Abstract
This review provides an overview of the interrelationships among the diet, gut microbiota and health status, and then focuses specifically on published research assessing the relationship of low/no-calorie sweeteners (LNCS) to selected aspects of the gut microbiota. Microbiome research is expanding as new data on its role in health and disease vulnerability emerge. The gut microbiome affects health, digestion, and susceptibility to disease. In the last 10 years, investigations of LNCS effects on the gut microbiota have proliferated, though results are conflicting and are often confounded by differences in study design such as study diet, the form of the test article, dosage, and study population. Staying current on microbiome research and the role of dietary inputs, like LNCS, will allow healthcare and nutrition practitioners to provide evidenced-based guidance to the individuals they serve.
What is the microbiome?
The human body is more than its human components. Trillions of mircroorganisms, termed the microbiome, reside on and within the human body including in the gut, oral and nasal cavities, vagina, and on the skin (Box 1)1, 2. The microbiota is comprised of bacteria, archaea, fungi, and viruses and represent a diverse array of species and functional genes1, 3.
Box 1. Definitions of the microbiome.
Microbiome: the collection of microbial genomes1.
Microbiota: the collection of microbial organisms1.
Gut microbiome: the collection of microbial genomes inhabiting the gastrointestinal tract1.
Metagenome: the collection of all of the genetic material in a sample2.
Metagenomics: the study of collected genomes from an ecosystem to understand the taxonomic and functional properties of microbial communities2.
Metatranscriptomics: the study of RNA gene expression from microbial communities2.
Metaproteomics: the study of proteins from microbial communities2.
Metabolomics: the study of small molecules (i.e., metabolites) within a sample2.
The diversity of the microbiota is represented both within and between individuals, with each person harboring a unique microbial community, the majority of which reside in the colon and are termed the “gut microbiota”1. However, these microbes are not passive passengers. The gut microbiome can provide beneficial functions, such as metabolism of undigested food components, vitamin production, and supporting immunity. However, while certain diseases have been associated with abnormal microbiota (i.e. dysbiosis), it is unclear what constitutes a “healthy” gut microbiome1. Indeed, the composition of the gut microbiota is variable throughout the gastrointestinal tract (i.e., stomach, ileum, descending colon; mucosa to lumen), across geography, with age, and in relation to a host of other lifestyle factors among healthy individuals, demonstrating that the gut microbiota is a dynamic component of human physiology4, 5.
A variety of approaches are used to determine differences in which microbes are present (composition), their genetic potential (functional potential), and what the microbes are doing (function)2, 6. To generate taxonomic classifications of microorganisms (e.g., Bifidobacterium, Lactobacilli), DNA is isolated from the study samples, typically fecal samples in human studies, and then a specific region of the DNA known as the 16S rRNA gene is amplified so that it can be used to classify the taxa present and characterize the relative abundances of the taxa with the samples. Similarly, metagenomic sequencing creates a sequence database of the full microbial genome so that the genetic potential of the microbiome can be characterized (e.g., the presence of the enzyme used to metabolize a β2–1 linkage, which is found in inulin). A limitation of 16S amplicon and metagenomic sequencing is that it is not possible to determine if the microorganisms are alive or dead at the time of sequencing. To determine what the microbes are actually doing at the time of measurement, RNA gene expression, proteins, and metabolites are measured using metatranscriptomics, metaproteomics, or metabolomics, respectively. Thus, these methods assess outputs or the functions of the microbial community that may affect the host. Therefore, an integrated approach may allow for a more comprehensive view of host-microbe interactions and identification of dietary components that may be used to manipulate the gut microbiota to benefit health and reduce the risk of developing certain diseases.
What is the evidence that diet can influence the microbiome?
Given the role of the gut microbiome in metabolism of dietary components, there is robust evidence that intake of specific food components7–11 as well as broad dietary patterns12 influence the gut microbiome over both short13, 14 and long12 time scales. Additionally, recent research suggests that food choices may be more important than nutrient profiles in influencing microbiota composition14. Indeed, specific foods have been shown to induce transient changes in the gut microbiota composition7–11 that may then be used to predict intake of those foods15. Diet has been shown to outweigh the effect of genetics on the gut microbiome16, suggesting that the gut microbiota is affected by modifiable lifestyle factors.
