOI] [PubMed] [Google Scholar]
  • 8.Giglio A., Cavaliere F., Giulianini P.G., Kurtz J., Vommaro M.L., Brandmayr P. Continuous agrochemical treatments in agroecosystems can modify the effects of pendimethalin-based herbicide exposure on immunocompetence of a beneficial ground beetle. Diversity. 2019;11:241. doi: 10.3390/d11120241. [DOI] [Google Scholar]
  • 9.Butovsky R.O. Heavy metals in carabids (Coleoptera, Carabidae) ZooKeys. 2011;100:215–222. doi: 10.3897/zookeys.100.1529. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Talarico F., Brandmayr P., Giulianini P.G., Ietto F., Naccarato A., Perrotta E., Tagarelli A., Giglio A. Effects of metal pollution on survival and physiological responses in Carabus (Chaetocarabus) lefebvrei (Coleoptera, Carabidae) Eur. J. Soil Biol. 2014;61:80–89. doi: 10.1016/j.ejsobi.2014.02.003. [DOI] [Google Scholar]
  • 11.Tőzsér D., Magura T., Simon E., Mizser S., Papp D., Tóthmérész B. Pollution intensity-dependent metal accumulation in ground beetles: A meta-analysis. Environ. Sci. Pollut. Res. 2019;26:32092–32102. doi: 10.1007/s11356-019-06294-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Naccarato A., Tassone A., Cavaliere F., Elliani R., Pirrone N., Sprovieri F., Tagarelli A., Giglio A. Agrochemical treatments as a source of heavy metals and rare earth elements in agricultural soils and bioaccumulation in ground beetles. Sci. Total Environ. 2020;749:141438. doi: 10.1016/j.scitotenv.2020.141438. [DOI] [PubMed] [Google Scholar]
  • 13.Giglio A., Brandmayr P. Structural and functional alterations in Malpighian tubules as biomarkers of environmental pollution: Synopsis and prospective. J. Appl. Toxicol. 2017;37:889–894. doi: 10.1002/jat.3454. [DOI] [PubMed] [Google Scholar]
  • 14.De Heij S.E., Willenborg C.J. Connected carabids: Network interactions and their impact on biocontrol by carabid beetles. BioScience. 2020;70:490–500. doi: 10.1093/biosci/biaa039. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Kulkarni S.S., Dosdall L.M., Willenborg C.J. The role of ground beetles (Coleoptera: Carabidae) in weed seed consumption: A review. Weed Sci. 2015;63:355–376. doi: 10.1614/WS-D-14-00067.1. [DOI] [Google Scholar]
  • 16.Fukuda S., Konuma J. Using three-dimensional printed models to test for aposematism in a carabid beetle. Biol. J. Linn. Soc. 2019;128:735–741. doi: 10.1093/biolinnean/blz127. [DOI] [Google Scholar]
  • 17.Schultz T.D. Tiger beetle defenses revisited: Alternative defense strategies and colorations of two neotropical tiger beetles, Odontocheila nicaraguensis Bates and Pseudoxycheila tarsalis Bates (Carabidae: Cicindelinae) Coleopt. Bull. 2001:153–163. doi: 10.1649/0010-065X(2001)055[0153:TBDRAD]2.0.CO;2. [DOI] [Google Scholar]
  • 18.Hasegawa M., Taniguchi Y. Visual avoidance of a conspicuously colored carabid beetle Dischissus mirandus by the lizard Eumeces okadae. J. Ethol. 1994;12:9–14. doi: 10.1007/BF02350074. [DOI] [Google Scholar]
  • 19.Brandmayr P., Bonacci T., Giglio A., Talarico F.F., Brandmayr T.Z. Life and Time: The Evolution of Life and its History. Cleup; Padova, Italy: 2009. The evolution of defence mechanisms in carabid beetles: A review; pp. 25–43. [Google Scholar]
