Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 2021 Jun 26;27(4):351–354. [Article in German] doi: 10.1007/s12268-021-1600-x

mRNA-Strukturen steuern die posttranskriptionelle Genregulation

Chiara Lichtenthaeler 1, Lasse Oberstrass 1, Julia E Weigand 1,
PMCID: PMC8233640  PMID: 34219980

The content is available as a PDF (754.1 KB).

Funding note: Open Access funding enabled and organized by Projekt DEAL.

Footnotes

Chiara Lichtenthaeler 2014–2017 Biowissenschaftenstudium an der Universität Frankfurt a. M. 2017–2020 Molekulare-Medizin-Studium an der Universität Frankfurt a. M. Seit 2020 Promotion am Fachbereich Biologie der TU Darmstadt im Labor von PD Dr. J. Weigand.

Lasse Oberstrass 2008–2012 Ausbildung als CTA. 2012–2018 Studium Biomolecular Engineering an der TU Darmstadt. Seit 2020 Promotion am Fachbereich Biologie der TU Darmstadt im Labor von PD Dr. J. Weigand.

Julia E. Weigand 2000–2005 Biologiestudium an der Universität Erlangen-Nürnberg. 2006–2009 Promotion im Labor von Prof. Dr. B. Suess an der Universität Erlangen-Nürnberg und der Universität Frankfurt a. M. 2010–2011 Postdoktorandin im Labor von Prof. Dr. S. Dimmeler an der Universität Frankfurt a. M. Seit 2012 Gruppenleiterin am Fachbereich Biologie der TU Darmstadt. 2020 Habilitation in Molekularbiologie, TU Darmstadt.

Literatur

  • [1].Wacker A, Weigand JE, Akabayov SR, et al. Secondary structure determination of conserved SARS-CoV-2 RNA elements by NMR spectroscopy. Nucleic Acids Res. 2020;48:12415–12435. doi: 10.1093/nar/gkaa1013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [2].Braun J, Fischer S, Xu ZZ, et al. Identification of new high affinity targets for Roquin based on structural conservation. Nucleic Acids Res. 2018;46:12109–12125. doi: 10.1093/nar/gky908. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [3].Pohl EE, Rupprecht A, Macher G, et al. Important trends in UCP3 investigation. Front Physiol. 2019;10:470. doi: 10.3389/fphys.2019.00470. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [4].Leppek K, Schott J, Reitter S, et al. Roquin promotes constitutive mRNA decay via a conserved class of stem-loop recognition motifs. Cell. 2013;153:869–881. doi: 10.1016/j.cell.2013.04.016. [DOI] [PubMed] [Google Scholar]
  • [5].Schlundt A, Heinz GA, Janowski R, et al. Structural basis for RNA recognition in roquin-mediated post-transcriptional gene regulation. Nat Struct Mol Biol. 2014;21:671–678. doi: 10.1038/nsmb.2855. [DOI] [PubMed] [Google Scholar]
  • [6].von Roretz C, Marco SD, Mazroui R, et al. Turnover of AU-rich-containing mRNAs during stress: a matter of survival. WIREs RNA. 2011;2:336–347. doi: 10.1002/wrna.55. [DOI] [PubMed] [Google Scholar]
  • [7].van Nostrand EL, Freese P, Pratt GA, et al. A large-scale binding and functional map of human RNA-binding proteins. Nature. 2020;583:711–719. doi: 10.1038/s41586-020-2077-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [8].Codutti L, Leppek K, Zálešák J, et al. A distinct, sequence-induced conformation is required for recognition of the constitutive decay element RNA by Roquin. Structure. 2015;23:1437–1447. doi: 10.1016/j.str.2015.06.001. [DOI] [PubMed] [Google Scholar]
  • [9].Janowski R, Heinz GA, Schlundt A, et al. Roquin recognizes a non-canonical hexaloop structure in the 3′-UTR of Ox40. Nat Commun. 2016;7:11032. doi: 10.1038/ncomms11032. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [10].Binas O, Tants J-N, Peter SA, et al. Structural basis for the recognition of transiently structured AU-rich elements by Roquin. Nucleic Acids Res. 2020;48:7385–7403. doi: 10.1093/nar/gkaa427. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biospektrum are provided here courtesy of Nature Publishing Group

RESOURCES