Abstract
Monoclonal antibodies (mAb) have been used as therapeutic agents for various diseases, and immunoglobulin G (IgG) is mainly used among antibody isotypes due to its structural and functional properties. So far, regardless of the purpose of the therapeutic antibody, wildtype IgG has been mainly used, but recently, the engineered antibodies with various strategies according to the role of the therapeutic antibody have been used to maximize the therapeutic efficacy. In this review paper, first, the overall structural features and functional characteristics of antibody IgG, second, the old and new techniques for antibody discovery, and finally, several antibody engineering strategies for maximizing therapeutic efficacy according to the role of a therapeutic antibody will be introduced.
Keywords: therapeutic antibody, antibody engineering, Fc engineering, bispecific antibody
Acknowledgement
This work was supported by Creative-Pioneering Researchers Program through Seoul National University (SNU).
Ethical Statements
The authors declare no conflict of interest.
Neither ethical approval nor informed consent was required for this study.
Footnotes
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
References
- 1.Scott A M, Wolchok J D, Old L J. Antibody therapy of cancer. Nat. Rev. Cancer. 2012;12:278–287. doi: 10.1038/nrc3236. [DOI] [PubMed] [Google Scholar]
- 2.Weiner L M, Surana R, Wang S. Monoclonal antibodies: Versatile platforms for cancer Immunotherapy. Nat. Rev. Immunol. 2010;10:317–327. doi: 10.1038/nri2744. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 3.Biburger M, Lux A, Nimmerjahn F. How immunoglobulin G antibodies kill target cells: Revisiting an old paradigm. Adv. Immunol. 2014;124:67–94. doi: 10.1016/B978-0-12-800147-9.00003-0. [DOI] [PubMed] [Google Scholar]
- 4.Starr C G, Tessier P M. Selecting and engineering monoclonal antibodies with drug-like specificity. Curr. Opin. Biotechnol. 2019;60:119–127. doi: 10.1016/j.copbio.2019.01.008. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 5.Strohl W R. Current progress in innovative engineered antibodies. Protein Cell. 2018;9:86–120. doi: 10.1007/s13238-017-0457-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 6.Kretschmer A, Schwanbeck R, Valerius T, Rösner T. Antibody isotypes for tumor immunotherapy. Transfus Med. Hemother. 2017;44:320–326. doi: 10.1159/000479240. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 7.Yang Y. Cancer immunotherapy: Harnessing the immune system to battle cancer. J. Clin. Invest. 2015;125:3335–3337. doi: 10.1172/JCI83871. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 8.DiLillo D J, Ravetch J V. Differential Fc-receptor engagement drives an anti-tumor vaccinal effect. Cell. 2015;161:1035–1045. doi: 10.1016/j.cell.2015.04.016. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9.Weiner G J. Building better monoclonal antibody-based therapeutics. Nat. Rev. Cancer. 2015;15:361–370. doi: 10.1038/nrc3930. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 10.Reichert J M. Antibody Fc: Linking adaptive and innate immunity. MAbs. 2014;6:619–621. doi: 10.4161/mabs.28617. [DOI] [Google Scholar]
- 11.Lu L L, Suscovich T J, Fortune S M, Alter G. Beyond binding: Antibody effector functions in infectious diseases. Nat. Rev. Immunol. 2018;18:46–61. doi: 10.1038/nri.2017.106. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 12.Teeling J L, French R R, Cragg M S, van den Brakel J, Pluyter M, Huang H, Chan C, Parren P W H I, Hack C E, Dechant M, Valerius T, van de Winkel J G J, Glennie M J. Characterization of new human CD20 monoclonal antibodies with potent cytolytic activity against non-Hodgkin lymphomas. Blood. 2004;104:1793–1800. doi: 10.1182/blood-2004-01-0039. [DOI] [PubMed] [Google Scholar]
- 13.Goulet D R, Atkins W M. Considerations for the design of antibody-based therapeutics. J. Pharm. Sci. 2020;109:74–103. doi: 10.1016/j.xphs.2019.05.031. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 14.Wang W, Singh S, Zeng D L, King K, Nema S. Antibody structure, instability, and formulation. J. Pharm. Sci. 2007;96:1–26. doi: 10.1002/jps.20727. [DOI] [PubMed] [Google Scholar]
- 15.Murphy K, Weaver C. Janeway’s Immunobiology. 9th ed. NY, USA: W.W. Norton & Company; 2016. [Google Scholar]
- 16.Bruhns P, Jönsson F. Mouse and human FcR effector functions. Immunol. Rev. 2015;268:25–51. doi: 10.1111/imr.12350. [DOI] [PubMed] [Google Scholar]
- 17.Pincetic A, Bournazos S, DiLillo D J, Maamary J, Wang T T, Dahan R, Fiebiger B M, Ravetch J V. Type i and type II Fc receptors regulate innate and adaptive immunity. Nat. Immunol. 2014;15:707–716. doi: 10.1038/ni.2939. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 18.Lee C H, Romain G, Yan W, Watanabe M, Charab W, Todorova B, Lee J, Triplett K, Donkor M, Lungu O I, Lux A, Marshall N, Lindorfer M A, Goff O R L, Balbino B, Kang T H, Tanno H, Delidakis G, Alford C, Taylor R P, Nimmerjahn F, Varadarajan N, Bruhns P, Zhang Y J, Georgiou G. IgG Fc domains that bind C1q but not effector Fcγ receptors delineate the importance of complement-mediated effector functions. Nat. Immunol. 2017;18:889–898. doi: 10.1038/ni.3770. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 19.Lee C H, Choi D K, Choi H J, Song M Y, Kim Y S. Expression of soluble and functional human neonatal Fc receptor in Pichia pastoris. Protein Expr. Purif. 2010;71:42–48. doi: 10.1016/j.pep.2009.12.004. [DOI] [PubMed] [Google Scholar]