However, there is increasing recognition that functional changes in gene expression and metabolite production may be more important than the often transient changes in the taxonomic profile of the microbiota17. The gut microbiota metabolizes substrates to produce new bioactive compounds that then may impact host metabolism and immunity18–20. For example, some dietary fibers are metabolized by the gut microbiota to produce short-chain fatty acids (SCFAs), including acetate, butyrate, and propionate18, 19. In infants, human milk oligosaccharides (HMOs) not only enrich specific bacteria, primarily Bifidobacteria, but also result in the production of metabolites such as SCFAs21. These metabolites elicit concentration-dependent physiological effects, which are postulated to underly the associated health benefits of dietary fibers including, improved glycemic control, satiety, weight loss, increased mineral absorption, decreased inflammation, and overall improvement of digestive and intestinal health18.
Specific dietary components used to target the gut microbiota include prebiotics, probiotics, and synbiotics (Box 2)22–24. The benefits of certain probiotics22 have been systematically reviewed under the auspices of different evidence-based organizations, including American Gastroenterological Association (AGA)25, Journal of Family Practice26, World Gastroenterology Organisation27, European Society for Pediatric Gastroenterology, Hepatology and Nutrition (ESPGHAN)28–31, Cochrane32, and European Food Safety Authority33. Notably, the health benefits of probiotic consumption are dependent on the strain(s), dose (>1×109 colony forming units (CFU)/serving), and duration of consumption22. Similarly, consumption of certain prebiotics is associated with a range of health benefits, including bone, gut, heart, and mood, though the associated benefits are dependent on the type of prebiotic23, 34, 35. Currently established prebiotics include certain dietary fibers that impact the abundance and functionality of gut microorganisms, namely Bifidobacterium and Lactobacilli23. A synbiotic may be a combination of a probiotic and a prebiotic (complementary synbiotic), though the individual components do not necessarily need to meet the criteria for pro- and pre-biotics as long as they act synergistically when co-administered (synergistic synbiotic)24. As with pro- and pre-biotics, the potential health benefits of synbiotics depend on the duration of use, the strain of microorganism, and the type and amount of nondigestible substrate, as well as factors such as the individual’s baseline microbiota, diet, medication, and potentially genetics24.
Box 2. Definitions of pre-, pro-, and syn-biotics.
Probiotic: live microorganisms that, when administered in adequate amounts, confer a health benefit on the host22.
Prebiotic: a substrate that is selectively utilized by host microorganisms conferring a health benefit23.
Synbiotic: a mixture comprising live microorganisms and substrate(s) selectively utilized by host microorganisms that confers a health benefit on the host24. May be a combination of a probiotic and prebiotic (complementary) or individual components that act synergistically when co-administered (synergistic)24.
How might the microbiome influence health and the response to dietary components?
Increasing evidence suggests that the gut microbiome influences the response to diet and may be a mediating or moderating factor in certain health outcomes36–39. The gut microbiome is associated with hallmarks of metabolic syndrome including obesity and type 2 diabetes in humans and these associations are further supported by mechanistic trials using microbiome transplants in animal models40. However, it remains challenging to extrapolate the findings from animal models to human health, thus more research is needed before evidence-based recommendations can be made. The gut microbiota may partially mediate the relationship between diet and the development of obesity and type 2 diabetes by metabolite production that affects host energetics or signaling pathways that influence metabolic or inflammatory processes41. For instance, SCFAs, namely butyrate, are used as an energy source for colonocytes; SCFAs also interact with G-protein coupled receptors 41 and 43 (GPR41 and GPR43), which induce peptide YY (PYY) and glucagon-like peptide-1 (GLP-1) secretion thereby improving insulin signaling18. Increases in lipopolysaccharide (LPS), a component of gram-negative bacteria cell walls, induce low grade, chronic inflammation that may contribute to obesity and type 2 diabetes41. Ultimately, the gut microbiota may impact a whole suite of related metabolic conditions by modulation of metabolic and immunologic pathways.
