Skip to main content
Data in Brief logoLink to Data in Brief
. 2021 Jun 11;37:107218. doi: 10.1016/j.dib.2021.107218

Data on the sulfur-containing polycyclic aromatic compounds of high-sulfur coal of SW China

Qiaojing Zhao a,b, Shenjun Qin b, Cunliang Zhao c, Yuzhuang Sun c,, Balaji Panchal b, Xiangchun Chang d
PMCID: PMC8233211  PMID: 34195306

Abstract

The data presented in this article are related to the research paper entitled “Origin and geological implications of super high sulfur-containing polycyclic aromatic compounds in high-sulfur coal” by Zhao et al. [1]. The collected data of high-sulfur coal, including the coalfield, geological age, coal rank, sulfur content, and depositional environment were from all over the world. Polycyclic aromatic compounds from 15 coal and 4 parting samples were identified and quantified using gas chromatograph (GC) and gas chromatograph-mass spectrometer (GC-MS). Approximately, 145 polycyclic aromatic compounds (PAC) in each sample were identified. Among them, 70 compounds are sulfur-containing polycyclic aromatic compounds (SPACs). The highest ratio of total SPAC/ PAC was reached 89.22 wt% in the coal and 83.07 wt% in the parting samples.

Keywords: High-sulfur coal, Sulfur-containing polycylic aromatic compounds (SPACs), SPACs formation mechanisms

Specifications Table

Subject Geochemistry
Specific subject area Organic geochemistry
Type of data Table
Figure
How data were acquired Liquid chromatography, Gas chromatograph (Agilent 7820A), Gas chromatograph-Mass spectrometer (Hewlett-Packard model 6890 GC and 5973 MSD); software: ChemStation and MassHunter Workstation
Data format Raw
Analysed
Parameters for data collection The samples were extracted by Soxhlet using dichloromethane solvent for 48 h, and then were separated into three fractions. Among them, the aromatic hydrocarbon fraction was analysed using GC and GC-MS methods.
Description of data collection The primary way to identify the compounds using the MassHunter Workstation software. Then the contents of polycyclic aromatic compounds were calculated by comparing them with the standard concentration.
Data source location Heshan Coalfield, Guangxi, China.
Data accessibility The complete data set is with this article.
Related research article Qiaojing Zhao, Shenjun Qin, Cunliang Zhao, Yuzhuang Sun, Balaji Panchal, Xiangchun Chang. Origin and geological implications of super high sulfur-containing polycyclic aromatic compounds in high-sulfur coal. Gondwana Research 96 (2021), 219-231.

Value of the Data

  • These databases on high contents of the sulfur-containing polycyclic aromatic compounds of high-sulfur coal have not been found in the previous literatures.

  • The data can be used for understanding the depositional environments and thermal evolution of high-sulfur coal

  • The sulfur-containing polycyclic aromatic compounds can be used to trace petroleum and natural gas migration.

1. Data Description

We present the information of high-sulfur coal, including the coalfield, country, geologic age, coal rank, sulfur content, and depositional environment were from all over the world (Table 1). One representative coalfield of high-sulfur coal, Heshan Coalfield was analysed in detail [1]. Table 2 presents 145 polycyclic aromatic compounds were identified from 15 coal and 4 parting samples of the high-sulfur coal. The quantities of individual polycyclic aromatic compounds were presented in Table 3. Based on the study of sulfur-containing compounds, 70 of them were classified in Table 4.

Table 1.

Detail information of selected global high-sulfur coal [1].

Sample quantity Coalfield, Country Coal seam Geologic age Coal rank (Ro) S content (%) Depositional environment Reference
1 Rasa coalfield, Slovenia nd Upper palaeocene 0.68 11.40 nd Sinninghe Damste et al., 1999

1 Mequinenza coalfield, Spain nd nd nd 12.60 nd Calkins, 1994
1 Charming Creek coalfield, New Zealand nd nd nd 5.60
1 Tipong coalfield, India nd Tertiary nd 5.70
1 Rasa coalfield, Croatia nd nd nd 11.80
1 Illinois basin, USA nd nd Bituminous 3.35
1 Ohio coalfield, USA nd nd Bituminous 3.19

Bapung coalfield, India nd Tertiary nd 4.54 nd Choudhury et al., 2017
Konya coalfield, India nd nd 4.56 nd

4 Bapung coalfield, India nd Eocene nd 7.31 nd Nayak et al., 2013
Khliehriat coalfield, India nd nd 6.48 nd
Sutnga coalfield, India nd nd 5.92 nd
Musiang Lamare coalfield, India nd nd 6.21 nd

4 Makum coalfield, India nd Oligocene 0.57-0.65 3.17 Marine Sharma et al., 2016
Moulong Kimong coalfield, India nd Oligocene 3.66
Bapung coalfield, India nd Eocene 4.57

5 Nagaland coalfield, India T1A Oligocene 0.36-0.59 5.4711.057.25 nd Singh et al., 2012
1 T2A Oligocene 0.48 5.34 nd
3 T3A Oligocene 0.50-0.55 686.67 nd

64 Çan basin,Turkey nd Miocene 0.38-0.54 0.3812.233.6 Fluvial and lacustrine Gürdal et al., 2011

1 Illinois basin, USA nd nd nd 3.24 nd Calkins, 1987
1 Appalachian basin, USA nd nd nd 4.00 nd
1 Appalachian basin, USA nd nd nd 4.85 nd
1 Appalachian basin, USA nd nd nd 5.47 nd
Provence basin, France nd Upper Cretaceous Subbituminous 4.57 Lacustrine carbonate Boudou et al., 1987
Appalachian basin, USA nd Pennsylvanian Bituminous 5.30 Marine deltaic
4.80

2 Pannonian Basin, Hungary 6;3 Cretaceous 0.47-0.48 5.21;5.52 Upper delta flood plain, Back barrier strand plain Hamor-Vide et al., 2007
8 nd Eocene 0.44 5.34 Back barrier strand plain
1 2 Eocene nd 5.94 Back barrier strand plain
2 3 Miocene nd 5.76 Back barrier lower coastal plain
2 4 Miocene 0.29,0.33 4.32 Back barrier lower coastal plain
2 nd Miocene 0.32 5.18 Back barrier

33 Appalachian basin, USA nd Pennsylvanian 0.51 3.74 nd Stout et al., 2008

1 Ruhr Basin, German nd Upper Carboniferous 1.40 3.10 nd Willsch et al., 1995

2 Wealden basin, German Zwischenahn Düdinghausen Lower Cretaceous 0.45 4.11, 5.51 Brackish-limnetic to brackish with marine ingressions Radke et al., 1990
1 Alpine foredeep, German Peissenberg Oligocene 0.59 6.15 Marine brackish

1 Punjab coalfield, Pakistan nd nd nd 8.34 nd Shahzad et al., 2020

7 Maghara coalfield, Egypt nd Jurassic Bituminous 2.24.33.4 Lakes or lagoons Baioumy, 2010

4 Gippsland Basin, Australia C1 Cenozoic Tertiary Brown coal 7.90 Marine Smith et al., 1974
C2 6.50
C3 6.80
C4 7.20

2 Cranky Corner Basin, Australia Tangorin seam Early Permian 0.45 5.55 Marine Ward et al., 2007
Stanhope seam 0.54 7.58

1 Tarakan Basin, Indonesia Late Miocene subbituminous 5.4 Telmatic Singh et al., 2010
1 Kutai Coalfield, Indonesia BL-4 Middle Miocene 0.45 3.15 Deltaic to shallow marine Widodo et al., 2010

9 Paraná Basin, Brazil Barro Branco seam Permian 1.03 3.757.735.95 Estuarine-barrier shoreface Kalkreuth et al., 2010
Bonito seam 1.15 4.415.444.93
Irapua seam 0.92 3.35

10 Guiding coalfield, China M3 Late Permian 0.84 4.737.466.24 Restricted carbonate platform Dai et al., 2015

13 Yanshan coalfield, China No.3 Late Permian Bituminous 9.8111.110.22 Carbonate platform Zhao et al., 2017
No.4 9.3211.710.80

157 Wuda coalfield, China No.9 Pennsylvanian 1.09 3.46 Tidal delta plain setting Dai et al., 2002
157 No.10 1.1 3.42

6 Fenxi coalfield, China 9 Pennsylvanian 1.50 3.69 Marine-continental transition facies Tang et al., 2020
Sangshuping coalfield, China 11 Pennsylvanian 1.75 5.42 Deltaic plain
Guiding coalfield, China K3 Late Permian 1.40 8.54 Paralic sedimentary
Chenxi coalfield, China 8 Late Permian 0.72 9.56 Paralic sedimentary
Heshan coalfield, China 3 Late Permian 1.86 9.77 Carbonate platform facies
Yanshan coalfield, China nd Late Permian 1.99 12.37 Carbonate platform facies