- 20.Lee C H, Kang T H, Godon O, Watanabe M, Delidakis G, Gillis C M, Sterlin D, Hardy D, Cogné M, Macdonald L E, Murphy A J, Tu N, Lee J, McDaniel J R, Makowski E, Tessier P M, Meyer A S, Bruhns P, Georgiou G. An engineered human Fc domain that behaves like a pH-toggle switch for ultra-long circulation persistence. Nat. Commun. 2019;10:5031. doi: 10.1038/s41467-019-13108-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 21.Kang T H, Lee C H, Delidakis G, Jung J, Richard-Le Goff O, Lee J, Kim J E, Charab W, Bruhns P, Georgiou G. An engineered human Fc variant with exquisite selectivity for FcγRIIIaV158 reveals that ligation of FcγRIIIa mediates potent antibody dependent cellular phagocytosis with GM-CSF-differentiated macrophages. Front. Immunol. 2019;10:562. doi: 10.3389/fimmu.2019.00562. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 22.Kim S M, Chang K H, Oh D J. Effect of environmental parameters on glycosylation of recombinant immunoglobulin G produced from recombinant CHO cells. Biotechnol. Bioprocess Eng. 2018;23:456–464. doi: 10.1007/s12257-018-0109-8. [DOI] [Google Scholar]
- 23.Golay J, Introna M. Mechanism of action of therapeutic monoclonal antibodies: Promises and pitfalls of in vitro and in vivo assays. Arch. Biochem. Biophys. 2012;526:146–153. doi: 10.1016/j.abb.2012.02.011. [DOI] [PubMed] [Google Scholar]
- 24.Matlung H L, Babes L, Zhao X W, van Houdt M, Treffers L W, van Rees D J, Franke K, Schornagel K, Verkuijlen P, Janssen H, Halonen P, Lieftink C, Beijersbergen R L, Leusen J H W, Boelens J J, Kuhnle I, van der Werff Ten Bosch J, Seeger K, Rutella S, Pagliara D, Matozaki T, Suzuki E, Menke-van der Houven van Oordt C W, van Bruggen R, Roos D, van Lier R A W, Kuijpers T W, Kubes P, van den Berg T K. Neutrophils kill antibody-opsonized cancer cells by trogoptosis. Cell Rep. 2018;23:3946–3959. doi: 10.1016/j.celrep.2018.05.082. [DOI] [PubMed] [Google Scholar]
- 25.Yeap W H, Wong K L, Shimasaki N, Teo E C Y, Quek J K S, Yong H X, Diong C P, Bertoletti A, Linn Y C, Wong S C. CD16 is indispensable for antibody-dependent cellular cytotoxicity by human monocytes. Sci. Rep. 2016;6:34310. doi: 10.1038/srep34310. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 26.Lux A, Yu X, Scanlan C N, Nimmerjahn F. Impact of immune complex size and glycosylation on IgG binding to human FcγRs. J. Immunol. 2013;190:4315–4323. doi: 10.4049/jimmunol.1200501. [DOI] [PubMed] [Google Scholar]
- 27.Teeling J L, Mackus W J M, Wiegman L J J M, van den Brakel J H N, Beers S A, French R R, van Meerten T, Ebeling S, Vink T, Slootstra J W, Parren P W H I, Glennie M J, van de Winkel J G J. The biological activity of human CD20 monoclonal antibodies is linked to unique epitopes on CD20. J. Immunol. 2006;177:362–371. doi: 10.4049/jimmunol.177.1.362. [DOI] [PubMed] [Google Scholar]
- 28.Vidarsson G, Dekkers G, Rispens T. IgG subclasses and allotypes: From structure to effector functions. Front. Immunol. 2014;5:520. doi: 10.3389/fimmu.2014.00520. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 29.Stapleton N M, Andersen J T, Stemerding A M, Bjarnarson S P, Verheul R C, Gerritsen J, Zhao Y, Kleijer M, Sandlie I, de Haas M, Jonsdottir I, Ellen van der Schoot C, Vidarsson G. Competition for FcRn-mediated transport gives rise to short half-life of human IgG3 and offers therapeutic potential. Nat. Commun. 2011;2:599. doi: 10.1038/ncomms1608. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 30.Khalil M, Vonderheide R H. Anti-CD40 agonist antibodies: Preclinical and clinical experience. Update Cancer Ther. 2007;2:61–65. doi: 10.1016/j.uct.2007.06.001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 31.Yu X, Chan H T C, Orr C M, Dadas O, Booth S G, Dahal L N, Penfold C A, O’Brien L, Mockridge C I, French R R, Duriez P, Douglas L R, Pearson A R, Cragg M S, Tews I, Glennie M J, White A L. Complex interplay between epitope specificity and isotype dictates the biological activity of anti-human CD40 antibodies. Cancer Cell. 2018;33:664–675. doi: 10.1016/j.ccell.2018.02.009. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 32.Yu X, Chan H T C, Fisher H, Penfold C A, Kim J, Inzhelevskaya T, Mockridge C I, French R R, Duriez P J, Douglas L R, English V, Verbeek J S, White A L, Tews I, Glennie M J, Cragg M S. Isotype switching converts anti-CD40 antagonism to agonism to elicit potent antitumor activity. Cancer Cell. 2020;37:850–866. doi: 10.1016/j.ccell.2020.04.013. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 33.Lefranc M P, Lefranc G. Human Gm, Km, and Am allotypes and their molecular characterization: A remarkable demonstration of polymorphism. Methods Mol. Biol. 2012;882:635–680. doi: 10.1007/978-1-61779-842-9_34. [DOI] [PubMed] [Google Scholar]
- 34.Murdaca G, Negrini S, Greco M, Schiavi C, Giusti F, Borro M, Puppo F. Immunogenicity of infliximab and adalimumab. Expert. Opin. Drug Saf. 2019;18:343–345. doi: 10.1080/14740338.2019.1602117. [DOI] [PubMed] [Google Scholar]