The gut microbiota could also modulate cardiovascular disease risk42. SCFAs and LPS modulate blood pressure and vascular function that may influence risk of cardiovascular disease42. Also, microbial metabolites trimethylamine (TMA), which is derived from dietary choline, phosphatidylcholine, and carnitine and converted to trimethylamine-N-oxide (TMAO) in the liver by flavin-containing monooxygenase 3 (FMO3), and phenylacetylglutamine (PAG), derived from phenylalanine, have been associated with cardiovascular disease risk42. However, associations between TMAO and disease do not indicate causation but rather may be confounded by other factors including kidney function, the gut microbiome, and FMO3 genotype43. Furthermore, there is uncertainty about the connections between dietary intake and TMAO concentration. Microbial modulation of the bile acid pool may also influence cardiovascular disease risk42. Fat intake (quantity and type), protein source and amino acid composition, as well as fiber and polyphenol intake have an impact upon microbial production of secondary bile acids7, 44, thereby providing a potential link between diet and microbiota-mediated health outcomes.
Therefore, research suggests that the gut microbiota could mediate diet-induced effects on health outcomes, though more clinical work is needed to substantiate these effects. However, recent research has demonstrated that consumption of the same foods differentially affects the gut microbiome in different people14 and this variability contributes to interindividual differences in the acute metabolic response to dietary intake36. This is the basis for funding for Nutrition for Precision Health, powered by the All of Us Research Program by the National Institutes of Health Common Fund45. This initiative provides the opportunity to expand upon the current research to better understand how diet affects individuals differently and how to optimize diet for individual health across the lifespan. From growth and development, particularly of the immune system, during infancy and childhood to mitigation of increases in inflammation and decline of muscle, bone, and brain integrity with age, the diverse and dynamic gut microbiome may contribute a variety of health outcomes in humans46.
Considerations for future diet-microbiome studies
Increased interest in diet-microbiome interactions and advances in the molecular and computational approaches used to study the microbiome has resulted in an explosion of research in this area47. However, a lack of standardization or recommendations for microbiome and dietary data collection has led to potential risk of confounding with other factors, as well as a high degree of heterogeneity between study designs, data collection, and analysis limiting the ability to compare results and conclusions between studies6, 17, 47.
Potential for confounding by both inter- and intra-individual variability may be minimized by stratifying participants by potential confounders such as baseline microbiota, age, gender, diet, lifestyle factors, and medications; collecting multiple microbiome samples per assessment timepoint coupled with multiple days of dietary history prior to each sample; standardizing collection times; and increasing sample size17, 47, 48. The potential confounding factors may change based on the intervention, the research question(s), and/or the population, so participant demographics, metabolic features, longitudinal and cyclical considerations, supplement and medication use, bowel habits, and environment should be considered47.
Dietary intervention descriptions and methods used to assess habitual dietary intake must be well documented to ensure replication and comparisons among studies49. When complete feeding studies are not feasible or appropriate for the hypothesis being tested, stabilizing diet (i.e. having participants maintain their habitual dietary intake)47 should be considered. Dietary intake aspects beyond nutrient composition, such as intake of specific foods, cooking, and food matrix must also be considered as these factors affect the type and amount of nutrients, particularly fibers, available to the gut microbiota due to changes in digestibility and absorption8, 14, 15, 50, 51.
What are low- or no-calorie sweeteners and why is there interest in the gut microbiota?
Low/no-calorie sweeteners (LNCS) are compounds that provide sweet taste without the calories or carbohydrates associated with table sugar (i.e. sucrose) or other caloric sweeteners. Common LNCS include acesulfame potassium (acesulfame K), advantame, aspartame, monk fruit extract, neotame, saccharin, sucralose, and steviol glycosides (e.g. rebaudioside A)52. LNCS have risen in popularity as the food and beverage industry has shifted to reducing added sugars in their products53. Prior to reaching the market, all permitted LNCS have undergone extensive safety evaluations by scientific and regulatory agencies such as the Joint FAO/WHO Expert Committee on Food Additives (JECFA), the European Food Safety Authority (EFSA), and/or the U.S. Food and Drug Administration (FDA), resulting in the establishment of Acceptable Daily Intakes (ADI) for each sweetener52, 54, 55 (Table 1).
Table 1.