  • 20.Talarico F., Brandmayr P., Giglio A., Massolo A., Brandmayr T.Z. Morphometry of eyes, antennae and wings in three species of Siagona (Coleoptera, Carabidae) ZooKeys. 2011;100:203–214. doi: 10.3897/zookeys.100.1528. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Whitman D.W., Blum M.S., Alsop D.W. Allomones: Chemicals for defense. Insect Def. Adapt. Mech. Strateg. Prey Predat. 1990;289:289–351. [Google Scholar]
  • 22.Dettner K. Chemosystematics and evolution of beetle chemical defenses. Annu. Rev. Entomol. 1987;32:17–48. doi: 10.1146/annurev.en.32.010187.000313. [DOI] [Google Scholar]
  • 23.Giglio A., Brandmayr P., Talarico F., Brandmayr T.Z. Current knowledge on exocrine glands in carabid beetles: Structure, function and chemical compounds. ZooKeys. 2011;100:193–201. doi: 10.3897/zookeys.100.1527. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Evans D.L., Schmidt J.O. Insect Defenses: Adaptive Mechanisms and Strategies of Prey and Predators. SUNY Press; Albany, NY, USA: 1990. [Google Scholar]
  • 25.Blum M.S. Semiochemical parsimony in the Arthropoda. Annu. Rev. Entomol. 1996;41:353–374. doi: 10.1146/annurev.en.41.010196.002033. [DOI] [PubMed] [Google Scholar]
  • 26.Lečić S., Ćurčić S., Vujisić L., Ćurčić B., Ćurčić N., Nikolić Z., Anelković B., Milosavljević S., Tešević V., Makarov S. Defensive secretions in three ground-beetle species (Insecta: Coleoptera: Carabidae) Proc. Ann. Zool. Fenn. 2014;51:285–300. doi: 10.5735/086.051.0301. [DOI] [Google Scholar]
  • 27.Rork A.M., Renner T. Carabidae semiochemistry: Current and future directions. J. Chem. Ecol. 2018;44:1069–1083. doi: 10.1007/s10886-018-1011-8. [DOI] [PubMed] [Google Scholar]
  • 28.Blum M. Chemical defenses of Arthropods. In: Blum M.S., editor. Chemical Defenses of Arthropods. Academic Press; New York, NY, USA: 1981. p. 561. [Google Scholar]
  • 29.Erwin T.L., Ball G.E., Whitehead D.R., Halpern A.L. Carabid Beetles: Their Evolution, Natural History, and Classification. Springer Science & Business Media; Dordrecht, The Netherlands: 2012. [Google Scholar]
  • 30.Dazzini-Valcurone M., Pavan M. Glandole pigidiali e secrezioni difensive dei Carabidae (Insecta Coleoptera) Publicazioni Dell’istituto Di Entomol. Dell’universita Di Pavia. 1980;12:1–36. [Google Scholar]
  • 31.Will K.W., Attygalle A.B., Herath K. New defensive chemical data for ground beetles (Coleoptera: Carabidae): Interpretations in a phylogenetic framework. Biol. J. Linn. Soc. 2000;71:459–481. doi: 10.1006/bijl.2000.0456. [DOI] [Google Scholar]
  • 32.Moore B.P. Carabid Beetles. Springer; Dordrecht, The Netherlands: 1979. Chemical defense in carabids and its bearing on phylogeny; pp. 193–203. [Google Scholar]
  • 33.Kanehisa K., Murase M. Comparative study of the pygidial defensive systems of carabid beetles. Appl. Entomol. Zool. 1977;12:225–235. doi: 10.1303/aez.12.225. [DOI] [Google Scholar]
  • 34.Moore B.P., Wallbank B.E. Proceedings of the Royal Entomological Society of London. Series B, Taxonomy. Volume 37. Wiley Online Library; Oxford, UK: 1968. Chemical composition of the defensive secretion in carabid beetles and its importance as a taxonomic character; pp. 62–72. [Google Scholar]
  • 35.Forsyth D.J. The structure of the pygidial defence glands of Carabidae (Coleoptera) Trans. Zool. Soc. Lond. 1972;32:249–309. doi: 10.1111/j.1096-3642.1972.tb00029.x. [DOI] [Google Scholar]
  • 36.Noirot C., Quennedey A. Fine Structure of Insect Epidermal Glands. Annu. Rev. Entomol. 1974;19:61–80. doi: 10.1146/annurev.en.19.010174.000425. [DOI] [Google Scholar]
