Skip to main content
Emerging Infectious Diseases logoLink to Emerging Infectious Diseases
. 2021 Jul;27(7):1984–1986. doi: 10.3201/eid2707.203348

Postoperative Paenibacillus thiaminolyticus Wound Infection, Switzerland

Riccardo Di Micco 1,2, Matthias Schneider 1,2, Reto Nüesch 1,2,
PMCID: PMC8237901  PMID: 34152975

Abstract

Paenibacillus thiaminolyticus is a nonvirulent organism found in human and ruminant microbiota. However, P. thiaminolyticus can act as an opportunistic pathogen in humans. We describe a case of abdominal wall hematoma secondarily infected by P. thiaminolyticus. Our findings emphasize the risk for unusual Paenibacillus infections in otherwise healthy persons.

Keywords: Paenibacillus thiaminolyticus, MALDI-TOF, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, wound infection, bacteria, antimicrobial resistance, Switzerland


The genus Paenibacillus comprises a growing number of species of rod-shaped, motile bacteria with peritrichous flagella (1). Paenibacillus species share 89.6% similarity of 16S rDNA gene sequences and grow as nonpigmented colonies on tryptic soy agar (1). Best known as a nearly ubiquitous environmental bacteria, many Paenibacillus species are potential opportunistic pathogens in humans (2). We report a case of isolated surgical site infection caused by P. thiaminolyticus in an otherwise healthy patient.

A 33-year-old woman came to the emergency department with a fever and reported having a painful and fluctuating abdominal wall mass for 3 days. She had undergone lipoabdominoplasty in a different hospital 7 days earlier. Laboratory tests showed anemia (hemoglobin 88 g/L, hematocrit 0.24 L/L) and isolated C-reactive protein elevation (117 mg/L). Computed tomography of the abdomen demonstrated a fluid collection in the abdominal wall measuring 22 × 9.5 × 5 cm. The patient was admitted for observation. Blood cultures performed at 38.5°C showed no bacterial growth.

Empirical intravenous antimicrobial drug therapy for suspected infected hematoma was initiated with amoxicillin/clavulanate (2.2 g 3×/d), according to local hospital guidelines. Under antimicrobial drug treatment, the patient’s fever resolved, but her abdominal pain persisted.

On day 3, we aspirated a sample of the fluid collection in the abdominal wall for microbiological examination. The aspirate was cultured on blood agar incubated at 35°C with 5% CO2 for 48 h; on MacConkey agar incubated at 35°C, aerobic, for 24 h; and on selective anaerobic agar at 35°C, anaerobic, for 5 days. All 3 yielded a pure culture of gram variable rod-shaped bacteria. We used Biotyper matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry (Bruker Corporation, https://www.bruker.com) and the Bruker mass spectra database, which returned P. thiaminolyticus with a best-match score of 2.07 (a score >2 means identification at the species level) (3,4).

On day 7, the patient had bleeding at the surgical site, and we performed a surgical evacuation with drainage of the fluid collection. We took an intraoperative microbiological swab specimen and ran another MALDI-TOF mass spectrometry analysis, which confirmed the pathogen as P. thiaminolyticus with a best match score of 2.17.

After evacuation of the hematoma, the patient rapidly recovered. Because no specific clinical breakpoints have been established for Paenibacillus spp., we used nonspecies related clinical breakpoints from the European Committee on Antimicrobial Susceptibility Testing pharmacokinetics and pharmacodynamics (Table). Intravenous antimicrobial drug therapy was continued for a total of 10 days. On day 14, the patient was discharged with oral amoxicillin/clavulanate (1 g 3×/d) for another 2 weeks. We decided to perform a clinical and laboratory follow up at 2, 4, and 8 weeks after discharge. After 2 months, the surgical wound had healed, and the patient was well and without sequelae.

Table. Comparison of MIC and SS of antimicrobial drugs in blood 4 hours after intravenous administration to treat Paenibacillus thiaminolyticus in a patient, Switzerland*.

Antimicrobial drug† MIC SSC
Amoxicillin/clavulanate 0.064 mg/L 1.2 mg/L
Tetracycline 12 mg/L 2.8 mg/L
Trimethoprim/sulfamethoxazole‡ <0.094 mg/L 1.5–3 mg/L
Clindamycin 0.38 mg/L 23 mg/L
Ciprofloxacin 0.19 mg/L 4.56 mg/L

†Antimicrobial drugs were administered at the recommended doses reported in the manufacturer the data sheets (compendium.ch, https://compendium.ch). ‡Trimethoprim/sulfamethoxazole is dose dependent.

Of the 49 species of Paenibacillus known to cause symptomatic infection in humans, the most commonly reported are P. alvei, P. phoenicis, P. macerans, P. lautus, P. timonensis, P. provencensis, and P. thiaminloyticus (2). Clinical manifestation in patients is heterogeneous, ranging from paucisymptomatic to severe sepsis. The bacteria usually are found in blood with manifest bacteremia (2). In this case, P. thiaminolyticus was found in the aspirates of the infected abdominal wall hematoma but not in blood cultures or other body compartments.

Because Paenibacillus spp. are possible laboratory contaminants (5), the organisms should be detected in multiple sets to rule out contamination. The absence of clear, discriminating phenotypical features calls for molecular biology methods to identify the bacterium, such as MALDI-TOF mass spectrometry or, when in doubt, 16S rRNA gene sequencing (4).