Low/no-calorie sweetener | ADI (mg/kg bw/d) | Sucrose sweetness equivalence | Max daily mg intake based on 60kg person |
---|---|---|---|
Acesulfame K | 15 | 200 x | 900 |
Advantame | 32.8 | 20000 x | 1968 |
Aspartame | 50 | 200 x | 3000 |
Monk fruit extract | NS* | 100–250 x | -- |
Neotame | 0.3 | 7000–13000 x | 18 |
Saccharin | 15 | 200–700 x | 900 |
Sucralose | 5 | 600 x | 300 |
Steviol glycosides | 4 | 200–400 x | 240 |
Not specified
Abbreviations: ADI, Acceptable Dietary Intake; mg, milligrams; kg bw, kilograms bodyweight; d, day
LNCS types vary in their digestion, absorption, metabolism, and excretion56–58, meaning that the effects of one isolated LNCS on the gut microbiome cannot be extrapolated to all LNCS. For instance, while both saccharin and sucralose are not metabolized, saccharin is rapidly absorbed and excreted in the urine while sucralose is poorly absorbed and is excreted in the feces56, 58. Conversely, rebaudioside A is hydrolyzed by the gut microbiota to the parent compound steviol that is subsequently absorbed and excreted in the urine56, 58. Therefore, differences in absorption and chemical conversion of these sweeteners or their components may lead to differences in their ability to interact with the gut microbiota throughout the intestinal tract. A 2014 study59 reported a link between LNCS exposure, the gut microbiota, and glucose intolerance that spurred intense interest in this field. Additionally, in vitro evidence suggests that LNCS may also promote the transfer of antibiotic-resistance genes between microbes60. However, despite continued research, there remains a great deal of uncertainty regarding the effects of LNCS on the gut microbiome and any resulting impacts on human health55–57, 61, 62.
Considerations for LNCS-microbiome studies
Several study design elements should be considered when evaluating the results and conclusions of LNCS-microbiome studies. These include the study diet, the form of the test article, the dose and exposure, and the study population55. Both short- and long-term dietary patterns affect the gut microbiota. Therefore, studies must control for or record dietary intake to ensure that any dietary impact on the gut microbiota is accounted for. Also, commercial LNCS formulations typically contain small amounts of the sweetener molecule itself and primarily consist of carbohydrate bulking agents, such as maltodextrin55. Therefore, studies should be conducted with the pure, unadulterated sweetener as well as with the bulking agent to ensure that effects are not solely due to the bulking agent. Sweeteners should also be investigated individually, as differences in their chemical structures lead to differences in their metabolism and potential to affect the gut microbiota55–58. Importantly, to ensure relevance to human health, LNCS doses should not exceed the sweetener’s ADI.
The study population is another consideration to ensure relevance to human health. Rodents colonized or transplanted with defined microbes (gnotobiotic) that are hypothesized to play a role in the metabolism of certain nutrients or from human donors with a specific phenotype (e.g., disease) are useful in illuminating potential modes of action of the connections between diet, the gut microbiota, and health63. However, differences in gastrointestinal physiology, microbiota compositions, effects of genetic background in mice, coprophagy, housing conditions and feeding all limit the translation of rodent research64. Most studies have been conducted in animals and in vitro models, limiting biological relevance due to differences in the rodent gut microbiome6, 65, 66 and limitations in extrapolating tested concentrations in vitro to human exposure levels from the diet.
Using a combination of in vitro, animal, and human models will enable the determination of both clinical effects on health and the gut microbiome as well as mechanisms by which the gut microbiome may mediate the effects on health. For instance, while taste receptors are expressed throughout the gut and may be activated by LNCS, it is unknown whether activation of these receptors may also modulate microbial composition or function61, 67. It is postulated that activation of these receptors may be an important mechanism by which LNCS could modulate the gut microbiota since the extremely small doses used (e.g. milligram amounts) are lower than the 3 g/day dose required for most compounds to elicit a direct effect on the gut microbiome23, 61. Mechanistic studies will therefore complement the findings of clinical trials on the effects of LNCS on human health and the gut microbiome. Human studies, preferably randomized controlled trials, are necessary to be able to make evidence-based recommendations.
What does the literature report on the effects of LNCS on the gut microbiota?
Briefly, a literature search identified relevant articles on LNCS and gut microbiota using the following inclusion criteria: 1) in vivo studies conducted in animals and/or humans (in vitro studies excluded); 2) testing one or more orally administered LNCS; and 3) evaluation of the gut microbiota55.The summarized results of the literature search are presented in Table 259, 68–89.
Table 2.