- 35.de Taeye S W, Bentlage A E H, Mebius M M, Meesters J I, Lissenberg-Thunnissen S, Falck D, Sénard T, Salehi N, Wuhrer M, Schuurman J, Labrijn A F, Rispens T, Vidarsson G. FcγR binding and ADCC activity of human IgG allotypes. Front. Immunol. 2020;11:740. doi: 10.3389/fimmu.2020.00740. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 36.Redpath S, Michaelsen T, Sandlie I, Clark M R. Activation of complement by human IgG1 and human IgG3 antibodies against the human leucocyte antigen CD52. Immunology. 1998;93:595–600. doi: 10.1046/j.1365-2567.1998.00472.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 37.Nelson A L, Dhimolea E, Reichert J M. Development trends for human monoclonal antibody therapeutics. Nat. Rev. Drug Discov. 2010;9:767–774. doi: 10.1038/nrd3229. [DOI] [PubMed] [Google Scholar]
- 38.Jakobovits A, Amado R G, Yang X, Roskos L, Schwab G. From XenoMouse technology to panitumumab, the first fully human antibody product from transgenic mice. Nat. Biotechnol. 2007;25:1134–1143. doi: 10.1038/nbt1337. [DOI] [PubMed] [Google Scholar]
- 39.Georgiou G, Ippolito G C, Beausang J, Busse C E, Wardemann H, Quake S R. The promise and challenge of high-throughput sequencing of the antibody repertoire. Nat. Biotechnol. 2014;32:158–168. doi: 10.1038/nbt.2782. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 40.Lee J. Molecular-level antibody repertoire profiling and engineering: Implications for developing next-generation diagnostics, therapeutics, and vaccines. Biotechnol. Bioprocess Eng. 2019;24:8–11. doi: 10.1007/s12257-019-0050-5. [DOI] [Google Scholar]
- 41.Frenzel A, Schirrmann T, Hust M. Phage display-derived human antibodies in clinical development and therapy. MAbs. 2016;8:1177–1194. doi: 10.1080/19420862.2016.1212149. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 42.Harvey B R, Georgiou G, Hayhurst A, Jeong K J, Iverson B L, Rogers G K. Anchored periplasmic expression, a versatile technology for the isolation of high-affinity antibodies from Escherichia coli-expressed libraries. Proc. Natl. Acad. Sci. USA. 2004;101:9193–9198. doi: 10.1073/pnas.0400187101. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 43.Boder E T, Wittrup K D. Yeast surface display for screening combinatorial polypeptide libraries. Nat. Biotechnol. 1997;15:553–557. doi: 10.1038/nbt0697-553. [DOI] [PubMed] [Google Scholar]
- 44.Wang B, DeKosky B J, Timm M R, Lee J, Normandin E, Misasi J, Kong R, McDaniel J R, Delidakis G, Leigh K E, Niezold T, Choi C W, Viox E G, Fahad A, Cagigi A, Ploquin A, Leung K, Yang E S, Kong W P, Voss W N, Schmidt A G, Moody M A, Ambrozak D R, Henry A R, Laboune F, Ledgerwood J E, Graham B S, Connors M, Douek D C, Sullivan N J, Ellington A D, Mascola J R, Georgiou G. Functional interrogation and mining of natively paired human VH:VL antibody repertoires. Nat. Biotechnol. 2018;36:152–155. doi: 10.1038/nbt.4052. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 45.Love J C, Ronan J L, Grotenbreg G M, van der Veen A G, Ploegh H L. A microengraving method for rapid selection of single cells producing antigen-specific antibodies. Nat. Biotechnol. 2006;24:703–707. doi: 10.1038/nbt1210. [DOI] [PubMed] [Google Scholar]
- 46.Han G R, Kim M G. Design, synthesis, and evaluation of gold nanoparticle-antibody-horseradish peroxidase conjugates for highly sensitive chemiluminescence immunoassay (hs-CLIA) Biotechnol. Bioprocess Eng. 2019;24:206–214. doi: 10.1007/s12257-018-0369-3. [DOI] [Google Scholar]
- 47.Coronella J A, Telleman P, Truong T D, Ylera F, Junghans R P. Amplification of IgG VH and VL (Fab) from single human plasma cells and B cells. Nucleic Acids Res. 2000;28:e85. doi: 10.1093/nar/28.20.e85. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 48.Tiller T, Meffre E, Yurasov S, Tsuiji M, Nussenzweig M C, Wardemann H. Efficient generation of monoclonal antibodies from single human B cells by single cell RT-PCR and expression vector cloning. J. Immunol. Methods. 2008;329:112–124. doi: 10.1016/j.jim.2007.09.017. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 49.Crosnier C, Staudt N, Wright G J. A rapid and scalable method for selecting recombinant mouse monoclonal antibodies. BMC Biol. 2010;8:76. doi: 10.1186/1741-7007-8-76. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 50.Wardemann H, Nussenzweig M C. B-cell self-tolerance in humans. Adv. Immunol. 2007;95:83–110. doi: 10.1016/S0065-2776(07)95003-8. [DOI] [PubMed] [Google Scholar]
- 51.Wardemann H, Yurasov S, Schaefer A, Young J W, Meffre E, Nussenzweig M C. Predominant autoantibody production by early human B cell precursors. Science. 2003;301:1374–1377. doi: 10.1126/science.1086907. [DOI] [PubMed] [Google Scholar]
- 52.Köhler G, Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature. 1975;256:495–497. doi: 10.1038/256495a0. [DOI] [PubMed] [Google Scholar]