  • 37.Noirot C., Quennedey A. Annales De La Societe Entomologique De France. Volume 27. Société entomologique de France; Paris, France: 1991. Glands, gland cells, glandular units: Some comments on terminology and classification; pp. 123–128. [Google Scholar]
  • 38.Forsyth D.J. The ultrastructure of the pygidial defence glands of the carabid Pterostichus madidus F. J. Morphol. 1970;131:397–415. doi: 10.1002/jmor.1051310404. [DOI] [Google Scholar]
  • 39.Muzzi M., Moore W., Di Giulio A. Morpho-functional analysis of the explosive defensive system of basal bombardier beetles (Carabidae: Paussinae: Metriini) Micron. 2019;119:24–38. doi: 10.1016/j.micron.2019.01.003. [DOI] [PubMed] [Google Scholar]
  • 40.Muzzi M., Di Giulio A. The ant nest “bomber”: Explosive defensive system of the flanged bombardier beetle Paussus favieri (Coleoptera, Carabidae) Arthropod Struct. Dev. 2019;50:24–42. doi: 10.1016/j.asd.2019.03.001. [DOI] [PubMed] [Google Scholar]
  • 41.Di Giulio A., Muzzi M., Romani R. Functional anatomy of the explosive defensive system of bombardier beetles (Coleoptera, Carabidae, Brachininae) Arthropod Struct. Dev. 2015;44:468–490. doi: 10.1016/j.asd.2015.08.013. [DOI] [PubMed] [Google Scholar]
  • 42.Vesović N., Vujisić L., Perić-Mataruga V., Krstić G., Nenadić M., Cvetković M., Ilijin L., Stanković J., Ćurčić S. Chemical secretion and morpho-histology of the pygidial glands in two Palaearctic predatory ground beetle species: Carabus (Tomocarabus) convexus and C. (Procrustes) coriaceus (Coleoptera: Carabidae) J. Nat. Hist. 2017;51:545–560. doi: 10.1080/00222933.2017.1293183. [DOI] [Google Scholar]
  • 43.Vesović N., Ćurčić S., Todosijević M., Nenadić M., Zhang W., Vujisić L. Pygidial gland secretions of Carabus Linnaeus, 1758 (Coleoptera: Carabidae): Chemicals released by three species. Chemoecology. 2020;30:59–68. doi: 10.1007/s00049-019-00298-w. [DOI] [Google Scholar]
  • 44.Vranić S., Ćurčić S., Vesović N., Mandić B., Pantelić D., Vasović M., Lazović V., Zhang W., Vujisić L. Chemistry and morphology of the pygidial glands in four Pterostichini ground beetle taxa (Coleoptera: Carabidae: Pterostichinae) Zoology. 2020;142:125772. doi: 10.1016/j.zool.2020.125772. [DOI] [PubMed] [Google Scholar]
  • 45.Rossini C., Attygalle A.B., González A., Smedley S.R., Eisner M., Meinwald J., Eisner T. Defensive production of formic acid (80%) by a carabid beetle (Galerita lecontei) Proc. Natl. Acad. Sci. USA. 1997;94:6792–6797. doi: 10.1073/pnas.94.13.6792. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 46.Deuve T. L’abdomen et les genitalia des femelles de Coleopteres Adephaga. Mem. Du Mus. Natl. D’histoire Nat. Paris. 1993;155:1–184. [Google Scholar]
  • 47.Forsyth D.J. The structure of the defence glands of the Cicindelidae, Amphizoidae, and Hygrobiidae (Insecta: Coleoptera) J. Zool. 1970;160:51–69. doi: 10.1111/j.1469-7998.1970.tb02897.x. [DOI] [Google Scholar]
  • 48.Nenadić M., Soković M., Glamočlija J., Ćirić A., Perić-Mataruga V., Ilijin L., Tešević V., Todosijević M., Vujisić L., Vesović N., et al. The pygidial gland secretion of the forest caterpillar hunter, Calosoma (Calosoma) sycophanta: The antimicrobial properties against human pathogens. Appl. Microbiol. Biotechnol. 2017;101:977–985. doi: 10.1007/s00253-016-8082-7. [DOI] [PubMed] [Google Scholar]