Low/no-calorie sweetener | Nonclinical studies* | Clinical studies* | Studies without any confounding factors* | |
---|---|---|---|---|
Number | Gut microbiota findings (compared to control) | |||
Acesulfame K | • 3 studies in mice68–70 | • 171 | 168 | • No change reported in mice68 |
Aspartame | •1 study in mice59 • 1 study in rats72 |
• 271,73 | 0 | • Inconclusive |
Cyclamate | • 1 study in monkeys74 | • None | 0 | • Inconclusive |
Neotame | • 1 study in mice75 | • None | 0 | • Inconclusive |
Saccharin | • 3 studies in mice59,79 • 1 study in rats76 • 2 studies in piglets77,78 |
• 159 | 0 | • Inconclusive |
Sucralose | • 9 studies in mice59,68,70,80–85 • 1 study in rats86 |
• 273,87 | 168 | • Dose-dependent ↓in fecal Clostridium IVXa in mice68 |
Rebaudioside A | • 2 studies in mice85,88 • 1 study in rats89 |
• None | 288,89 | • No change reported in mice88 • ↓ Clostridiales family XIII, Ruminococcaceae UCG 005; ↑ Akkermansia muciniphila, Bacteroides goldsteinii, Bacteroides thetaiotaomicron in rats89 |
Confounding factors may include: dose in excess of human ADI or not reported, diet not equivalent between groups or controlled, small sample size of one subject per group, or use of non-equivalent control group or no control group. Table adapted from ILSI webinar slides.
The majority of studies were conducted in animal models, with sucralose being the most commonly investigated LNCS. The effects of LNCS on the gut microbiota reported in the scientific literature are unclear in humans and experimental data are needed that control for confounding factors. Of the identified nonclinical and clinical studies, only four remained after removing those with confounding factors, such as dose in excess of human ADI or dose not reported, diet not equivalent between groups or controlled, small sample size of one subject per group, or use of non-equivalent control group or no control group. However, it should be noted that even doses at or below the ADI in animal models may not be relevant to humans due to differences in gastrointestinal physiology and digestion as described above. All human clinical trials contained at least one confounding factor that disqualified them from the final analysis. For instance, habitual diet was not controlled in any of the four clinical studies. One study was cross-sectional and therefore could not report the dose or amount of LNCS consumed71. Additionally, two of the studies did not have a control group59, 73.
The results of investigations of several LNCS were inconclusive after removal of confounded studies, including results for aspartame, cyclamate, neotame, and saccharin. Of the remaining studies, Uebanso et al. investigated the effect of both acesulfame K (15 mg/kg/d, 8 weeks) and sucralose (low dose: 1.5 mg/kg/d, high dose: 15 mg/kg/d, 8 weeks)68. Studies by Li et al. (low dose: 5.5 mg/kg/d, high dose: 139 mg/kg/d, 4 weeks) and Nettleton et al. (2–3 mg/kg/d, 9 weeks) investigated the effects of rebaudioside A88, 89. The high dose of rebaudioside A in the study by Li et al. is in excess of the ADI (~10x) and therefore was excluded from the analysis. Both acesulfame K and rebaudioside A show no effects on the gut microbiota in mice68, 88, though rebaudioside A did alter the composition of the gut microbiota in rats89. These changes in the gut microbiota composition were accompanied by an increase in the cecal concentrations of acetate and valerate, which were positively correlated with fat mass and total weight89. The one study of sucralose found a dose-dependent decrease in fecal Clostridium IVXa in mice68. Thus, the literature shows marginal effects of LNCS on the rodent gut microbiota at doses relevant to human consumption. The implications of LNCS consumption on the human gut microbiome and effects on health outcomes are therefore unclear. The ability to draw conclusions from the literature is hampered by the limited number of studies without confounding factors.
Conclusions
Microbiome research is an emerging area of science, with many new research opportunities arising as novel links between the gut microbiota and different dietary components or aspects of health are investigated. Continued research is critical as the gut microbiome is an integral part of human physiology that is impacted by diet as well as other factors such as age, physical activity, genetics, health status, medication, and environmental exposures. A crucial component of this relationship is dietary intake. The two-way relationship between diet and the gut microbiome has implications for human health and disease. Future research should focus on establishing links between specific changes in the gut microbiome and human host health effects, as well as dietary components that may contribute to or reduce the risk of such effects via microbial modulation while controlling for potential confounders in study design.