- 53.Traggiai E, Becker S, Subbarao K, Kolesnikova L, Uematsu Y, Gismondo M R, Murphy B R, Rappuoli R, Lanzavecchia A. An efficient method to make human monoclonal antibodies from memory B cells: Potent neutralization of SARS coronavirus. Nat. Med. 2004;10:871–875. doi: 10.1038/nm1080. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 54.Kwakkenbos M J, Diehl S A, Yasuda E, Bakker A Q, van Geelen C M M, Lukens M V, van Bleek G M, Widjojoatmodjo M N, Bogers W M J M, Mei H, Radbruch A, Scheeren F A, Spits H, Beaumont T. Generation of stable monoclonal antibody-producing B cell receptor-positive human memory B cells by genetic programming. Nat. Med. 2010;16:123–128. doi: 10.1038/nm.2071. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 55.Eyer K, Doineau R C L, Castrillon C E, Briseño-Roa L, Menrath V, Mottet G, England P, Godina A, Brient-Litzler E, Nizak C, Jensen A, Griffiths A D, Bibette J, Bruhns P, Baudry J. Single-cell deep phenotyping of IgG-secreting cells for high-resolution immune monitoring. Nat. Biotechnol. 2017;35:977–982. doi: 10.1038/nbt.3964. [DOI] [PubMed] [Google Scholar]
- 56.Gérard A, Woolfe A, Mottet G, Reichen M, Castrillon C, Menrath V, Ellouze S, Poitou A, Doineau R, Briseno-Roa L, Canales-Herrerias P, Mary P, Rose G, Ortega C, Delincé M, Essono S, Jia B, Iannascoli B, Richard-Le Goff O, Kumar R, Stewart S N, Pousse Y, Shen B, Grosselin K, Saudemont B, Sautel-Caillé A, Godina A, McNamara S, Eyer K, Millot G A, Baudry J, England P, Nizak C, Jensen A, Griffiths A D, Bruhns P, Brenan C. High-throughput single-cell activity-based screening and sequencing of antibodies using droplet microfluidics. Nat. Biotechnol. 2020;38:715–721. doi: 10.1038/s41587-020-0466-7. [DOI] [PubMed] [Google Scholar]
- 57.Sheets M D, Amersdorfer P, Finnern R, Sargent P, Lindqvist E, Schier R, Hemingsen G, Wong C, Gerhart J C, Marks J D. Efficient construction of a large nonimmune phage antibody library: The production of high-affinity human single-chain antibodies to protein antigens. Proc. Natl. Acad. Sci. USA. 1998;95:6157–6162. doi: 10.1073/pnas.95.11.6157. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 58.Vaughan T J, Williams A J, Pritchard K, Osbourn J K, Pope A R, Earnshaw J C, McCafferty J, Hodits R A, Wilton J, Johnson K S. Human antibodies with sub-nanomolar affinities isolated from a large non-immunized phage display library. Nat. Biotechnol. 1996;14:309–314. doi: 10.1038/nbt0396-309. [DOI] [PubMed] [Google Scholar]
- 59.Hoogenboom H R. Selecting and screening recombinant antibody libraries. Nat. Biotechnol. 2005;23:1105–1116. doi: 10.1038/nbt1126. [DOI] [PubMed] [Google Scholar]
- 60.Rothe C, Urlinger S, Löhning C, Prassler J, Stark Y, Jäger U, Hubner B, Bardroff M, Pradel I, Boss M, Bittlingmaier R, Bataa T, Frisch C, Brocks B, Honegger A, Urban M. The human combinatorial antibody library HuCAL GOLD combines diversification of all six CDRs according to the natural immune system with a novel display method for efficient selection of high-affinity antibodies. J. Mol. Biol. 2008;376:1182–1200. doi: 10.1016/j.jmb.2007.12.018. [DOI] [PubMed] [Google Scholar]
- 61.Prassler J, Thiel S, Pracht C, Polzer A, Peters S, Bauer M, Nörenberg S, Stark Y, Kölln J, Popp A, Urlinger S, Enzelberger M. HuCAL PLATINUM, a synthetic fab library optimized for sequence diversity and superior performance in mammalian expression systems. J. Mol. Biol. 2011;413:261–278. doi: 10.1016/j.jmb.2011.08.012. [DOI] [PubMed] [Google Scholar]
- 62.Baek D S, Kim Y S. Construction of a large synthetic human fab antibody library on yeast cell surface by optimized yeast mating. J. Microbiol. Biotechnol. 2014;24:408–420. doi: 10.4014/jmb.1401.01002. [DOI] [PubMed] [Google Scholar]
- 63.Haraya K, Tachibana T, Igawa T. Improvement of pharmacokinetic properties of therapeutic antibodies by antibody engineering. Drug Metab. Pharmacokinet. 2019;34:25–41. doi: 10.1016/j.dmpk.2018.10.003. [DOI] [PubMed] [Google Scholar]
- 64.Schmid A S, Neri D. Advances in antibody engineering for rheumatic diseases. Nat. Rev. Rheumatol. 2019;15:197–207. doi: 10.1038/s41584-019-0188-8. [DOI] [PubMed] [Google Scholar]
- 65.Chiu M L, Gilliland G L. Engineering antibody therapeutics. Curr. Opin. Struct. Biol. 2016;38:163–173. doi: 10.1016/j.sbi.2016.07.012. [DOI] [PubMed] [Google Scholar]
- 66.Carvalho R J. Comparison of cationic flocculants for the clarification of CHO-derived monoclonal antibodies. Biotechnol. Bioprocess Eng. 2019;24:754–760. doi: 10.1007/s12257-019-0158-7. [DOI] [Google Scholar]
- 67.Tabasinezhad M, Talebkhan Y, Wenzel W, Rahimi H, Omidinia E, Mahboudi F. Trends in therapeutic antibody affinity maturation: From in-vitro towards next-generation sequencing approaches. Immunol. Lett. 2019;212:106–113. doi: 10.1016/j.imlet.2019.06.009. [DOI] [PubMed] [Google Scholar]
- 68.Kim J Y, Yoo H W, Lee P G, Lee S G, Seo J H, Kim B G. In vivo protein evolution, next generation protein engineering strategy: from random approach to target-specific approach. Biotechnol. Bioprocess Eng. 2019;24:85–94. doi: 10.1007/s12257-018-0394-2. [DOI] [Google Scholar]
- 69.Yu X, Marshall M J E, Cragg M S, Crispin M. Improving antibody-based cancer therapeutics through glycan engineering. BioDrugs. 2017;31:151–166. doi: 10.1007/s40259-017-0223-8. [DOI] [PubMed] [Google Scholar]