  • 49.Nenadić M., Soković M., Glamočlija J., Ćirić A., Perić-Mataruga V., Ilijin L., Tešević V., Vujisić L., Todosijević M., Vesović N. Antimicrobial activity of the pygidial gland secretion of three ground beetle species (Insecta: Coleoptera: Carabidae) Sci. Nat. 2016;103:34. doi: 10.1007/s00114-016-1358-z. [DOI] [PubMed] [Google Scholar]
  • 50.Balestrazzi E., Valcurone Dazzini M.L., De Bernardi M., Vidari G., Vita-Finzi P., Mellerio G. Morphological and chemical studies on the pygidial defence glands of some Carabidae (Coleoptera) Naturwissenschaften. 1985;72:482–484. doi: 10.1007/BF00441073. [DOI] [Google Scholar]
  • 51.Davidson B.S., Eisner T., Witz B., Meinwald J. Defensive secretion of the carabid beetle Pasimachus subsulcatus. J. Chem. Ecol. 1989;15:1689–1697. doi: 10.1007/BF01012258. [DOI] [PubMed] [Google Scholar]
  • 52.Witz B.W., Mushinsky H.R. Pygidial secretions of Pasimachus subsulcatus (Coleoptera: Carabidae) deter predation by Eumeces inexpectatus (Squamata: Scincidae) J. Chem. Ecol. 1989;15:1033–1044. doi: 10.1007/BF01015197. [DOI] [PubMed] [Google Scholar]
  • 53.Donato S., Vommaro M.L., Tromba G., Giglio A. Synchrotron X-ray phase contrast micro tomography to explore the morphology of abdominal organs in Pterostichus melas italicus Dejean, 1828 (Coleoptera, Carabidae) Arthropod Struct. Dev. 2021;62:101044. doi: 10.1016/j.asd.2021.101044. [DOI] [PubMed] [Google Scholar]
  • 54.Rork A.M., Mikó I., Renner T. Pygidial glands of Harpalus pensylvanicus (Coleoptera: Carabidae) contain resilin-rich structures. Arthropod Struct. Dev. 2019;49:19–25. doi: 10.1016/j.asd.2018.12.004. [DOI] [PubMed] [Google Scholar]
  • 55.Arndt E.M., Moore W., Lee W.K., Ortiz C. Mechanistic origins of Bombardier beetle (Brachinini) explosion-induced defensive spray pulsation. Science. 2015;348:563–567. doi: 10.1126/science.1261166. [DOI] [PubMed] [Google Scholar]
  • 56.Bousquet Y. Catalogue of Geadephaga (Coleoptera, Adephaga) of America, north of Mexico. ZooKeys. 2012:1–1630. doi: 10.3897/zookeys.245.3416. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 57.Beutel R.G., Ribera I., Fikáček M., Vasilikopoulos A., Misof B., Balke M. The morphological evolution of the Adephaga (Coleoptera) Syst. Entomol. 2020;45:378–395. doi: 10.1111/syen.12403. [DOI] [Google Scholar]
  • 58.Thiele H.-U. Carabid Beetles in Their Environments: A Study on Habitat Selection by Adaptations in Physiology and Behaviour. Volume 10. Springer Science & Business Media; Dordrecht, The Netherland: 1977. [Google Scholar]
  • 59.Roach B., Dodge K.R., Aneshansley D.J., Wiemer D., Meinwald J., Eisner T. Chemistry of defensive secretions of Ozaenine and Paussine bombardier beetles (Coleoptera: Carabidae) Coleopt. Bull. 1979;33:17–20. [Google Scholar]
  • 60.Aneshansley D.J., Eisner T., Widom J.M., Widom B. Biochemistry at 100 °C: Explosive secretory discharge of bombardier beetles (Brachinus) Science. 1969;165:61–63. doi: 10.1126/science.165.3888.61. [DOI] [PubMed] [Google Scholar]
  • 61.Eisner T., Aneshansley D.J. Spray aiming in the bombardier beetle: Photographic evidence. Proc. Natl. Acad. Sci. USA. 1999;96:9705–9709. doi: 10.1073/pnas.96.17.9705. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 62.Eisner T., Aneshansley D.J., Eisner M., Attygalle A.B., Alsop D.W., Meinwald J. Spray mechanism of the most primitive bombardier beetle (Metrius contractus) J. Exp. Biol. 2000;203:1265–1275. doi: 10.1242/jeb.203.8.1265. [DOI] [PubMed] [Google Scholar]