5 Weibei coalfield, China 5−2 Pennsylvanian 1.42 1.844.853.55 Tidal flat environments Qin et al., 2019

8 Yishan Coalfield, China K3 Late Permian 2.05 9.2911.8810.71 Tidal flat environments on a restricted carbonate platform Dai, et al., 2018
10 K6 1.81 5.510.197.71
3 K7 1.70 5.569.027.28

8 Chongqing Coalfield, China K1 Late Permian 2.19 2.2514.286.65 Marine Zou et al., 2020

11 Chenxi coalfield, China 8 Late Permian 0.77 7.9510.089.41 Carbonate tidal flat Li et al., 2015

8 Xingtai coalfield, China 9 Pennsylvanian 2.10 2.474.473.42 Coastal Sun et al., 2013

18 Moxinpo coalfield, China K2 Late Permian 0.97 0.9119.083.29 Paralic delta Qin et al., 2018

14 Zhenxiong coalfield, China C5b Late Permian Bituminous 0.9018.405.40 nd Duan et al., 2017

Table 2.

Polycyclic aromatic compounds were analysed from the coal and parting samples.

Peak No. Compound name Abbreviation Molecular weight (g/mol) Peak No. Compound name Abbreviation Molecular weight (g/mol)
1 naphthalene N 128 74 1,4,7-trimethyldibenzothiophene 1,4,7-TMDBT 226
2 2-methylnaphthalene 2MN 142 75 2,6,7-trimethyldibenzothiophene 2,6,7-TMDBT 226
3 1-methylnaphthalene 1MN 142 76 1,3,7-trimethyldibenzothiophene 1,3,7-TMDBT 226
4 biphenyl Bi 154 77 methylfluoranthene MFLa 216
5 dimethylbenzothiophene DMBT 162 78 1,4,6,8-tetramethyldibenzothiophene 1,4,6,8-TeMDBT 240
6 2-ethylnaphthalene 2EN 156 79 1-methylphenanthro[4,5-bcd]thiophene 1MPhT 222
7 1-ethylnaphthalene 1EN 156 80 methylpyrene MPy 216
8 2-methylbiphenyl 2MBi 168 81 benzo[c]fluorene BcF 216
9 dimethylnaphthalene DMN 156 82 1-methylphenanthro[4,5-bcd]thiophene 1MPhT 222
10 dimethylnaphthalene DMN 156 83 benzo[b]fluorene BbF 216
11 dimethylnaphthalene DMN 156 84 methylpyrene MPy 216
12 7-ethylbenzo[b]thiophene 7EBT 162 85 1-methylphenanthro[4,5-bcd]thiophene 1MPhT 222
13 dimethylnaphthalene DMN 156 86 1-methylphenanthro[4,5-bcd]thiophene 1MPhT 222
14 dimethylnaphthalene DMN 156 87 2,4,6,7-tetramethyldibenzothiophene 2,4,6,7-TeMDBT 240
15 dimethylnaphthalene DMN 156 88 methylpyrene MPy 216
16 3-methylbiphenyl 3MBi 168 89 methylpyrene MPy 216
17 4-methylbiphenyl 4MBi 168 90 1,3,6,7-tetramethyldibenzothiophene 1,3,6,7-TeMDBT 240
18 trimethylnaphthalene TMN 170 91 1-phenylthionaphthalene 1PTN 236
19 trimethylnaphthalene TMN 170 92 dimethylpyrene DMPy 230
20 dimethylbiphenyl DMBi 182 93 dimethylpyrene DMPy 230
21 trimethylbenzo[b]thiophene TMBT 176 94 dimethylpyrene DMPy 230
22 dimethylbiphenyl DMBi 182 95 dimethylpyrene DMPy 230
23 trimethylnaphthalene TMN 170 96 dimethylpyrene DMPy 230
24 trimethylnaphthalene TMN 170 97 dimethylpyrene DMPy 230
25 trimethylnaphthalene TMN 170 98 dimethylpyrene DMPy 230
26 fluorene Fr 166 99 dimethylpyrene DMPy 230
27 dimethylbiphenyl DMBi 182 100 dimethylpyrene DMPy 230
28 dimethylbiphenyl DMBi 182 101 benzonaphtho[2,1-d]thiophene [2,1]BNT 234
29 dimethylbiphenyl DMBi 182 102 benzonaphtho[1,2-d]thiophene [1,2]BNT 234
30 methylfluorene MFr 180 103 benzonaphtho[2,3-d]thiophene [2,3]BNT 234
31 dimethylbiphenyl DMBi 182 104 Benzo[a]anthracene BaA 228
32 methyldibenzofuran MDBFr 182 105 methylbenzonaphthothiophene MBNT 248
33 methyldibenzofuran MDBFr 182 106 methylbenzonaphthothiophene MBNT 248
34 methylfluorene MFr 180 107 methylbenzonaphthothiophene MBNT 248
35 methylfluorene MFr 180 108 methylbenzonaphthothiophene MBNT 248
36 methylfluorene MFr 180 109 methylbenzonaphthothiophene MBNT 248
37 methylfluorene MFr 180 110 methylbenzonaphthothiophene MBNT 248
38 dibenzothiophene DBT 184 111 methylbenzonaphthothiophene MBNT 248
39 phenanthrene Ph 178 112 methylbenzonaphthothiophene MBNT 248
40 dimethylfluorene DMFr 194 113 methylbenzonaphthothiophene MBNT 248
41 dimethylfluorene DMFr 194 114 methylchrysene MCh 242
42 dimethylfluorene DMFr 194 115 methylchrysene MCh 242
43 dimethylfluorene DMFr 194 116 dimethylbenzonaphthothiophene DMBNT 262
44 dimethylfluorene DMFr 194 117 dimethylbenzonaphthothiophene DMBNT 262
45 4-methyldibenzothiophene 4MDBT 198 118 dimethylbenzonaphthothiophene DMBNT 262
46 2+3-methyldibenzothiophene 2+3MDBT 198 119 dimethylbenzonaphthothiophene DMBNT 262
47 1-methyldibenzothiophene 1MDBT 198 120 dimethylbenzonaphthothiophene DMBNT 262
48 3-methylphenanthrene 3MPh 192 121 dimethylbenzonaphthothiophene DMBNT 262
49 2-methylphenanthrene 2MPh 192 122 dimethylbenzonaphthothiophene DMBNT 262
50 9-methylphenanthrene 9MPh 192 123 dimethylbenzonaphthothiophene DMBNT 262
51 1-methylphenanthrene 1MPh 192 124 dimethylbenzonaphthothiophene DMBNT 262
52 3-ethyldibenzothiophene 3EDBT 212 125 dimethylbenzonaphthothiophene DMBNT 262
53 4,6-dimethyldibenzothiophene 4,6-DMDBT 212 126 binaphthalene BN 254
54 2,4-dimethyldibenzothiophene 2,4-DMDBT 212 127 Benzo[b]fluoranthene BbFr 252
55 2,6-dimethyldibenzothiophene 2,6-DMDBT 212 128 Benzo[k]fluoranthene BkFr 252
56 3,6-dimethyldibenzothiophene 3,6-DMDBT 212 129 dihydrodinaphthothiophene DDNT 286
57 2,7-+3,7-dimethyldibenzothiophene 2,7-+3,7-DMDBT 212 130 dihydrodinaphthothiophene DDNT 286
58 1,6-+1,4-dimethyldibenzothiophene 1,6-+1,4-DMDBT 212 131 dihydrodinaphthothiophene DDNT 286
59 dimethylphenanthrene DMPh 206 132 dihydrodinaphthothiophene DDNT 286
60 1,3-+3,4-dimethyldibenzothiophene 1,3-+3,4-DMDBT 212 133 dihydrodinaphthothiophene DDNT 286
61 dimethylphenanthrene DMPh 206 134 dihydrodinaphthothiophene DDNT 286
62 1,7-dimethyldibenzothiophene 1,7-DMDBT 212 135 dihydrodinaphthothiophene DDNT 286
63 2,3+1,9-dimethyldibenzothiophene 2,3+1,9-DMDBT 212 136 dihydrodinaphthothiophene DDNT 286
64 dimethylphenanthrene DMPh 206 137 dihydrodinaphthothiophene DDNT 286
65 dimethylphenanthrene DMPh 206 138 dihydrodinaphthothiophene DDNT 286
66 dimethylphenanthrene DMPh 206 139 benzobisbenzothiophene BBBT 290
67 dimethylanthracene DMA 206 140 dihydrodinaphthothiophene DDNT 286
68 fluoranthene Fla 202 141 benzobisbenzothiophene BBBT 290
69 2,4,6-trimethyldibenzothiophene 2,4,6-TMDBT 226 142 benzobisbenzothiophene BBBT 290
70 2,4,8-+2,4,7-trimethyldibenzothiophene 2,4,8-+2,4,7-TMDBT 226 143 dinaphthothiophene DNT 284
71 1,4,6-trimethyldibenzothiophene 1,4,6-TMDBT 226 144 dinaphthothiophene DNT 284
72 1,4,8-trimethyldibenzothiophene 1,4,8-TMDBT 226 145 indeno[1,2,3-cd]pyrene InPy 276
73 pyrene Py 202

Table 3.