- 70.Sampei Z, Haraya K, Tachibana T, Fukuzawa T, Shida-Kawazoe M, Gan S W, Shimizu Y, Ruike Y, Feng S, Kuramochi T, Muraoka M, Kitazawa T, Kawabe Y, Igawa T, Hattori K, Nezu J. Antibody engineering to generate SKY59, a long-acting anti-C5 recycling antibody. PLoS One. 2018;13:e0209509. doi: 10.1371/journal.pone.0209509. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 71.Diebolder C A, Beurskens F J, de Jong R N, Koning R I, Strumane K, Lindorfer M A, Voorhorst M, Ugurlar D, Rosati S, Heck A J R, van de Winkel J G J, Wilson I A, Koster A J, Taylor R P, Saphire E O, Burton D R, Schuurman J, Gros P, Parren P W H I. Complement is activated by IgG hexamers assembled at the cell surface. Science. 2014;343:1260–1263. doi: 10.1126/science.1248943. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 72.Kelton W, Mehta N, Charab W, Lee J, Lee C, Kojima T, Kang T H, Georgiou G. IgGA: A “cross-isotype” engineered human Fc antibody domain that displays both IgG-like and IgA-like effector functions. Chem. Biol. 2014;21:1603–1609. doi: 10.1016/j.chembiol.2014.10.017. [DOI] [PubMed] [Google Scholar]
- 73.Igawa T, Tsunoda H, Kuramochi T, Sampei Z, Ishii S, Hattori K. Engineering the variable region of therapeutic IgG antibodies. MAbs. 2011;3:243–252. doi: 10.4161/mabs.3.3.15234. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 74.Steinwand M, Droste P, Frenzel A, Hust M, Dübel S, Schirrmann T. The influence of antibody fragment format on phage display based affinity maturation of IgG. MAbs. 2014;6:204–218. doi: 10.4161/mabs.27227. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 75.Lou J, Marks J D. Affinity maturation by chain shuffling and site directed mutagenesis. In: Kontermann R, Dübel S, editors. Antibody Engineering. Berlin, Heidelberg, Germany: Springer; 2010. pp. 377–396. [Google Scholar]
- 76.Fujii I. Antibody affinity maturation by random mutagenesis. In: Lo B K C, editor. Antibody Engineering: Methods and Protocols. Totowa, NJ, USA: Humana Press; 2004. pp. 345–359. [DOI] [PubMed] [Google Scholar]
- 77.Mahajan S P, Meksiriporn B, Waraho-Zhmayev D, Weyant K B, Kocer I, Butler D C, Messer A, Escobedo F A, DeLisa M P. Computational affinity maturation of camelid single-domain intrabodies against the nonamyloid component of alpha-synuclein. Sci. Rep. 2018;8:17611. doi: 10.1038/s41598-018-35464-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 78.Nelson A L, Reichert J M. Development trends for therapeutic antibody fragments. Nat Biotechnol. 2009;27:331–337. doi: 10.1038/nbt0409-331. [DOI] [PubMed] [Google Scholar]
- 79.Rouet R, Jackson K J L, Langley D B, Christ D. Next-generation sequencing of antibody display repertoires. Front. Immunol. 2018;9:118. doi: 10.3389/fimmu.2018.00118. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 80.Igawa T, Haraya K, Hattori K. Sweeping antibody as a novel therapeutic antibody modality capable of eliminating soluble antigens from circulation. Immunol. Rev. 2016;270:132–151. doi: 10.1111/imr.12392. [DOI] [PubMed] [Google Scholar]
- 81.Igawa T, Ishii S, Tachibana T, Maeda A, Higuchi Y, Shimaoka S, Moriyama C, Watanabe T, Takubo R, Doi Y, Wakabayashi T, Hayasaka A, Kadono S, Miyazaki T, Haraya K, Sekimori Y, Kojima T, Nabuchi Y, Aso Y, Kawabe Y, Hattori K. Antibody recycling by engineered pH-dependent antigen binding improves the duration of antigen neutralization. Nat. Biotechnol. 2010;28:1203–1207. doi: 10.1038/nbt.1691. [DOI] [PubMed] [Google Scholar]
- 82.Igawa T, Maeda A, Haraya K, Tachibana T, Iwayanagi Y, Mimoto F, Higuchi Y, Ishii S, Tamba S, Hironiwa N, Nagano K, Wakabayashi T, Tsunoda H, Hattori K. Engineered monoclonal antibody with novel antigen-sweeping activity in vivo. PLoS One. 2013;8:e63236. doi: 10.1371/journal.pone.0063236. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 83.Vafa O, Gilliland G L, Brezski R J, Strake B, Wilkinson T, Lacy E R, Scallon B, Teplyakov A, Malia T J, Strohl W R. An engineered Fc variant of an IgG eliminates all immune effector functions via structural perturbations. Methods. 2014;65:114–126. doi: 10.1016/j.ymeth.2013.06.035. [DOI] [PubMed] [Google Scholar]
- 84.Derebe M G, Nanjunda R K, Gilliland G L, Lacy E R, Chiu M L. Human IgG subclass cross-species reactivity to mouse and cynomolgus monkey Fcβ receptors. Immunol. Lett. 2018;197:1–8. doi: 10.1016/j.imlet.2018.02.006. [DOI] [PubMed] [Google Scholar]
- 85.Braig F, Brandt A, Goebeler M, Tony H P, Kurze A K, Nollau P, Bumm T, Böttcher S, Bargou R C, Binder M. Resistance to anti-CD19/CD3 BiTE in acute lymphoblastic leukemia may be mediated by disrupted CD19 membrane trafficking. Blood. 2017;129:100–104. doi: 10.1182/blood-2016-05-718395. [DOI] [PubMed] [Google Scholar]
- 86.Chen X, Song X, Li K, Zhang T. FCγR-binding is an important functional attribute for immune checkpoint antibodies in cancer immunotheraphy. Front. Immunol. 2019;10:292. doi: 10.3389/fimmu.2019.00292. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 87.Zhang T, Song X, Xu L, Ma J, Zhang Y, Gong W, Zhang Y, Zhou X, Wang Z, Wang Y, Shi Y, Bai H, Liu N, Yang X, Cui X, Cao Y, Liu Q, Song J, Li Y, Tang Z, Guo M, Wang L, Li K. The binding of an anti-PD-1 antibody to FcγRI has a profound impact on its biological functions. Cancer Immunol. Immunother. 2018;67:1079–1090. doi: 10.1007/s00262-018-2160-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 88.Liu J, Wang G, Liu L, Wu R, Wu Y, Fang C, Zhou X, Jiao J, Gu Y, Zhou H, Xie Z, Sun Z, Chen D, Dai K, Wang D, Tang W, Yang T T C. Study of the interactions of a novel monoclonal antibody, mAb059c, with the hPD-1 receptor. Sci. Rep. 2019;9:17830. doi: 10.1038/s41598-019-54231-w. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 89.Boross P, Leusen J H W. Mechanisms of action of CD20 antibodies. Am. J. Cancer Res. 2012;2:676–690. [PMC free article] [PubMed] [Google Scholar]