  • 63.Eisner T., Aneshansley D.J. Spray aiming in bombardier beetles: Jet deflection by the coanda effect. Science. 1982;215:83–85. doi: 10.1126/science.215.4528.83. [DOI] [PubMed] [Google Scholar]
  • 64.Eisner T., Swithenbank C., Meinwald J. Defense Mechanisms of Arthropods. VIII. Secretion of salicylaldehyde by a carabid beetle. Ann. Entomol. Soc. Am. 1963;56:37–41. doi: 10.1093/aesa/56.1.37. [DOI] [Google Scholar]
  • 65.Blum M.S. Biosynthesis of arthropod exocrine compounds. Annu. Rev. Entomol. 1987;32:381–413. doi: 10.1146/annurev.en.32.010187.002121. [DOI] [Google Scholar]
  • 66.Attygalle A.B., Xu S., Moore W., McManus R., Gill A., Will K. Biosynthetic origin of benzoquinones in the explosive discharge of the bombardier beetle Brachinus elongatulus. Sci. Nat. 2020;107:1–11. doi: 10.1007/s00114-020-01683-0. [DOI] [PubMed] [Google Scholar]
  • 67.Benn M.H., Lencucha A., Maxie S., Telang S.A. The pygidial defensive secretion of Carabus taedatus. J. Insect Physiol. 1973;19:2173–2176. doi: 10.1016/0022-1910(73)90132-7. [DOI] [Google Scholar]
  • 68.Attygalle A.B., Meinwald J., Eisner T. Biosynthesis of methacrylic acid and isobutyric acids in a carabid beetle, Scarites subterraneus. Tetrahedron Lett. 1991;32:4849–4852. doi: 10.1016/S0040-4039(00)93477-4. [DOI] [Google Scholar]
  • 69.Attygalle A.B., Wu X., Will K.W. Biosynthesis of tiglic, ethacrylic, and 2-methylbutyric acids in a carabid beetle, Pterostichus (Hypherpes) Californicus. J. Chem. Ecol. 2007;33:963–970. doi: 10.1007/s10886-007-9276-3. [DOI] [PubMed] [Google Scholar]
  • 70.Chapman R.F. The Insects: Structure and Function. Cambridge University Press; Cambridge, UK: 2012. [Google Scholar]
  • 71.Pasteels J.M., Gregoire J.C., Rowell-Rahier M. The chemical ecology of defense in arthropods. Annu. Rev. Entomol. 1983;28:263–289. doi: 10.1146/annurev.en.28.010183.001403. [DOI] [Google Scholar]
  • 72.Kojima W., Yamamoto R. Defense of bombardier beetles against avian predators. Sci. Nat. 2020;107:1–5. doi: 10.1007/s00114-020-01692-z. [DOI] [PubMed] [Google Scholar]
  • 73.Sugiura S. Anti-predator defences of a bombardier beetle: Is bombing essential for successful escape from frogs? PeerJ. 2018;2018:e5942. doi: 10.7717/peerj.5942. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 74.Geiselhardt S.F., Peschke K., Nagel P. A review of myrmecophily in ant nest beetles (Coleoptera: Carabidae: Paussinae): Linking early observations with recent findings. Naturwissenschaften. 2007;94:871–894. doi: 10.1007/s00114-007-0271-x. [DOI] [PubMed] [Google Scholar]
  • 75.Attygalle A.B., Wu X., Maddison D.R., Will K.W. Orange/lemon-scented beetles: Opposite enantiomers of limonene as major constituents in the defensive secretion of related carabids. Naturwissenschaften. 2009;96:1443–1449. doi: 10.1007/s00114-009-0596-8. [DOI] [PubMed] [Google Scholar]
  • 76.Claridge M.F. Stridulation and defensive behaviour in the ground beetle, Cychrus caraboides (L.) J. Entomol. Ser. A Gen. Entomol. 1974;49:7–15. doi: 10.1111/j.1365-3032.1974.tb00062.x. [DOI] [Google Scholar]
  • 77.Wheeler J.W., Chung R.H., Oh S.K., Benfield E.F., Neff S.E. Defensive Secretions of Cychrine Beetles (Coleoptera: Carabidae) Ann. Entomol. Soc. Am. 1970;63:469–471. doi: 10.1093/aesa/63.2.469. [DOI] [Google Scholar]
  • 78.Schildknecht H. Die Wehrchemie von Land- und Wasserkäfern. Angew. Chem. 1970;82:17–25. doi: 10.1002/ange.19700820104. [DOI] [Google Scholar]