P. thiaminolyticus is reported as potentially resistant to ampicillin alone (2), vancomycin (2), and clindamycin (6). In this case, the bacterium showed tetracycline resistance. Consequently, antimicrobial susceptibility testing is necessary. According to the antibiograms reported in the literature, empiric therapy with trimethoprim/sulfamethoxazole or amoxicillin/clavulanate is recommended. Although this patient’s condition improved with intravenous antimicrobial drug therapy, clinical resolution occurred only after surgical evacuation of the abdominal wall fluid collection. Because of reports of persistent infections (7), patients should be monitored after treatment.

P. thiaminolyticus was identified in human feces in 1951 (8). Anecdotally, its thiaminase activity can reduce available thiamin necessary for energy metabolism in the central nervous system, causing poliencephalomalacia in ruminants (9). So far, no human disease syndrome has been related explicitly to P. thiaminolyticus. In 2008, P. thiaminolyticus was reported as the causative agent of bacteremia of unknown origin in a dialysis patient with multiple underlying conditions and a long-term catheter (6). Since then, 3 other isolates were reported in blood (2), vitreous humor (2), and cerebrospinal fluid (10).

In summary, this case is a reminder of the existence of a rare potential pathogen in our microbiota, although the causality might be discussed because Paenibacillus spp. remain mostly environmental bacteria. Therefore, identification relies on MALDI-TOF mass spectrometry or 16S rRNA gene sequencing. Surgical debridement of the infection focus also is recommended. The microorganism shows a variable antimicrobial susceptibility profile, and trimethoprim/sulfamethoxazole and amoxicillin/clavulanate are possible first choice empiric therapies after successful identification.

Acknowledgments

We thank the patient for permission to share and publish her case. We also thank the clinical microbiology team of Kantonsspital Luzern for their assistance with biotyping.

Biography

Dr. Di Micco is a general surgery resident at Spital Schwyz, Switzerland. His principal research interests are translational medicine, abdominal surgery, and prevention of surgical wound infections.

Footnotes

Suggested citation for this article: Di Micco R, Schneider M, Nüesch R. Postoperative Paenibacillus thiaminolyticus wound infection, Switzerland. Emerg Infect Dis. 2021 Jul [date cited]. https://doi.org/10.3201/eid2707.203348

References

  • 1.Grady EN, MacDonald J, Liu L, Richman A, Yuan ZC. Current knowledge and perspectives of Paenibacillus: a review. Microb Cell Fact. 2016;15:203. 10.1186/s12934-016-0603-7 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Sáez-Nieto JA, Medina-Pascual MJ, Carrasco G, Garrido N, Fernandez-Torres MA, Villalón P, et al. Paenibacillus spp. isolated from human and environmental samples in Spain: detection of 11 new species. New Microbes New Infect. 2017;19:19–27. 10.1016/j.nmni.2017.05.006 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Saffert RT, Cunningham SA, Ihde SM, Jobe KE, Mandrekar J, Patel R. Comparison of Bruker Biotyper matrix-assisted laser desorption ionization-time of flight mass spectrometer to BD Phoenix automated microbiology system for identification of gram-negative bacilli. J Clin Microbiol. 2011;49:887–92. 10.1128/JCM.01890-10 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Celandroni F, Salvetti S, Gueye SA, Mazzantini D, Lupetti A, Senesi S, et al. Identification and pathogenic potential of clinical bacillus and Paenibacillus isolates. PLoS One. 2016;11:e0152831. 10.1371/journal.pone.0152831 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Noskin GA, Suriano T, Collins S, Sesler S, Peterson LR. Paenibacillus macerans pseudobacteremia resulting from contaminated blood culture bottles in a neonatal intensive care unit. Am J Infect Control. 2001;29:126–9. 10.1067/mic.2001.111535 [DOI] [PubMed] [Google Scholar]
  • 6.Ouyang J, Pei Z, Lutwick L, Dalal S, Yang L, Cassai N, et al. Case report: Paenibacillus thiaminolyticus: a new cause of human infection, inducing bacteremia in a patient on hemodialysis. Ann Clin Lab Sci. 2008;38:393–400. [PMC free article] [PubMed] [Google Scholar]
  • 7.Szaniawski MA, Spivak AM. Recurrent Paenibacillus infection. Oxf Med Case Reports. 2019;2019:omz034. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Kuno Y. Bacillus thiaminolyticus, a new thiamin-decomposing bacterium. Proc Jpn Acad. 1951;27:362–5. 10.2183/pjab1945.27.362 [DOI] [Google Scholar]
  • 9.Haven TR, Caldwell DR, Jensen R. Role of predominant rumen bacteria in the cause of polioencephalomalacia (cerebrocortical necrosis) in cattle. Am J Vet Res. 1983;44:1451–5. [PubMed] [Google Scholar]
  • 10.Hehnly C, Zhang L, Paulson JN, Almeida M, von Bredow B, Wijetunge DSS, et al. Complete genome sequences of the human pathogen Paenibacillus thiaminolyticus Mbale and type strain P. thiaminolyticus NRRL B-4156. Microbiol Resour Announc. 2020;9:e00181–20. 10.1128/MRA.00181-20 [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Emerging Infectious Diseases are provided here courtesy of Centers for Disease Control and Prevention

RESOURCES