- 90.Guglietta S, Chiavelli A, Zagato E, Krieg C, Gandini S, Ravenda P S, Bazolli B, Lu B, Penna G, Rescigno M. Coagulation induced by C3aR-dependent NETosis drives protumorigenic neutrophils during small intestinal tumorigenesis. Nat. Commun. 2016;7:11037. doi: 10.1038/ncomms11037. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 91.Chen K, Nishi H, Travers R, Tsuboi N, Martinod K, Wagner D D, Stan R, Croce K, Mayadas T N. Endocytosis of soluble immune complexes leads to their clearance by FcγRIIIB but induces neutrophil extracellular traps via FcγRIIA in vivo. Blood. 2012;120:4421–4431. doi: 10.1182/blood-2011-12-401133. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 92.Arlauckas S P, Garris C S, Kohler R H, Kitaoka M, Cuccarese M F, Yang K S, Miller M A, Carlson J C, Freeman G J, Anthony R M, Weissleder R, Pittet M J. In vivo imaging reveals a tumor-associated macrophage-mediated resistance pathway in anti-PD-1 therapy. Sci. Transl. Med. 2017;9:eaal3604. doi: 10.1126/scitranslmed.aal3604. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 93.Preiner J, Kodera N, Tang J, Ebner A, Brameshuber M, Blaas D, Gelbmann N, Gruber H J, Ando T, Hinterdorfer P. IgGs are made for walking on bacterial and viral surfaces. Nat. Commun. 2014;5:4394. doi: 10.1038/ncomms5394. [DOI] [PubMed] [Google Scholar]
- 94.de Jong R N, Beurskens F J, Verploegen S, Strumane K, van Kampen M D, Voorhorst M, Horstman W, Engelberts P J, Oostindie S C, Wang G, Heck A J R, Schuurman J, Parren P W H I. A novel platform for the potentiation of therapeutic antibodies based on antigen-dependent formation of IgG hexamers at the cell surface. PLoS Biol. 2016;14:e1002344. doi: 10.1371/journal.pbio.1002344. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 95.Zhang D, Armstrong A A, Tam S H, McCarthy S G, Luo J, Gilliland G L, Chiu M L. Functional optimization of agonistic antibodies to OX40 receptor with novel Fc mutations to promote antibody multimerization. MAbs. 2017;9:1129–1142. doi: 10.1080/19420862.2017.1358838. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 96.Genmab, Global Pipeline. https://www.genmab.com/pipeline.
- 97.Dahan R, Barnhart B C, Li F, Yamniuk A P, Korman A J, Ravetch J V. Therapeutic activity of agonistic, human anti-CD40 monoclonal antibodies requires selective FcγR engagement. Cancer Cell. 2016;29:820–831. doi: 10.1016/j.ccell.2016.05.001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 98.White A L, Chan H T C, Roghanian A, French R R, Mockridge C I, Tutt A L, Dixon S V, Ajona D, Verbeek J S, Al-Shamkhani A, Cragg M S, Beers S A, Glennie M J. Interaction with FcγRIIB Is critical for the agonistic activity of anti-CD40 monoclonal antibody. J. Immunol. 2011;187:1754–1763. doi: 10.4049/jimmunol.1101135. [DOI] [PubMed] [Google Scholar]
- 99.Mastrangeli R, Palinsky W, Bierau H. Glycoengineered antibodies: towards the next-generation of immunotherapeutics. Glycobiology. 2019;29:199–210. doi: 10.1093/glycob/cwy092. [DOI] [PubMed] [Google Scholar]
- 100.Gerdes C A, Nicolini V G, Herter S, van Puijenbroek E, Lang S, Roemmele M, Moessner E, Freytag O, Friess T, Ries C H, Bossenmaier B, Mueller H J, Umaña P. GA201 (RG7160): A novel, humanized, glycoengineered anti-EGFR antibody with enhanced ADCC and superior in vivo efficacy compared with cetuximab. Clin. Cancer Res. 2013;19:1126–1138. doi: 10.1158/1078-0432.CCR-12-0989. [DOI] [PubMed] [Google Scholar]
- 102.Yamane-Ohnuki N, Kinoshita S, Inoue-Urakubo M, Kusunoki M, Iida S, Nakano R, Wakitani M, Niwa R, Sakurada M, Uchida K, Shitara K, Satoh M. Establishment of FUT8 knockout Chinese hamster ovary cells: An ideal host cell line for producing completely defucosylated antibodies with enhanced antibody-dependent cellular cytotoxicity. Biotechnol. Bioeng. 2004;87:614–622. doi: 10.1002/bit.20151. [DOI] [PubMed] [Google Scholar]
- 102.Hatjiharissi E, Xu L, Santos D D, Hunter Z R, Ciccarelli B T, Verselis S, Modica M, Cao Y, Manning R J, Leleu X, Dimmock E A, Kortsaris A, Mitsiades C, Anderson K C, Fox E A, Treon S P. Increased natural killer cell expression of CD16, augmented binding and ADCC activity to rituximab among individuals expressing the Fc{gamma}RIIIa-158 V/V and V/F polymorphism. Blood. 2007;110:2561–2564. doi: 10.1182/blood-2007-01-070656. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 103.Nimmerjahn F, Ravetch J V. Fcγ receptors as regulators of immune responses. Nat. Rev. Immunol. 2008;8:34–47. doi: 10.1038/nri2206. [DOI] [PubMed] [Google Scholar]