Quantities of individual polycyclic aromatic compounds from coal samples of the Heshan Coalfield and compound abbreviations.

Compound Compound
No. Abbr. SC1 SC2 SC3 SC4 SC5 SC6 SC7 SC8 SC9 HL1 HL2 HL3 HL4 HL5 HL6 SCG2 HLG1 HLG2 HLG3
1 N nd 0.01 0.01 0.02 0.02 0.02 0.05 0.04 0.17 0.25 0.01 1.32 0.09 0.56 0.05 0.01 4.62 1.37 0.02
2 2MN 0.33 0.08 0.19 0.2 0.35 0.3 0.62 0.43 1.29 1.44 0.06 5.45 0.41 2.1 0.37 0.25 24.36 3.2 0.05
3 1MN 0.09 0.03 0.04 0.06 0.07 0.06 0.13 0.09 0.32 0.39 0.01 1.47 0.08 0.44 0.07 0.09 6.51 0.75 0.01
4 Bi 0.28 0.42 0.56 1 0.86 0.66 1.11 0.92 0.48 0.43 0.17 1.16 1.22 1.14 1.2 0.13 3.54 0.75 0.31
5 DMBT nd nd 0 nd 0.01 0 0.01 0 0.03 0.04 nd 0.12 nd nd 0 0.01 0.59 0.01 nd
6 2EN nd nd 0.01 0.01 0.01 0.01 0.03 0.01 0.1 0.09 nd 0.25 nd 0.04 0.01 0.04 1.22 0.08 nd
7 1EN nd nd 0 nd nd nd 0 0 0.01 0.02 nd 0.03 nd nd nd 0.01 0.17 0.01 nd
8 2MBi nd 0.01 0 0.01 0 0 0 0 0.01 0.06 0.01 0.08 0.01 0.01 0.01 0 0.37 0.02 0
9 DMN 0.42 0.09 0.19 0.32 0.36 0.28 0.55 0.34 0.71 1.24 0.09 3.39 0.24 0.93 0.36 0.22 16.5 1.33 0.02
10 DMN 0.2 0.05 0.08 0.16 0.15 0.11 0.22 0.15 0.31 0.72 0.05 1.94 0.11 0.42 0.16 0.13 9.54 0.67 0.01
11 DMN 0.11 0.03 0.06 0.1 0.1 0.08 0.15 0.1 0.2 0.42 0.03 1.09 0.06 0.26 0.11 0.08 5.29 0.41 0.01
12 7EBT nd nd 0 0.01 0.01 0 0.01 0.01 0.04 0.1 nd 0.13 nd nd 0 0.02 0.86 0.02 nd
13 DMN 0.11 0.04 0.05 0.12 0.09 0.06 0.12 0.09 0.14 0.51 0.07 0.96 0.1 0.18 0.14 0.06 4.4 0.28 0.01
14 DMN nd 0.01 0 0.02 0.01 0.01 0.01 0.01 0.02 0.05 0 0.11 0.01 0.04 0.01 0.01 0.51 0.07 nd
15 DMN nd 0.01 0.01 0.02 0.01 0.01 0.02 0.02 0.04 0.14 0.01 0.22 0.01 0.03 0.02 0.02 1.17 0.05 0
16 3MBi 0.37 0.74 0.83 2.04 1.21 0.99 1.65 1.31 0.81 0.89 1.16 1.82 1.45 1.44 1.83 0.25 4.48 1.38 0.49
17 4MBi 0.14 0.37 0.4 1.04 0.65 0.5 0.81 0.62 0.35 0.56 0.39 0.99 0.67 0.61 0.79 0.21 2.45 0.59 0.28
18 TMN nd nd 0.01 nd 0.03 0.02 0.04 0.03 0.09 0.16 nd 0.25 nd nd 0.02 0.07 1.38 0.05 nd
19 TMN nd 0.02 0.02 0.05 0.04 0.02 0.04 0.04 0.04 0.21 0.03 0.41 0.03 0.05 0.05 0.05 1.61 0.1 0
20 DMBi 0.21 0.17 0.16 0.52 0.27 0.22 0.35 0.29 0.26 2.25 1.29 3.76 0.57 0.5 0.63 0.12 13.85 0.77 0.24
21 TMBT nd nd 0 nd 0 nd nd nd 0.02 0.08 nd 0.11 nd nd nd nd 0.56 nd nd
22 DMBi 0.03 0.05 0.04 0.15 0.07 0.06 0.08 0.07 0.06 0.63 0.43 1.06 0.21 0.15 0.18 0.03 3.71 0.23 0.08
23 TMN nd 0.08 0.01 nd 0.01 0.01 0.01 0.02 0.02 0.12 0.01 0.25 0.01 0.03 0.02 0.02 1.17 0.06 0.02
24 TMN nd nd 0.05 0.17 0.09 0.07 0.12 0.1 0.11 0.5 0.13 1 0.08 0.11 0.13 0.09 3.19 0.17 nd
25 TMN nd 0.02 0.01 0.06 0.03 0.02 0.04 0.04 0.05 0.31 0.08 0.46 0.04 0.04 0.05 0.04 1.89 0.09 nd
26 Fr 2.07 1.77 1.34 3.78 1.71 1.38 2.15 1.93 1.48 5.64 4.69 10.96 3.04 2.72 3.67 0.55 35.83 3.43 1.8
27 DMBi 0.12 0.13 0.11 0.35 0.16 0.14 0.22 0.21 0.15 0.45 0.38 0.78 0.16 0.17 0.25 0.07 2.25 0.23 0.09
28 DMBi 0.14 0.28 0.27 0.81 0.41 0.33 0.54 0.51 0.32 0.52 0.57 0.65 0.41 0.4 0.58 0.1 1.69 0.49 0.17
29 DMBi 0.14 0.27 0.22 0.69 0.36 0.33 0.53 0.45 0.38 0.7 0.43 0.76 0.38 0.41 0.53 0.12 2.18 0.44 0.15
30 MFr nd 0.03 0.02 0.07 0.03 0.03 0.05 0.04 0.05 0.44 0.16 0.59 0.07 0.07 0.06 0.04 2.02 0.1 0.03
31 DMBi nd 0.06 0.04 0.14 0.1 0.07 0.1 0.1 0.07 0.18 0.12 0.46 0.07 0.07 0.1 0.04 0.98 0.1 0.06
32 MDBFr 0.18 0.14 0.11 0.35 0.14 0.12 0.19 0.19 0.34 0.72 0.47 0.93 0.22 0.22 0.31 0.2 3.34 0.25 0.09
33 MDBFr 0.28 0.2 0.16 0.49 0.2 0.18 0.29 0.27 0.25 1.45 1.01 2.25 0.34 0.33 0.46 0.09 7.89 0.43 0.12
34 MFr 0.6 0.76 0.61 1.75 0.64 0.6 0.83 0.98 0.74 2.61 2.15 3.84 1.35 0.97 1.5 0.24 14.03 1.44 0.65
35 MFr 0.99 1.03 0.75 2.29 0.96 0.8 1.36 1.11 0.76 3.38 3 6.78 1.62 1.32 1.9 0.3 17.78 1.94 0.94
36 MFr 2.07 1.49 1.08 3.49 1.39 1.19 1.8 1.76 1.25 9.16 4.92 10.15 2.31 1.73 2.56 0.55 31.2 2.9 1.24
37 MFr 0.38 0.36 0.22 0.83 0.29 0.29 0.36 0.39 0.3 1.68 1.2 2.6 0.53 0.43 0.52 0.17 8.29 0.67 0.28
38 DBT 78.98 18.53 14.98 38.21 21.4 18.91 29.35 26.83 22.68 60.14 31.09 87.34 14.56 14.67 22.07 8.07 293.67 20.27 3.67
39 Ph 5.75 3.16 0.21 6.06 2.71 2.43 3.71 3.45 2.49 5.18 5.15 8.69 2.97 2.52 3.72 1.24 24.88 3.42 1.59
40 DMFr 0.53 0.66 0.47 1.55 0.57 0.53 0.78 0.67 0.57 1.9 2.3 4.31 0.74 0.8 0.98 0.26 10.74 1.15 0.39
41 DMFr 0.35 0.38 0.27 0.82 0.31 0.28 0.38 0.36 0.3 1.33 1.19 2.29 0.46 0.37 0.43 0.14 6.29 0.64 0.25
42 DMFr 0.37 0.41 0.28 1.01 0.4 0.34 0.96 0.55 0.37 1.62 1.22 2.93 0.52 0.45 0.57 0.15 8.8 0.69 0.27
43 DMFr 0.55 0.51 0.34 1.16 0.45 0.37 0.58 0.6 0.44 1.99 1.75 3.47 0.51 0.47 0.61 0.18 10.17 0.8 0.28
44 DMFr nd 0.07 0.05 0.17 0.07 0.07 0.07 0.08 0.08 0.51 0.3 0.4 0.11 0.07 0.13 0.05 1.46 0.16 0.17
45 4MDBT 82.45 18.21 15.58 41.29 21.67 19.8 29.94 29.81 22.98 80.01 43.9 121.3 15.68 16.03 22.71 9.9 372.22 23.65 4.07
46 2+3MDBT 55.7 12.92 11.14 28.6 14.91 13.37 21.96 20.04 15.96 56.25 36.13 85.4 11.77 11.02 15.93 6.51 256.75 15.96 3.75
47 1MDBT 4.78 1.88 1.11 2.77 1.12 1.11 2.01 1.03 0.72 3.65 1.7 5.31 1.35 1.31 0.76 0.05 15.39 1.77 0.14
48 3MPh 3.88 1.77 0.43 1.24 0.8 0.69 0.75 1.66 1.15 3.79 3.41 4.85 0.72 0.49 1.78 0.39 17.58 1 0.85