There is no clear evidence that LNCS adversely impact the gut microbiota when consumed by humans at approved levels 55. However, gut microbiota changes as a result of LNCS consumption have been demonstrated in some animal studies56, 57, warranting further investigation into the potential effects of long-term exposure in humans. Unfortunately, due to the popularity of LNCS, media headlines often overstate the study implications and should be interpreted with caution. Confounding and study design limitations make it difficult for researchers and clinicians to interpret study results. Future studies should reduce confounding factors by controlling the diet, using pure forms of LNCS and investigating the effects of bulking agents, administering doses below the ADI, and selecting a relevant study population. Further research will help elucidate the effects of LNCS on the gut microbiota and human health.
Acknowledgements
RLH and HDH received funding to write the manuscript from the Institute for the Advancement of Food and Nutrition Sciences (IAFNS) through an ILSI North America Low-Calorie Sweeteners Committee grant. IAFNS is a is a nonprofit science organization that pools funding from industry collaborators and advances science through the in-kind and financial contributions from public and private sector participants. Drs. Cindy D. Davis and Alexandra Lobach approved the final version of the article with respect to representation of their webinar content. All contributors read and approved the final manuscript.
Conflicts of Interest and Funding Disclosure: This work was supported by the Institute for the Advancement of Food and Nutrition Sciences (IAFNS) through an ILSI North America Low-Calorie Sweeteners Committee grant. IAFNS is a is a nonprofit science organization that pools funding from industry collaborators and advances science through the in-kind and financial contributions from public and private sector participants.
Biography
Riley L. Hughes is a Postdoctoral Research Associate at the University of Illinois at Urbana-Champaign.
Hannah D. Holscher is an Assistant Professor of Nutrition at the University of Illinois at Urbana-Champaign.
Cindy D. Davis is the Director of Grants and Extramural Activities, Office of Dietary Supplements, Bethesda, MD.
Alexandra Lobach is Senior Manager of Toxicology, Chemistry & Regulatory Affairs; Food and Nutrition, Intertek Health Sciences Inc., Mississauga, ON, Canada.
References
- 1.Fan Y, Pedersen O. Gut microbiota in human metabolic health and disease. Nature Reviews Microbiology. 2021/01/01 2021;19(1):55–71. [DOI] [PubMed] [Google Scholar]
- 2.Zhang X, Li L, Butcher J, Stintzi A, Figeys D. Advancing functional and translational microbiome research using meta-omics approaches. Microbiome 2019/12/06 2019;7(1):154. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 3.Scarpellini E, Ianiro G, Attili F, Bassanelli C, De Santis A, Gasbarrini A. The human gut microbiota and virome: Potential therapeutic implications. Digestive and Liver Disease. 2015/12/01/ 2015;47(12):1007–1012. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 4.Yatsunenko T, Rey FE, Manary MJ, et al. Human gut microbiome viewed across age and geography. Nature. May 9 2012;486(7402):222–227. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 5.Yuan C, Graham M, Staley C, Subramanian S. Mucosal Microbiota and Metabolome along the Intestinal Tract Reveal a Location-Specific Relationship. mSystems. 2020;5(3):e00055–00020. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 6.Hughes RL, Marco ML, Hughes JP, Keim NL, Kable ME. The Role of the Gut Microbiome in Predicting Response to Diet and the Development of Precision Nutrition Models—Part I: Overview of Current Methods. Advances in Nutrition. 2019;10(6):953–978. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 7.Holscher HD, Guetterman HM, Swanson KS, et al. Walnut Consumption Alters the Gastrointestinal Microbiota, Microbially Derived Secondary Bile Acids, and Health Markers in Healthy Adults: A Randomized Controlled Trial. J Nutr. June 1 2018;148(6):861–867. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 8.Holscher HD, Taylor AM, Swanson KS, Novotny JA, Baer DJ. Almond Consumption and Processing Affects the Composition of the Gastrointestinal Microbiota of Healthy Adult Men and Women: A Randomized Controlled Trial. Nutrients. 2018;10(2):126. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9.Kaczmarek JL, Liu X, Charron CS, Novotny JA, Jeffery EH, Seifried HE, Ross SA, Miller MJ, Swanson KS, Holscher HD. Broccoli consumption affects the human gastrointestinal microbiota. The Journal of nutritional biochemistry. 2019;63:27–34. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 10.Thompson SV BM, Taylor AM, Kaczmarek JL, Krug AR, Edwards CG, Reeser GE, Burd NA, Khan NA, Holscher HD. Avocado consumption alters gastrointestinal bacteria abundance and microbial metabolite concentrations among adults with overweight or obesity: a randomized, controlled trial. The Journal of Nutrition. 2020. (accepted). [DOI] [PMC free article] [PubMed] [Google Scholar]
- 11.Willis HJ, Slavin JL. The influence of diet interventions using whole, plant food on the gut microbiome: A narrative review. Journal of the Academy of Nutrition and Dietetics. 2020;120(4):608–623. [DOI] [PubMed] [Google Scholar]
- 12.Wu GD, Chen J, Hoffmann C, et al. Linking long-term dietary patterns with gut microbial enterotypes. Science. October 7 2011;334(6052):105–108. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 13.David LA, Maurice CF, Carmody RN, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. January 23 2014;505(7484):559–563. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 14.Johnson AJ, Vangay P, Al-Ghalith GA, et al. Daily Sampling Reveals Personalized Diet-Microbiome Associations in Humans. Cell host & microbe. 2019;25(6):789–802. e785. [DOI] [PubMed] [Google Scholar]
- 15.Shinn LM, Li Y, Mansharamani A, Auvil LS, Welge ME, Bushell C, Khan NA, Charron CS, Novotny JA, Baer DJ, Zhu R, Holscher HD. Fecal Bacteria as Biomarkers for Predicting Food Intake in Healthy Adults. The Journal of nutrition. 2020. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 16.Rothschild D, Weissbrod O, Barkan E, et al. Environment dominates over host genetics in shaping human gut microbiota. Nature. March 8 2018;555(7695):210–215. [DOI] [PubMed] [Google Scholar]
- 17.Knight R, Vrbanac A, Taylor BC, et al. Best practices for analysing microbiomes. Nature Reviews Microbiology. 2018;16(7):410. [DOI] [PubMed] [Google Scholar]
- 18.Alexander C, Swanson KS, Fahey GC Jr, Garleb KA. Perspective: Physiologic Importance of Short-Chain Fatty Acids from Nondigestible Carbohydrate Fermentation. Advances in Nutrition. 2019;10(4):576–589. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 19.Holscher HD. Dietary fiber and prebiotics and the gastrointestinal microbiota. Gut microbes. 2017;8(2):172–184. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 20.Laparra JM, Sanz Y. Interactions of gut microbiota with functional food components and nutraceuticals. Pharmacol Res. March 2010;61(3):219–225. [DOI] [PubMed] [Google Scholar]
- 21.Walsh C, Lane JA, van Sinderen D, Hickey RM. Human milk oligosaccharides: Shaping the infant gut microbiota and supporting health. Journal of Functional Foods. 2020/09/01/ 2020;72:104074. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 22.Hill C, Guarner F, Reid G, et al. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nature Reviews Gastroenterology & Hepatology. 2014/08/01 2014;11(8):506–514. [DOI] [PubMed] [Google Scholar]
- 23.Gibson GR, Hutkins R, Sanders ME, et al. Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nature reviews Gastroenterology & hepatology. 2017;14(8):491. [DOI] [PubMed] [Google Scholar]
- 24.Swanson KS, Gibson GR, Hutkins R, Reimer RA, Reid G, Verbeke K, Scott KP, Holscher HD, Azad MB, Delzenne NM, Sanders ME. The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of synbiotics. Nature Reviews Gastroenterology & Hepatology. 2020/11/01 2020;17(11):687–701. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 25.Su GL, Ko CW, Bercik P, et al. AGA Clinical Practice Guidelines on the Role of Probiotics in the Management of Gastrointestinal Disorders. Gastroenterology. June 9 2020. [DOI] [PubMed] [Google Scholar]