- 104.Lazar G A, Dang W, Karki S, Vafa O, Peng J S, Hyun L, Chan C, Chung H S, Eivazi A, Yoder S C, Vielmetter J, Carmichael D F, Hayes R J, Dahiyat B I. Engineered antibody Fc variants with enhanced effector function. Proc. Natl. Acad. Sci. USA. 2006;103:4005–4010. doi: 10.1073/pnas.0508123103. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 105.Mimoto F, Igawa T, Kuramochi T, Katada H, Kadono S, Kamikawa T, Shida-Kawazoe M, Hattori K. Novel asymmetrically engineered antibody Fc variant with superior FcγR binding affinity and specificity compared with afucosylated Fc variant. MAbs. 2013;5:229–236. doi: 10.4161/mabs.23452. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 106.Dahal L N, Dou L, Hussain K, Liu R, Earley A, Cox K L, Murinello S, Tracy I, Forconi F, Steele A J, Duriez P J, Gomez-Nicola D, Teeling J L, Glennie M J, Cragg M S, Beers S A. STING activation reverses lymphoma-mediated resistance to antibody immunotherapy. Cancer Res. 2017;77:3619–3631. doi: 10.1158/0008-5472.CAN-16-2784. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 107.Richards J O, Karki S, Lazar G A, Chen H, Dang W, Desjarlais J R. Optimization of antibody binding to FcγRIIa enhances macrophage phagocytosis of tumor cells. Mol. Cancer Ther. 2008;7:2517–2527. doi: 10.1158/1535-7163.MCT-08-0201. [DOI] [PubMed] [Google Scholar]
- 108.Jung S T, Kelton W, Kang T H, Ng D T W, Andersen J T, Sandlie I, Sarkar C A, Georgiou G. Effective phagocytosis of low Her2 tumor cell lines with engineered, aglycosylated igg displaying high FcγRIIa affinity and selectivity. ACS Chem. Biol. 2013;8:368–375. doi: 10.1021/cb300455f. [DOI] [PubMed] [Google Scholar]
- 109.Moore G L, Chen H, Karki S, Lazar G A. Engineered Fc variant antibodies with enhanced ability to recruit complement and mediate effector functions. MAbs. 2010;2:181–189. doi: 10.4161/mabs.2.2.11158. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 110.Cook E M, Lindorfer M A, van der Horst H, Oostindie S, Beurskens F J, Schuurman J, Zent C S, Burack R, Parren P W H I, Taylor R P. Antibodies that efficiently form hexamers upon antigen binding can induce complement-dependent cytotoxicity under complement-limiting conditions. J. Immunol. 2016;197:1762–1775. doi: 10.4049/jimmunol.1600648. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 111.Zalevsky J, Chamberlain A K, Horton H M, Karki S, Leung I W L, Sproule T J, Lazar G A, Roopenian D C, Desjarlais J R. Enhanced antibody half-life improves in vivo activity. Nat. Biotechnol. 2010;28:157–159. doi: 10.1038/nbt.1601. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 112.Stapleton N M, Einarsdóttir H K, Stemerding A M, Vidarsson G. The multiple facets of FcRn in immunity. Immunol. Rev. 2015;268:253–268. doi: 10.1111/imr.12331. [DOI] [PubMed] [Google Scholar]
- 113.Lencer W I, Blumberg R S. A passionate kiss, then run: Exocytosis and recycling of IgG by FcRn. Trends Cell Biol. 2005;15:5–9. doi: 10.1016/j.tcb.2004.11.004. [DOI] [PubMed] [Google Scholar]
- 114.Ghetie V, Popov S, Borvak J, Radu C, Matesoi D, Medesan C, Ober R J, Ward E S. Increasing the serum persistence of an IgG fragment by random mutagenesis. Nat. Biotechnol. 1997;15:637–640. doi: 10.1038/nbt0797-637. [DOI] [PubMed] [Google Scholar]
- 115.Vaccaro C, Bawdon R, Wanjie S, Ober R J, Ward E S. Divergent activities of an engineered antibody in murine and human systems have implications for therapeutic antibodies. Proc. Natl. Acad. Sci. USA. 2006;103:18709–18714. doi: 10.1073/pnas.0606304103. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 116.U.S. National Library of Medicine, Study Record Detail, Dual bNAb Treatment in Children. https://clinicaltrials.gov/ct2/show/NCT03707977.
- 117.Domachowske J B, Khan A A, Esser M T, Jensen K, Takas T, Villafana T, Dubovsky F, Griffin M P. Safety, tolerability and pharmacokinetics of MEDI8897, an extended half-life single-dose respiratory syncytial virus prefusion F-targeting monoclonal antibody administered as a single dose to healthy preterm infants. Pediatr. Infect. Dis. J. 2018;37:886–892. doi: 10.1097/INF.0000000000001916. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 118.Vaccaro C, Zhou J, Ober R J, Ward E S. Engineering the Fc region of immunoglobulin G to modulate in vivo antibody levels. Nat. Biotechnol. 2005;23:1283–1288. doi: 10.1038/nbt1143. [DOI] [PubMed] [Google Scholar]
- 119.Ulrichts P, Guglietta A, Dreier T, van Bragt T, Hanssens V, Hofman E, Vankerckhoven B, Verheesen P, Ongenae N, Lykhopiy V, Enriquez F J, Cho J, Ober R J, Ward E S, de Haard H, Leupin N. Neonatal Fc receptor antagonist efgartigimod safely and sustainably reduces IgGs in humans. J. Clin. Invest. 2018;128:4372–4386. doi: 10.1172/JCI97911. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 120.U.S. National Library of Medicine, Bispecific mAbs Studies List Results. https://clinicaltrials.gov/ct2/results?cond=bispecific&;recrs=b&recrs=a&recrs=f&recrs=d&recrs=e&age_v=&gndr=&type=&rslt=&Search=Apply.
- 121.Labrijn A F, Janmaat M L, Reichert J M, Parren P W H I. Bispecific antibodies: a mechanistic review of the pipeline. Nat. Rev. Drug Discov. 2019;18:585–608. doi: 10.1038/s41573-019-0028-1. [DOI] [PubMed] [Google Scholar]
- 122.U.S. National Library of Medicine, Study Record Detail, MGD014 in HIV-Infected Individuals on Suppressive Antiretroviral Therapy. https://clinicaltrials.gov/ct2/show/NCT03570918?cond=MGD014&draw=2&rank=1.