49 2MPh 4.18 1.78 1.45 3.86 1.7 1.62 2.59 2.42 1.71 4.46 4.49 7.3 1.92 1.71 2.44 0.66 20.48 2.55 1.07
50 9MPh 0.56 0.4 0.25 0.84 0.3 0.28 0.44 0.44 0.36 1.14 0.96 1.6 0.45 0.35 0.46 0.15 4.31 0.55 0.21
51 1MPh 0.44 0.33 0.19 0.66 0.24 0.23 0.34 0.33 0.3 0.76 0.66 0.83 0.32 0.27 0.37 0.12 2.47 0.47 0.17
52 3EDBT 0.41 0.19 0.15 0.4 0.21 0.18 0.36 0.32 0.39 1.72 0.63 2.32 0.16 0.21 0.28 0.16 6.56 0.28 0.08
53 4,6-DMDBT 19.65 5.26 4.48 13.11 6.63 5.88 9.28 9.24 7 29.86 17.36 48.52 4.66 4.53 6.37 3.35 135.92 7.81 1.35
54 2,4-DMDBT 11.15 3.29 2.81 8.05 3.97 3.63 5.71 5.54 4.31 16.78 10.25 26.94 2.73 2.58 3.67 2.1 76.41 4.44 0.86
55 2,6-DMDBT 14.04 3.25 3.43 7.95 4.03 4.18 5.95 5.96 4.84 18.95 11.92 29.73 2.98 3.43 4.42 2.14 86.33 4.82 1.03
56 3,6-DMDBT 19.95 4.46 3.36 9.48 5.43 4.24 7.17 7.26 5.28 22.76 17.12 39.06 4.26 3.35 5.36 2.34 103.02 6.74 1.6
57 2,7-+3,7-DMDBT 7.21 2.26 1.99 5.34 2.73 2.41 3.91 4.08 3.12 13.28 9.74 22.26 2.29 2.19 2.81 1.35 61.23 3.48 0.98
58 1,6-+1,4-DMDBT 3.02 0.86 0.74 1.72 0.95 0.81 1.37 1.49 1.16 4.87 2.89 6.97 0.88 0.79 1.03 0.52 nd 1.44 0.26
59 DMPh 0.27 0.15 0.06 0.28 0.09 0.09 0.15 0.16 0.2 0.87 0.36 0.75 0.14 0.19 0.21 0.15 1.97 0.17 0.07
60 1,3-+3,4-DMDBT 3.7 1.32 1.06 2.99 1.42 1.21 1.93 2.11 2.39 6.69 5.16 10.98 1.38 1.19 1.64 nd 30.84 2.11 0.67
61 DMPh 0.96 0.42 0.36 0.96 0.44 0.39 0.63 0.68 0.53 nd nd nd nd nd nd nd nd nd nd
62 1,7-DMDBT nd nd nd nd nd nd nd nd nd 2.01 1.6 3.52 0.46 0.43 0.64 0.72 8.82 0.79 0.26
63 2,3+1,9-DMDBT 0.4 0.28 0.2 0.49 0.25 0.23 0.37 0.33 nd 1.69 0.9 1.99 0.23 0.18 0.27 nd 5.71 0.34 0.12
64 DMPh 0.51 0.38 0.28 0.79 0.35 0.29 0.47 0.52 nd 1.37 1.21 1.95 0.46 0.35 0.48 0.22 6.22 0.63 0.2
65 DMPh 0.22 0.15 0.12 0.33 0.14 0.12 0.21 0.21 0.23 0.49 0.51 0.87 0.19 0.17 0.24 0.16 2.1 0.36 0.11
66 DMPh 0 0.16 0.11 0.36 0.15 0.12 0.21 0.21 nd nd nd nd 0.14 0.13 nd nd nd nd 0.06
67 DMA 0.14 0.14 0.08 0.3 0.1 0.06 0.14 0.11 0.07 0.41 0.34 0.63 0.1 0.1 0.15 0.1 2.45 0.15 0.07
68 Fla 0.51 0.46 0.31 0.66 0.32 0.23 0.36 0.41 0.35 0.67 0.69 0.93 0.45 0.39 0.51 0.12 2.11 0.52 0.32
69 2,4,6-TMDBT 7.98 7.03 4.94 14.76 5.80 5.70 7.56 9.18 9.90 39.33 21.66 48.26 6.27 6.09 7.35 3.78 114.19 11.55 3.78
70 2,4,8-+2,4,7-TMDBT 0.76 0.74 0.47 0.82 0.52 0.54 0.42 0.51 0.55 3.73 2.05 4.57 0.66 0.58 0.70 0.21 10.82 1.10 0.36
71 1,4,6-TMDBT 1.14 0.93 0.52 1.48 0.64 0.60 0.76 0.92 0.99 4.14 2.28 5.08 0.83 0.87 1.05 0.38 12.02 1.65 0.54
72 1,4,8-TMDBT 0.38 0.37 0.234 0.574 0.174 0.27 0.294 0.357 0.385 1.863 1.026 2.286 0.33 0.38 0.38 0.147 5.409 0.38 0.38
73 Py 0.58 0.45 0.3 0.76 0.2 0.19 0.25 0.31 0.31 0.8 0.63 0.88 0.51 0.42 0.52 0.15 1.97 0.64 0.33
74 1,4,7-TMDBT 0.57 0.56 0.34 0.66 0.20 0.39 0.34 0.41 0.44 2.69 1.48 3.30 0.50 0.44 0.53 0.17 7.81 0.83 0.27
75 2,6,7-TMDBT 0.27 0.30 0.18 0.33 0.12 0.21 0.17 0.20 0.22 1.45 0.80 1.78 0.26 0.20 0.25 0.08 4.21 0.39 0.13
76 1,3,7-TMDBT 0.38 0.55 0.31 0.57 0.23 0.36 0.29 0.36 0.39 2.48 1.37 3.05 0.55 0.38 0.38 0.15 7.21 0.38 0.38
77 MFLa 0.11 0.17 0.11 0.32 0.15 0.12 0.19 0.14 0.12 0.47 0.35 0.67 0.27 0.18 0.25 0.06 1.74 0.27 0.16
78 1,4,6,8-TeMDBT 0.38 0.37 0.26 0.82 0.29 0.3 0.42 0.51 0.55 2.07 1.14 2.54 0.33 0.29 0.35 0.21 6.01 0.55 0.18
79 1MPhT 0.47 0.36 0.3 0.79 0.37 0.31 0.52 0.54 0.38 2.07 1.09 3.21 0.4 0.33 0.44 0.21 8.58 0.56 0.12
80 MPy 0.21 0.31 0.19 0.62 0.24 0.23 0.34 0.46 0.32 1 0.69 1.47 0.29 0.28 0.36 0.15 3.31 0.4 0.16
81 BcF 0.92 1.15 1 1.61 1.02 0.67 0.82 1.05 0.79 2.45 2.38 4.16 1.47 1.26 1.65 0.39 8.42 1.72 0.9
82 1MPhT 0.22 0.29 0.18 0.54 0.22 0.21 0.35 0.36 0.25 1.49 0.74 2.16 0.3 0.27 0.34 0.14 5.89 0.41 0.09
83 BbF 0.46 0.72 0.48 1.28 0.75 0.44 0.62 0.78 0.55 1.8 1.62 2.87 0.86 0.79 1.07 0.23 5.85 0.98 0.51
84 MPy 0.39 0.47 0.3 0.81 0.33 0.34 0.4 0.5 0.32 0.92 nd nd nd nd 0.47 0.17 nd nd 0.26
85 1MPhT 0.19 0.14 0.12 0.29 0.14 0.14 0.21 0.2 0.15 1.04 0.44 1.76 0.21 0.15 0.2 0.09 4.11 0.27 0.05
86 1MPhT nd 0.16 0.11 0.29 0.12 0.13 0.18 0.2 0.13 0.77 0.43 1.32 0.19 0.14 0.19 0.08 2.57 0.25 0.07
87 2,4,6,7-TeMDBT nd 0.1 0.06 0.21 0.08 0.06 0.1 0.14 0.1 0.45 0.17 0.44 0.11 0.1 0.14 0.05 1.69 0.14 0.06
88 MPy 0.18 0.24 0.13 0.4 0.12 0.13 0.22 0.25 0.15 0.64 0.47 0.92 0.33 0.22 0.3 0.09 1.19 0.41 0.2
89 MPy 0.13 0.18 0.09 0.33 0.12 0.11 0.17 0.21 0.15 0.64 0.42 1.04 0.2 0.14 0.24 0.09 2.09 0.28 0.12
90 1,3,6,7-TeMDBT nd 0.06 0.04 0.19 0.05 0.06 0.09 0.11 0.09 0.36 0.35 0.56 0.1 0.09 0.13 0.06 1.46 0.17 0.05
91 1PTN nd 0.09 0.06 0.22 0.09 0.08 0.16 0.16 0.11 0.45 0.34 0.91 0.12 0.09 0.15 0.06 2.14 0.18 0.05
92 DMPy nd 0.12 0.07 0.31 0.07 0.06 0.09 0.17 0.13 0.26 0.37 0.69 0.21 0.09 0.13 0.06 3.52 0.13 0.08
93 DMPy 0.24 0.59 1.12 1.46 1.11 1.25 0.04 0.12 0.09 0.2 1.18 3.04 0.07 0.1 0.04 0.04 4.34 0.97 0.03
94 DMPy 0.93 1.19 0.34 2.41 0.39 0.41 1.75 2.28 0.61 2.47 2.84 7.35 1.55 1.76 2.02 0.47 4.02 2.64 0.05
95 DMPy 0.47 0.4 0.23 0.87 0.25 0.31 0.46 0.53 0.49 1.11 0.66 1.51 0.62 0.46 0.5 0.14 2.3 0.59 0.42
96 DMPy nd 0.56 1.19 2.06 1.24 1.29 1.93 0.57 1.11 0.55 nd nd nd nd 0.53 0.51 nd nd 0.46