  • 79.Pearson D.L., Blum M.S., Jones T.H., Fales H.M., Gonda E., Witte B.R. Historical perspective and the interpretation of ecological patterns: Defensive compounds of tiger beetles (Coleoptera: Cicindelidae) Am. Nat. 1988;132:404–416. doi: 10.1086/284860. [DOI] [Google Scholar]
  • 80.Kelley K.C., Schilling A.B. Quantitative Variation in chemical defense within and among subgenera of Cicindela. J. Chem. Ecol. 1998;24:451–472. doi: 10.1023/A:1022308702032. [DOI] [Google Scholar]
  • 81.Blum M.S., Jones T.H., House G.J., Tschinkel W.R. Defensive secretions of tiger beetles: Cyanogenetic basis. Comp. Biochem. Physiol. Part B Comp. Biochem. 1981;69:903–904. doi: 10.1016/0305-0491(81)90405-3. [DOI] [Google Scholar]
  • 82.Pearson D.L. The function of multiple anti-predator mechanisms in adult tiger beetles (Coleoptera: Cicindelidae) Ecol. Entomol. 1985;10:65–72. doi: 10.1111/j.1365-2311.1985.tb00535.x. [DOI] [Google Scholar]
  • 83.Pearson D.L. The Evolution of multi anti-predator characteristics as illustrated by tiger beetles (Coleoptera: Cicindelidae) Fla. Entomol. 1990;73:67–70. doi: 10.2307/3495330. [DOI] [Google Scholar]
  • 84.Eisner T., Meinwald Y.C., Alsop D.W., Carrel J.E. Defense Mechanisms of Arthropods. XXI. Formic Acid and n-Nonyl Acetate in the Defensive Spray of Two Species of Helluomorphoides. Ann. Entomol. Soc. Am. 1968;61:610–613. doi: 10.1093/aesa/61.3.610. [DOI] [Google Scholar]
  • 85.Attygalle A.B., Meinwald J., Eisner T. Defensive secretion of a carabid beetle, Helluomorphoides clairvillei. J. Chem. Ecol. 1992;18:489–498. doi: 10.1007/BF00994247. [DOI] [PubMed] [Google Scholar]
  • 86.Nenadić M., Soković M., Calhelha R.C., Ferreira I.C.F.R., Ćirić A., Vesović N., Ćurčić S. Inhibition of tumour and non-tumour cell proliferation by pygidial gland secretions of four ground beetle species (Coleoptera: Carabidae) Biologia. 2018;73:787–792. doi: 10.2478/s11756-018-0082-x. [DOI] [Google Scholar]
  • 87.Dimkić I., Stanković S., Kabić J., Stupar M., Nenadić M., Ljaljević-Grbić M., Žikić V., Vujisić L., Tešević V., Vesović N., et al. Bat guano-dwelling microbes and antimicrobial properties of the pygidial gland secretion of a troglophilic ground beetle against them. Appl. Microbiol. Biotechnol. 2020;104:4109–4126. doi: 10.1007/s00253-020-10498-y. [DOI] [PubMed] [Google Scholar]
  • 88.Giglio A., Brandmayr P., Dalpozzo R., Sindona G., Tagarelli A., Talarico F., Brandmayr T.Z., Ferrero E.A. The Defensive Secretion of Carabus lefebvrei Dejean 1826 Pupa (Coleoptera, Carabidae): Gland ultrastructure and chemical identification. Microsc. Res. Tech. 2009;72:351–361. doi: 10.1002/jemt.20660. [DOI] [PubMed] [Google Scholar]
  • 89.Attygalle A.B., Meinwald J., Liebherr J.K., Eisner T. Sexual dimorphism in the defensive secretion of a carabid beetle. Experientia. 1991;47:296–299. doi: 10.1007/BF01958165. [DOI] [PubMed] [Google Scholar]
  • 90.Holliday A.E., Mattingly T.M., Toro A.A., Donald L.J., Holliday N.J. Age- and sex-related variation in defensive secretions of adult Chlaenius cordicollis and evidence for their role in sexual communication. Chemoecology. 2016;26:107–119. doi: 10.1007/s00049-016-0210-4. [DOI] [Google Scholar]
  • 91.Holliday A.E., Holliday N.J., Mattingly T.M., Naccarato K.M. Defensive Secretions of the carabid beetle Chlaenius cordicollis: Chemical components and their geographic patterns of variation. J. Chem. Ecol. 2012;38:278–286. doi: 10.1007/s10886-012-0078-x. [DOI] [PubMed] [Google Scholar]