- 123.U.S. National Library of Medicine, Study Record Detail, A Study to Evaluate the Safety, Pharmacokinetics, Pharmacodynamics, and Immunogenicity of PRV-3279 in Healthy Subjects (PREVAIL1). https://clinicaltrials.gov/ct2/show/NCT03955666?cond=PRV-3279&draw=2&rank=1.
- 124.Burt R, Warcel D, Fielding A K. Blinatumomab, a bispecific B-cell and T-cell engaging antibody, in the treatment of B-cell malignancies. Hum Vaccines Immunother. 2019;15:594–602. doi: 10.1080/21645515.2018.1540828. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 125.Franchini M, Marano G, Pati I, Candura F, Profili S, Veropalumbo E, Masiello F, Catalano L, Piccinini V, Vaglio S, Pupella S, Liumbruno G M. Emicizumab for the treatment of haemophilia A: A narrative review. Blood Transfus. 2019;17:223–228. doi: 10.2450/2019.0026-19. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 126.Van Roy M, Ververken C, Beirnaert E, Hoefman S, Kolkman J, Vierboom M, Breedveld E, ’tHart B, Poelmans S, Bontinck L, Hemeryck A, Jacobs S, Baumeister J, Ulrichts H. The preclinical pharmacology of the high affinity anti-IL-6R Nanobody® ALX-0061 supports its clinical development in rheumatoid arthritis. Arthritis Res. Ther. 2015;17:135. doi: 10.1186/s13075-015-0651-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 127.Bruhns P, Iannascoli B, England P, Mancardi D A, Fernandez N, Jorieux S, Daëron M. Specificity and affinity of human Fcγ receptors and their polymorphic variants for human IgG subclasses. Blood. 2009;113:3716–3725. doi: 10.1182/blood-2008-09-179754. [DOI] [PubMed] [Google Scholar]
- 128.Bolt S, Routledge E, Lloyd I, Chatenoud L, Pope H, Gorman S D, Clark M, Waldmann H. The generation of a humanized, non-mitogenic CD3 monoclonal antibody which retains in vitro immunosuppressive properties. Eur. J. Immunol. 1993;23:403–411. doi: 10.1002/eji.1830230216. [DOI] [PubMed] [Google Scholar]
- 129.Leabman M K, Meng Y G, Kelley R F, DeForge L E, Cowan K J, Iyer S. Effects of altered FcγR binding on antibody pharmacokinetics in cynomolgus monkeys. MAbs. 2013;5:896–903. doi: 10.4161/mabs.26436. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 130.Xu D, Alegre M L, Varga S S, Rothermel A L, Collins A M, Pulito V L, Hanna L S, Dolan K P, Parren P W, Bluestone J A, Jolliffe L K, Zivin R A. In vitro characterization of five humanized OKT3 effector function variant antibodies. Cell Immunol. 2000;200:16–26. doi: 10.1006/cimm.2000.1617. [DOI] [PubMed] [Google Scholar]
- 131.An Z, Forrest G, Moore R, Cukan M, Haytko P, Huang L, Vitelli S, Zhao J Z, Lu P, Hua J, Gibson C R, Harvey B R, Montgomery D, Zaller D, Wang F, Strohl W. IgG2m4, an engineered antibody isotype with reduced Fc function. MAbs. 2009;1:572–579. doi: 10.4161/mabs.1.6.10185. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 132.Borrok M J, Mody N, Lu X, Kuhn M L, Wu H, Dall–Acqua W F, Tsui P. An “Fc-silenced” IgG1 format with extended half-life designed for improved stability. J. Pharm. Sci. 2017;106:1008–1017. doi: 10.1016/j.xphs.2016.12.023. [DOI] [PubMed] [Google Scholar]
- 133.Stavenhagen J B, Gorlatov S, Tuaillon N, Rankin C T, Li H, Burke S, Huang L, Vijh S, Johnson S, Bonvini E, Koenig S. Fc optimization of therapeutic antibodies enhances their ability to kill tumor cells in vitro and controls tumor expansion in vivo via low-affinity activating Fcγ receptors. Cancer Res. 2007;67:8882–8890. doi: 10.1158/0008-5472.CAN-07-0696. [DOI] [PubMed] [Google Scholar]
- 134.Shields R L, Namenuk A K, Hong K, Meng Y G, Rae J, Briggs J, Xie D, Lai J, Stadlen A, Li B, Fox J A, Presta L G. High resolution mapping of the binding site on human IgG1 for FcγRI, FcγRII, FcγRIII, and FcRn and design of IgG1 variants with improved binding to the FcγR. J. Biol. Chem. 2001;276:6591–6604. doi: 10.1074/jbc.M009483200. [DOI] [PubMed] [Google Scholar]
- 135.Idusogie E E, Wong P Y, Presta L G, Gazzano-Santoro H, Totpal K, Ultsch M, Mulkerrin M G. Engineered antibodies with increased activity to recruit complement. J. Immunol. 2001;166:2571–2575. doi: 10.4049/jimmunol.166.4.2571. [DOI] [PubMed] [Google Scholar]
- 136.Natsume A, In M, Takamura H, Nakagawa T, Shimizu Y, Kitajima K, Wakitani M, Ohta S, Satoh M, Shitara K, Niwa R. Engineered antibodies of IgG1/IgG3 mixed isotype with enhanced cytotoxic activities. Cancer Res. 2008;68:3863–3872. doi: 10.1158/0008-5472.CAN-07-6297. [DOI] [PubMed] [Google Scholar]
- 137.Jung S T, Reddy S T, Kang T H, Borrok M J, Sandlie I, Tucker P W, Georgiou G. Aglycosylated IgG variants expressed in bacteria that selectively bind FcγRI potentiate tumor cell killing by monocyte-dendritic cells. Proc. Natl. Acad. Sci. USA. 2010;107:604–609. doi: 10.1073/pnas.0908590107. [DOI] [PMC free article] [PubMed] [Google Scholar]