97 DMPy nd 0.44 0.25 nd 0.3 0.33 0.42 0.53 nd 1.28 0.61 3.24 2.35 2.13 2.26 nd 4.8 2.85 0.26
98 DMPy 0.43 0.41 nd 0.79 nd nd nd nd nd nd 0.81 1.75 nd nd nd nd 2.19 0.38 0.27
99 DMPy nd 0.13 0.22 0.28 0.32 0.31 0.51 0.53 0.37 0.92 1.02 2.18 0.89 0.32 0.55 0.19 2.21 0.62 0.59
100 DMPy nd 0.29 0.1 0.62 0.21 0.22 0.28 0.35 0.27 0.58 0.49 0.46 0.45 0.45 0.47 0.09 1 0.46 0.59
101 [2,1]BNT 12.23 6.14 4.5 11.85 5.06 4.71 7.58 8.23 5.44 15.24 13.33 24.31 5.11 4.75 7.05 2.86 62.51 6.22 3.27
102 [1,2]BNT 1.24 1.23 0.78 2.08 0.82 0.87 1.4 1.42 1.55 2.22 2.11 3.53 1.08 1.06 1.46 0.49 8.85 1.18 0.77
103 [2,3]BNT 0.27 0.42 0.23 0.81 0.28 0.27 0.46 0.5 0.93 1.16 0.98 1.66 0.39 0.39 0.5 0.22 3.99 0.51 0.21
104 BaA 1.04 1.21 0.77 2.1 0.79 0.81 1.2 1.4 1.6 1.43 1.61 2.72 1 0.91 1.32 0.46 5.29 1.49 0.81
105 MBNT 5.8 3.6 2.56 7.44 2.98 2.92 4.43 4.7 3.39 9.9 7.98 15.75 2.64 2.99 3.63 1.64 39.06 3.53 1.72
106 MBNT 10.75 1.48 1.18 3.25 5.54 1.31 2.15 2.09 1.29 5.47 4.22 6.6 1.47 1.19 1.73 0.6 21.79 2.08 0.78
107 MBNT nd 4.83 4.59 9.91 nd 4.85 7.9 6.22 5.8 13.79 12.79 24.53 4.07 4.81 5.65 2.32 56.48 11.37 2.54
108 MBNT 2.78 0.85 0.56 1.61 0.72 0.68 0.99 0.84 0.88 1.59 1.57 2.19 0.68 0.91 0.72 0.32 6.21 0.94 0.39
109 MBNT 0.57 0.93 1.13 1.74 1.27 1.23 1.76 0.98 0.82 1.82 1.87 3.54 0.79 1.78 1.19 0.25 8.06 1.11 0.62
110 MBNT 2.57 0.39 0.26 0.71 0.33 0.33 0.5 0.39 0.47 0.94 0.74 1.42 0.25 0.35 0.31 0.14 3.75 0.48 0.23
111 MBNT nd 1.68 1.42 3.23 1.51 1.4 2.22 2.05 2.07 4.64 3.99 7.71 1.49 1.8 1.99 0.71 18.65 2.28 1.02
112 MBNT nd nd nd nd 0.57 nd 0.95 0.52 0.57 1.15 0.93 1.64 0.74 0.5 0.43 0.32 3.88 0.9 0.25
113 MBNT nd nd 0.23 1.55 0.34 nd nd 0.47 0.64 1.03 0.95 1.68 0.44 0.46 0.42 0.26 3.87 0.71 0.37
114 MCh 1.29 0.69 0.44 1.28 0.53 0.46 0.73 0.81 0.94 1.05 1.13 1.7 0.8 0.64 0.72 0.42 3.34 1.14 0.43
115 MCh 1 0.32 0.28 0.9 0.38 0.29 0.52 0.46 0.67 0.94 0.62 0.95 0.33 0.31 0.33 0.15 2.37 0.59 0.17
116 DMBNT 3.03 1.8 1.42 4.43 1.59 1.55 2.6 3.99 2.89 5.47 4.4 10.03 1.28 2.84 1.94 0.91 22.92 1.99 0.86
117 DMBNT 2.25 1.16 1.32 2.96 1.5 1.01 1.74 2.06 1.17 3.32 2.99 6.22 0.95 1.44 1.3 0.52 15.45 1.3 0.51
118 DMBNT 1.21 0.48 0.51 1.48 0.64 0.4 0.69 0.72 0.89 1.29 1.21 2.12 0.26 0.54 0.65 0.22 5.73 0.54 0.17
119 DMBNT 2.48 1.36 1.35 4.52 1.45 1.35 2.29 2.71 2.26 5.73 5.34 10.73 1.27 1.46 1.78 0.8 26.38 1.95 0.64
120 DMBNT 1.21 0.65 0.2 0.84 0.55 0.53 0.73 0.71 0.52 1.59 1.41 3.05 0.45 0.65 0.8 0.19 6.54 0.58 0.33
121 DMBNT 1.81 0.85 0.82 2.4 0.58 0.75 1.26 1.64 1.28 2.91 1.3 3.07 0.28 0.71 1.2 0.09 7.3 0.59 0.23
122 DMBNT 1.21 0.33 0.2 1.27 0.55 0.26 0.73 0.71 0.78 1.59 0.71 1.53 0.16 0.33 0.4 0.04 3.27 0.58 0.15
123 DMBNT 1.69 0.39 0.16 0.55 0.33 0.24 0.51 0.35 0.03 0.78 0.37 1.5 0.06 0.18 0.26 0.02 3.23 0.28 0.08
124 DMBNT nd 0.82 0.96 1.93 0.96 0.7 0.92 0.79 1.4 1.83 1.76 3.49 nd 0.72 0.64 0.47 7.64 0.81 0.35
125 DMBNT nd 0.07 0.29 0.13 0.1 0.08 0.07 0.07 0.16 0.07 0.07 0.07 nd 0.06 0.05 0.15 0.07 0.04 0.03
126 BN nd 0.7 0.58 1.27 0.43 0.55 0.88 0.47 nd nd 0.92 nd 0.67 0.48 nd 0.3 nd nd nd
127 BbFr 2.86 1.7 1.2 2.42 0.89 0.99 1.24 1.25 3.57 1.64 1.74 2.97 1.46 1.26 1.09 0.5 5.33 1.53 0.91
128 BkFr 1.92 0.95 0.41 0.97 0.27 0.29 0.49 0.34 1.41 0.33 0.59 0.91 0.89 0.66 0.58 0.14 nd 1.13 0.72
129 DDNT nd 0.73 0.35 0.89 0.38 0.34 0.47 0.59 0.32 0.85 1 1.88 0.78 0.47 0.59 0.19 3.33 1.11 0.52
130 DDNT nd 0.41 0.24 0.79 0.33 0.35 0.58 0.65 0.32 1.24 0.9 2.03 0.6 0.46 0.61 0.16 3.92 0.76 0.45
131 DDNT nd 0.42 0.23 0.64 0.24 0.3 0.44 0.47 0.27 0.82 0.72 1.75 0.47 0.32 0.47 0.16 3.7 0.63 0.32
132 DDNT nd 0.09 0.05 0.24 0.08 0.11 0.13 0.18 nd 0.34 0.2 0.64 0.13 0.05 0.15 0.06 1.55 0.21 0.1
133 DDNT nd 0.44 0.23 0.65 0.25 0.24 0.35 0.44 0.26 0.78 0.61 1.72 0.54 0.31 0.43 0.14 2.77 0.7 0.36
134 DDNT nd 0.61 0.36 1.02 0.42 0.48 0.59 0.76 0.42 1.43 1.14 2.61 0.64 0.49 0.64 0.24 5.56 0.87 0.45
135 DDNT nd 0.29 0.22 0.6 0.28 0.25 0.4 0.46 0.25 0.97 0.67 1.56 0.34 0.22 0.42 0.14 3.4 0.49 0.24
136 DDNT nd 0.93 0.54 1.33 0.61 0.56 0.84 1.01 0.53 2.1 1.43 3.85 0.82 0.58 0.82 0.35 7.5 1.27 0.57
137 DDNT nd 1.55 0.96 2.49 1.19 1.12 1.54 1.98 0.98 3.27 2.74 6.54 1.42 1.14 1.66 0.51 12.51 2.03 1.02
138 DDNT nd 0.98 0.59 1.47 0.72 0.66 1 1.16 0.65 2.39 1.45 4.4 0.97 0.56 0.77 0.39 8.65 1.43 0.65
139 BBBT nd 0.84 0.5 1.77 0.34 0.53 0.75 0.59 1.68 2.71 1.06 2.75 0.44 0.36 0.3 0.2 7.19 0.35 0.15
140 DDNT nd 0.92 0.47 1.77 0.66 0.65 1.1 1.25 0.64 1.75 1.78 4.12 1.36 0.81 1.19 0.29 7.22 1.87 0.89
141 BBBT 8.34 2.44 1.75 5.11 1.34 1.43 2.46 2.12 5.81 6.98 4.08 10.71 2.38 1.19 1.7 0.88 23.61 1.81 1.02
142 BBBT nd nd nd nd nd nd nd 1.15 3.24 1.41 nd 1.24 nd nd nd 0.39 3.92 nd nd
143 DNT 1.71 1.66 0.71 4.18 0.86 0.72 1.36 1.67 2.99 3.23 2.24 nd 0.67 0.69 2.62 0.56 10.52 0.7 0.43
144 DNT nd 0.72 1.2 1.67 1.23 1.15 1.86 0.61 0.46 2.21 2.39 5.04 1.18 1.08 0.87 0.29 4.1 1.41 0.63
145 InPy 3.69 4.43 2.02 4.63 0.85 0.51 0.81 1.62 5.6 nd 1.09 0.35 2.36 2.18 4.71 0.45 nd 4.7 3.34