  • 92.Schildknecht H., Koob K. Zur explosionschemie der Bombardierkäfer. Naturwissenschaften. 1969;56:328. doi: 10.1007/BF00602176. [DOI] [PubMed] [Google Scholar]
  • 93.Hefetz A., Lloyd H.A., Valdenberg A. The defensive secretion of the tiger beetle Cicindela flexuosa (F.)(Cicindelinae; Carabidae) Experientia. 1984;40:539–540. doi: 10.1007/BF01982317. [DOI] [Google Scholar]
  • 94.Jacobson M. Chemical insect attractants and repellents. Annu. Rev. Entomol. 1966;11:403–422. doi: 10.1146/annurev.en.11.010166.002155. [DOI] [PubMed] [Google Scholar]
  • 95.Schildknecht H., Holoubek K., Weis K.H., Krämer H. Defensive substances of the arthropods, their isolation and identification. Angew. Chem. Int. Ed. Engl. 1964;3:73–82. doi: 10.1002/anie.196400731. [DOI] [Google Scholar]
  • 96.Xu S., Errabeli R., Will K., Arias E., Attygalle A.B. 3-Methyl-1-(methylthio)-2-butene: A component in the foul-smelling defensive secretion of two Ceroglossus species (Coleoptera: Carabidae) Chemoecology. 2019;29:171–178. doi: 10.1007/s00049-019-00286-0. [DOI] [Google Scholar]
  • 97.Moore B.P., Brown W. V Chemical composition of the defensive secretion in Dyschirius bonelli (Coleoptera: Carabidae: Scarittnae) and its taxonomic significance. Aust. J. Entomol. 1979;18:123–125. doi: 10.1111/j.1440-6055.1979.tb00823.x. [DOI] [Google Scholar]
  • 98.Schildknecht H., Winkler H., Maschwitz U. Vergleichend chemische Untersuchungen der Inhaltsstoffe der Pygidialwehrblasen von Carabiden. Z. Für Nat. B. 1968;23:637–644. doi: 10.1515/znb-1968-0512. [DOI] [PubMed] [Google Scholar]
  • 99.Schildknecht H., Maschwitz U., Winkler H. Zur Evolution der Carabiden-Wehrdrüsensekrete. Naturwissenschaften. 1968;55:112–117. doi: 10.1007/BF00624238. [DOI] [PubMed] [Google Scholar]
  • 100.Vesović N., Ćurčić S., Vujisić L., Nenadić M., Krstić G., Perić-Mataruga V., Milosavljević S., Antić D., Mandić B., Petković M. Molecular diversity of compounds from pygidial gland secretions of cave-dwelling ground beetles: The first evidence. J. Chem. Ecol. 2015;41:533–539. doi: 10.1007/s10886-015-0593-7. [DOI] [PubMed] [Google Scholar]
  • 101.Kanehisa K., Kawazu K. Differences in neutral components of the defensive secretion in formic acid-secreting carabid beetles. Appl. Entomol. Zool. 1985;20:299–304. doi: 10.1303/aez.20.299. [DOI] [Google Scholar]
  • 102.Will K.W., Gill A.S., Lee H., Attygalle A.B. Quantification and evidence for mechanically metered release of pygidial secretions in formic acid-producing carabid beetles. J. Insect Sci. 2010;10:12. doi: 10.1673/031.010.1201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 103.Scott P.D., Hepburn H.R., Crewe R.M. Pygidial defensive secretions of some carabid beetles. Insect Biochem. 1975;5:805–811. doi: 10.1016/0020-1790(75)90024-4. [DOI] [Google Scholar]
  • 104.Schildknecht H., Holoubek K. Die Bombardierkäfer und ihre Explosionschemie V. Mitteilung über Insekten-Abwehrstoffe. Angew. Chem. 1961;73:1–7. doi: 10.1002/ange.19610730102. [DOI] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Data Availability Statement

No new data were created or analyzed in this study. Data sharing is not applicable to this article.


Articles from Life are provided here courtesy of Multidisciplinary Digital Publishing Institute (MDPI)

RESOURCES