Explanation: The italic data are from parting samples; nd= not detected.

Table 4.

SPACs and their group division in coal samples from the Heshan Coalfield and compound abbreviations.

Compound Abbr. SC1 SC2 SC3 SC4 SC5 SC6 SC7 SC8 SC9 HL1 HL2 HL3 HL4 HL5 HL6 SCG2 HLG1 HLG2 HLG3
DMBT nd nd 0 nd 0.01 0 0.01 0 0.03 0.04 nd 0.12 nd nd 0 0.01 0.59 0.01 nd
7EBT nd nd 0 0.01 0.01 0 0.01 0.01 0.04 0.1 nd 0.13 nd nd 0 0.02 0.86 0.02 Nd
TMBT nd nd 0 nd 0 nd nd nd 0.02 0.08 nd 0.11 nd nd nd nd 0.56 nd nd
total nd nd 0 0.01 0.02 0 0.02 0.01 0.09 0.22 nd 0.36 nd nd 0 0.03 2.01 0.03 nd
DBT 78.98 18.53 14.98 38.21 21.4 18.91 29.35 26.83 22.68 60.14 31.09 87.34 14.56 14.67 22.07 8.07 293.67 20.27 3.67
4MDBT 82.45 18.21 15.58 41.29 21.67 19.8 29.94 29.81 22.98 80.01 43.9 121.3 15.68 16.03 22.71 9.9 372.22 23.65 4.07
2+3MDBT 55.7 12.92 11.14 28.6 14.91 13.37 21.96 20.04 15.96 56.25 36.13 85.4 11.77 11.02 15.93 6.51 256.75 15.96 3.75
1MDBT 4.78 1.88 1.11 2.77 1.12 1.11 2.01 1.03 0.72 3.65 1.7 5.31 1.35 1.31 0.76 0.05 15.39 1.77 0.14
3EDBT 0.41 0.19 0.15 0.4 0.21 0.18 0.36 0.32 0.39 1.72 0.63 2.32 0.16 0.21 0.28 0.16 6.56 0.28 0.08
DMDBT 19.65 5.26 4.48 13.11 6.63 5.88 9.28 9.24 7 29.86 17.36 48.52 4.66 4.53 6.37 3.35 135.92 7.81 1.35
4,6-DMDBT 19.65 5.26 4.48 13.11 6.63 5.88 9.28 9.24 7 29.86 17.36 48.52 4.66 4.53 6.37 3.35 135.92 7.81 1.35
2,4-DMDBT 11.15 3.29 2.81 8.05 3.97 3.63 5.71 5.54 4.31 16.78 10.25 26.94 2.73 2.58 3.67 2.1 76.41 4.44 0.86
2,6-DMDBT 14.04 3.25 3.43 7.95 4.03 4.18 5.95 5.96 4.84 18.95 11.92 29.73 2.98 3.43 4.42 2.14 86.33 4.82 1.03
3,6-DMDBT 19.95 4.46 3.36 9.48 5.43 4.24 7.17 7.26 5.28 22.76 17.12 39.06 4.26 3.35 5.36 2.34 103.02 6.74 1.6
2,7-+3,7-DMDBT 7.21 2.26 1.99 5.34 2.73 2.41 3.91 4.08 3.12 13.28 9.74 22.26 2.29 2.19 2.81 1.35 61.23 3.48 0.98
1,6-+1,4-DMDBT 3.02 0.86 0.74 1.72 0.95 0.81 1.37 1.49 1.16 4.87 2.89 6.97 0.88 0.79 1.03 0.52 nd 1.44 0.26
1,3-+3,4-DMDBT 3.7 1.32 1.06 2.99 1.42 1.21 1.93 2.11 2.39 6.69 5.16 10.98 1.38 1.19 1.64 nd 30.84 2.11 0.67
1,7-DMDBT nd nd nd nd nd nd nd nd nd 2.01 1.6 3.52 0.46 0.43 0.64 0.72 8.82 0.79 0.26
2,3+1,9-DMDBT 0.4 0.28 0.2 0.49 0.25 0.23 0.37 0.33 nd 1.69 0.9 1.99 0.23 0.18 0.27 nd 5.71 0.34 0.12
2,4,6-TMDBT 7.98 7.03 4.94 14.76 5.8 5.7 7.56 9.18 9.9 39.33 21.66 48.26 6.27 6.09 7.35 3.78 114.19 11.55 3.78
2,4,8-+2,4,7-TMDBT 0.76 0.74 0.47 0.82 0.52 0.54 0.42 0.51 0.55 3.73 2.05 4.57 0.66 0.58 0.7 0.21 10.82 1.1 0.36
1,4,6-TMDBT 1.14 0.93 0.52 1.48 0.64 0.6 0.76 0.92 0.99 4.14 2.28 5.08 0.83 0.87 1.05 0.38 12.02 1.65 0.54
1,4,8-TMDBT 0.38 0.37 0.234 0.574 0.174 0.27 0.294 0.357 0.385 1.863 1.026 2.286 0.33 0.38 0.38 0.147 5.409 0.38 0.38
1,4,7-TMDBT 0.57 0.56 0.34 0.66 0.2 0.39 0.34 0.41 0.44 2.69 1.48 3.3 0.5 0.44 0.53 0.17 7.81 0.83 0.27
2,6,7-TMDBT 0.27 0.3 0.18 0.33 0.12 0.21 0.17 0.2 0.22 1.45 0.8 1.78 0.26 0.2 0.25 0.08 4.21 0.39 0.13
1,3,7-TMDBT 0.38 0.55 0.31 0.57 0.23 0.36 0.29 0.36 0.39 2.48 1.37 3.05 0.55 0.38 0.38 0.15 7.21 0.38 0.38
1,4,6,8-TeMDBT 0.38 0.37 0.26 0.82 0.29 0.3 0.42 0.51 0.55 2.07 1.14 2.54 0.33 0.29 0.35 0.21 6.01 0.55 0.18
2,4,6,7-TeMDBT nd 0.1 0.06 0.21 0.08 0.06 0.1 0.14 0.1 0.45 0.17 0.44 0.11 0.1 0.14 0.05 1.69 0.14 0.06
1,3,6,7-TeMDBT nd 0.06 0.04 0.19 0.05 0.06 0.09 0.11 0.09 0.36 0.35 0.56 0.1 0.09 0.13 0.06 1.46 0.17 0.05
T-DBT 313.30 83.72 68.38 180.81 92.82 84.45 129.75 126.74 104.45 377.22 222.72 563.51 73.33 71.33 99.22 42.45 1623.70 111.04 24.97
MPhT 0.47 0.36 0.3 0.79 0.37 0.31 0.52 0.54 0.38 2.07 1.09 3.21 0.4 0.33 0.44 0.21 8.58 0.56 0.12
MPhT 0.22 0.29 0.18 0.54 0.22 0.21 0.35 0.36 0.25 1.49 0.74 2.16 0.3 0.27 0.34 0.14 5.89 0.41 0.09
MPhT 0.19 0.14 0.12 0.29 0.14 0.14 0.21 0.2 0.15 1.04 0.44 1.76 0.21 0.15 0.2 0.09 4.11 0.27 0.05
MPhT nd 0.16 0.11 0.29 0.12 0.13 0.18 0.2 0.13 0.77 0.43 1.32 0.19 0.14 0.19 0.08 2.57 0.25 0.07
total 0.88 0.95 0.71 1.91 0.85 0.79 1.26 1.3 0.91 5.37 2.7 8.45 1.1 0.89 1.17 0.52 21.15 1.49 0.33
1PTN nd 0.09 0.06 0.22 0.09 0.08 0.16 0.16 0.11 0.45 0.34 0.91 0.12 0.09 0.15 0.06 2.14 0.18 0.05
total nd 0.09 0.06 0.22 0.09 0.08 0.16 0.16 0.11 0.45 0.34 0.91 0.12 0.09 0.15 0.06 2.14 0.18 0.05
BNT 12.23 6.14 4.5 11.85 5.06 4.71 7.58 8.23 5.44 15.24 13.33 24.31 5.11 4.75 7.05 2.86 62.51 6.22 3.27
BNT 1.24 1.23 0.78 2.08 0.82 0.87 1.4 1.42 1.55 2.22 2.11 3.53 1.08 1.06 1.46 0.49 8.85 1.18 0.77
BNT 0.27 0.42 0.23 0.81 0.28 0.27 0.46 0.5 0.93 1.16 0.98 1.66 0.39 0.39 0.5 0.22 3.99 0.51 0.21
MBNT 5.8 3.6 2.56 7.44 2.98 2.92 4.43 4.7 3.39 9.9 7.98 15.75 2.64 2.99 3.63 1.64 39.06 3.53 1.72
MBNT 10.75 1.48 1.18 3.25 5.54 1.31 2.15 2.09 1.29 5.47 4.22 6.6 1.47 1.19 1.73 0.6 21.79 2.08 0.78
MBNT nd 4.83 4.59 9.91 nd 4.85 7.9 6.22 5.8 13.79 12.79 24.53 4.07 4.81 5.65 2.32 56.48 11.37 2.54
MBNT 2.78 0.85 0.56 1.61 0.72 0.68 0.99 0.84 0.88 1.59 1.57 2.19 0.68 0.91 0.72 0.32 6.21 0.94 0.39
MBNT 0.57 0.93 1.13 1.74 1.27 1.23 1.76 0.98 0.82 1.82 1.87 3.54 0.79 1.78 1.19 0.25 8.06 1.11 0.62
MBNT 2.57 0.39 0.26 0.71 0.33 0.33 0.5 0.39 0.47 0.94 0.74 1.42 0.25 0.35 0.31 0.14 3.75 0.48 0.23
MBNT nd 1.68 1.42 3.23 1.51 1.4 2.22 2.05 2.07 4.64 3.99 7.71 1.49 1.8 1.99 0.71 18.65 2.28 1.02
MBNT nd nd nd nd 0.57 nd 0.95 0.52 0.57 1.15 0.93 1.64 0.74 0.5 0.43 0.32 3.88 0.9 0.25
MBNT nd nd 0.23 1.55 0.34 nd nd 0.47 0.64 1.03 0.95 1.68 0.44 0.46 0.42 0.26 3.87 0.71 0.37
DMBNT 3.03 1.8 1.42 4.43 1.59 1.55 2.6 3.99 2.89 5.47 4.4 10.03 1.28 2.84 1.94 0.91 22.92 1.99 0.86
DMBNT 2.25 1.16 1.32 2.96 1.5 1.01 1.74 2.06 1.17 3.32 2.99 6.22 0.95 1.44 1.3 0.52 15.45 1.3 0.51
DMBNT 1.21 0.48 0.51 1.48 0.64 0.4 0.69 0.72 0.89 1.29 1.21 2.12 0.26 0.54 0.65 0.22 5.73 0.54 0.17
DMBNT 2.48 1.36 1.35 4.52 1.45 1.35 2.29 2.71 2.26 5.73 5.34 10.73 1.27 1.46 1.78 0.8 26.38 1.95 0.64
DMBNT 1.21 0.65 0.2 0.84 0.55 0.53 0.73 0.71 0.52 1.59 1.41 3.05 0.45 0.65 0.8 0.19 6.54 0.58 0.33
DMBNT 1.81 0.85 0.82 2.4 0.58 0.75 1.26 1.64 1.28 2.91 1.3 3.07 0.28 0.71 1.2 0.09 7.3 0.59 0.23
DMBNT 1.21 0.33 0.2 1.27 0.55 0.26 0.73 0.71 0.78 1.59 0.71 1.53 0.16 0.33 0.4 0.04 3.27 0.58 0.15
DMBNT 1.69 0.39 0.16 0.55 0.33 0.24 0.51 0.35 0.03 0.78 0.37 1.5 0.06 0.18 0.26 0.02 3.23 0.28 0.08
DMBNT nd 0.82 0.96 1.93 0.96 0.7 0.92 0.79 1.4 1.83 1.76 3.49 nd 0.72 0.64 0.47 7.64 0.81 0.35
DMBNT nd 0.07 0.29 0.13 0.1 0.08 0.07 0.07 0.16 0.07 0.07 0.07 nd 0.06 0.05 0.15 0.07 0.04 0.03
total 51.1 29.46 24.67 64.69 27.67 25.44 41.88 42.16 35.23 83.53 71.02 136.37 23.86 29.92 34.1 13.54 335.63 39.97 15.52
DDNT nd 0.73 0.35 0.89 0.38 0.34 0.47 0.59 0.32 0.85 1 1.88 0.78 0.47 0.59 0.19 3.33 1.11 0.52
DDNT nd 0.41 0.24 0.79 0.33 0.35 0.58 0.65 0.32 1.24 0.9 2.03 0.6 0.46 0.61 0.16 3.92 0.76 0.45
DDNT nd 0.42 0.23 0.64 0.24 0.3 0.44 0.47 0.27 0.82 0.72 1.75 0.47 0.32 0.47 0.16 3.7 0.63 0.32
DDNT nd 0.09 0.05 0.24 0.08 0.11 0.13 0.18 nd 0.34 0.2 0.64 0.13 0.05 0.15 0.06 1.55 0.21 0.1
DDNT nd 0.44 0.23 0.65 0.25 0.24 0.35 0.44 0.26 0.78 0.61 1.72 0.54 0.31 0.43 0.14 2.77 0.7 0.36
DDNT nd 0.61 0.36 1.02 0.42 0.48 0.59 0.76 0.42 1.43 1.14 2.61 0.64 0.49 0.64 0.24 5.56 0.87 0.45
DDNT nd 0.29 0.22 0.6 0.28 0.25 0.4 0.46 0.25 0.97 0.67 1.56 0.34 0.22 0.42 0.14 3.4 0.49 0.24
DDNT nd 0.93 0.54 1.33 0.61 0.56 0.84 1.01 0.53 2.1 1.43 3.85 0.82 0.58 0.82 0.35 7.5 1.27 0.57
DDNT nd 1.55 0.96 2.49 1.19 1.12 1.54 1.98 0.98 3.27 2.74 6.54 1.42 1.14 1.66 0.51 12.51 2.03 1.02
DDNT nd 0.98 0.59 1.47 0.72 0.66 1 1.16 0.65 2.39 1.45 4.4 0.97 0.56 0.77 0.39 8.65 1.43 0.65
DDNT nd 0.92 0.47 1.77 0.66 0.65 1.1 1.25 0.64 1.75 1.78 4.12 1.36 0.81 1.19 0.29 7.22 1.87 0.89
total nd 7.37 4.24 11.89 5.16 5.06 7.44 8.95 4.64 15.94 12.64 31.1 8.07 5.41 7.75 2.63 60.11 11.37 5.57
DNT 1.71 1.66 0.71 4.18 0.86 0.72 1.36 1.67 2.99 3.23 2.24 nd 0.67 0.69 2.62 0.56 10.52 0.7 0.43
DNT nd 0.72 1.2 1.67 1.23 1.15 1.86 0.61 0.46 2.21 2.39 5.04 1.18 1.08 0.87 0.29 4.1 1.41 0.63
total 1.71 2.38 1.91 5.85 2.09 1.87 3.22 2.28 3.45 5.44 4.63 5.04 1.85 1.77 3.49 0.85 14.62 2.11 1.06
BBBT nd 0.84 0.5 1.77 0.34 0.53 0.75 0.59 1.68 2.71 1.06 2.75 0.44 0.36 0.3 0.2 7.19 0.35 0.15
BBBT 8.34 2.44 1.75 5.11 1.34 1.43 2.46 2.12 5.81 6.98 4.08 10.71 2.38 1.19 1.7 0.88 23.61 1.81 1.02
BBBT nd nd nd nd nd nd nd 1.15 3.24 1.41 nd 1.24 nd nd nd 0.39 3.92 nd nd
total 8.34 3.28 2.25 6.88 1.68 1.96 3.21 3.86 10.73 11.1 5.14 14.7 2.82 1.55 2 1.47 34.72 2.16 1.17

Explanation: The sulfur containing compounds include benzothiophenes (BTs), dibenzothiophenes (DBTs), benzonaphthothiophenes (BNTs), methylphenanthro[4,5-bcd]thiophene (MPhT), dinaphthothiophene (DNT), 1-phenylthionaphthalene (1-PTN), dihydrodinaphthothiophene (DDNT), and benzobisbenzothiophene (BBBT). The italic data are from parting samples; nd= not detected.

1.1. Global distribution of high-sulfur coal

Table 1 holds the basic information of high-sulfur coal all over the world. In total, there are from 16 countries. All information and data are from references which can be found in the related article [1].

1.2. Identification of aromatic compounds

Detailed quantification of the PACs was performed by GC and GC-MS. The identified PACs and their abbreviations from 15 coal samples and 4 parting samples are presented in Table 2. The ion chromatograms of the compounds are in Zhao et al. [1].

1.3. Quantitative of polycyclic aromatic compounds

The contents of 145 compounds were listed in Table 3.

2. Experimental

Approximately, 5 g (size <0.2 mm) of coal samples were wrapped in the extracted filter paper and put into the Soxhlet extractor using dichloromethane solvent for 48 h (Fig. 1A). Extracted yields were determined by gravimetrically after removal of the dichloromethane. The extracts were separated into three fractions: saturated hydrocarbons, aromatic hydrocarbons, and hetero-hydrocarbons by column chromatography using pre-washed silica gel (70–230 mesh, 50 cm × 1 cm) (Fig. 1B). Each fraction was collected in 40 ml volume; the alkanes were eluted using n-hexane, aromatic hydrocarbons were eluted using dichloromethane, and polar hydrocarbons were using methanol.

Fig. 1.

Fig 1

Flow diagram of experiment.

GC analyses of collected aromatic hydrocarbon fractions were carried out on an Agilent 7820A gas chromatograph equipped with a HP-5MS UI fused silica column (30 m × 0.25 mm i.d.) coated. The GC temperature was programmed from 60 to 300 °C at 4 °C min−1 and hold for 15 min and hydrogen as carrier gas. The compounds were quantified by international standard (Squalane) and data were acquired and processed using the Chemstation software.

The identification of individual compounds was performed by GC-MS analysis on a GC-MS system coupled with Hewlett-Packard model 6890 GC and Hewlett-Packard model 5973 quadrupole MSD. Squalane was added to the aromatic hydrocarbon fraction as internal standard prior to analysis. GC separation was achieved on a fused silica capillary column coated with DB5-MS (30 m × 0.25 mm i.d., 0.25 µm film thickness). The analysis conditions were as follows: detector temperature of 60 °C for 5 min, increased from 60 °C to 300 °C at a rate of 4 °C min−1, and finally isothermally held at 300 °C for 15 min, with helium as the carrier gas. The sample was injected at a split ratio of 30:1 with an injector temperature of 290 °C. The mass spectrometer was operated in electron impact mode at 70 eV ionization energy and scanned from 50 to 650 Da. Individual hydrocarbon was identified through comparisons of mass spectra with literature and library data, along with interpretations of mass spectrometric fragmentation patterns [2,3].

Ethics Statement

Not applicable.

CRediT Author Statement

Cunliang Zhao, Qiaojing Zhao and Xiangchun Chang: regional geology study, collection of coal samples; Shenjun Qin, Qiaojing Zhao, Yuzhuang Sun and Balaji Panchal: analysis of organic experiments and discussed these data; Qiaojing Zhao: collected all data and wrote the manuscript; Yuzhuang Sun: conception of the study and finished final manuscript; Balaji Panchal: improved English.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

This research was supported by the National Natural Science Foundation of China (No. 41330317) and the Natural Science Foundation of Hebei (No. D2017402121). We are very grateful to Mr. Yongjie Niu for his help in laboratory work.

References

  • 1.Zhao Q.J., Qin S.J., Zhao C.L., Sun Y.Z., Panchal B., Chang X.C. Origin and geological implications of super high sulfur-containing polycyclic aromatic compounds in high-sulfur coal. Gondwana Res. 2021;96:219–231. [Google Scholar]
  • 2.Sun Y.Z., Zhao C.L., Püttmann W., Kalkreuth W., Qin S.J. Evidence of widespread wildfires in a coal seam from the middle Permian of the North China Basin. Lithosphere. 2017;9:595–608. doi: 10.1130/L638.1. [DOI] [Google Scholar]
  • 3.Yang Y.L., Zhao Q.J. Analysis of aromatic hydrocarbon in medium to high-sulfur coals from Fenxi, Shanxi Province. World J. Eng. 2018;15:786–791. doi: 10.1108/WJE-07-2017-0179. [DOI] [Google Scholar]

Articles from Data in Brief are provided here courtesy of Elsevier

RESOURCES