- 26.Merenstein DJ, Sanders ME, Tancredi DJ. Probiotics as a Tx resource in primary care. J Fam Pract. April 2020;69(3):E1–E10. [PubMed] [Google Scholar]
- 27.Guarner F, Sanders ME, Eliakim R, et al. WGO Practice Guideline - Probiotics and Prebiotics: World Gastroenterology Organisation; 2017. [Google Scholar]
- 28.Hojsak I, Szajewska H, Canani RB, et al. Probiotics for the Prevention of Nosocomial Diarrhea in Children. J Pediatr Gastroenterol Nutr. January 2018;66(1):3–9. [DOI] [PubMed] [Google Scholar]
- 29.Szajewska H, Canani RB, Guarino A, et al. Probiotics for the Prevention of Antibiotic-Associated Diarrhea in Children. J Pediatr Gastroenterol Nutr. March 2016;62(3):495–506. [DOI] [PubMed] [Google Scholar]
- 30.Szajewska H, Guarino A, Hojsak I, et al. Use of Probiotics for the Management of Acute Gastroenteritis in Children: An Update. J Pediatr Gastroenterol Nutr. August 2020;71(2):261–269. [DOI] [PubMed] [Google Scholar]
- 31.van den Akker CHP, van Goudoever JB, Shamir R, et al. Probiotics and Preterm Infants: A Position Paper by the European Society for Paediatric Gastroenterology Hepatology and Nutrition Committee on Nutrition and the European Society for Paediatric Gastroenterology Hepatology and Nutrition Working Group for Probiotics and Prebiotics. J Pediatr Gastroenterol Nutr. May 2020;70(5):664–680. [DOI] [PubMed] [Google Scholar]
- 32.Hao Q, Dong BR, Wu T. Probiotics for preventing acute upper respiratory tract infections. Cochrane Database Syst Rev. February 3 2015(2):CD006895. [DOI] [PubMed] [Google Scholar]
- 33.EFSA Panel on Dietetic Products NaA. Scientific Opinion on the substantiation of health claims related to live yoghurt cultures and improved lactose digestion (ID 1143, 2976) pursuant to Article 13(1) of Regulation (EC) No 1924/2006. EFSA Journal 2010;8(10):1763. [Google Scholar]
- 34.McLoughlin RF, Berthon BS, Jensen ME, Baines KJ, Wood LG. Short-chain fatty acids, prebiotics, synbiotics, and systemic inflammation: a systematic review and meta-analysis. The American journal of clinical nutrition. 2017;106(3):930–945. [DOI] [PubMed] [Google Scholar]
- 35.Schmidt K, Cowen PJ, Harmer CJ, Tzortzis G, Errington S, Burnet PWJ. Prebiotic intake reduces the waking cortisol response and alters emotional bias in healthy volunteers. Psychopharmacology. 2015/05/01 2015;232(10):1793–1801. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 36.Hughes RL, Kable ME, Marco M, Keim NL. The Role of the Gut Microbiome in Predicting Response to Diet and the Development of Precision Nutrition Models. Part II: Results. Advances in Nutrition. 2019;10(6):979–998. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 37.Zeevi D, Korem T, Zmora N, et al. Personalized nutrition by prediction of glycemic responses. Cell. 2015;163(5):1079–1094. [DOI] [PubMed] [Google Scholar]
- 38.Berry SE, Valdes AM, Drew DA, et al. Human postprandial responses to food and potential for precision nutrition. Nature Medicine. 2020/06/01 2020;26(6):964–973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 39.Mendes-Soares H, Raveh-Sadka T, Azulay S, et al. Assessment of a Personalized Approach to Predicting Postprandial Glycemic Responses to Food Among Individuals Without Diabetes. JAMA network open. 2019;2(2):e188102–e188102. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 40.Everard A, Cani PD. Diabetes, obesity and gut microbiota. Best Practice & Research Clinical Gastroenterology. 2013/02/01/ 2013;27(1):73–83. [DOI] [PubMed] [Google Scholar]
- 41.Bailey MA, Holscher HD. Microbiome-Mediated Effects of the Mediterranean Diet on Inflammation. Adv Nutr. May 1 2018;9(3):193–206. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 42.Witkowski M, Weeks TL, Hazen SL. Gut Microbiota and Cardiovascular Disease. Circulation research. 2020;127(4):553–570. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 43.Cho CE, Caudill MA. Trimethylamine-N-oxide: friend, foe, or simply caught in the cross-fire? Trends in Endocrinology & Metabolism. 2017;28(2):121–130. [DOI] [PubMed] [Google Scholar]
- 44.Rodríguez-Morató J, Matthan NR. Nutrition and Gastrointestinal Microbiota, Microbial-Derived Secondary Bile Acids, and Cardiovascular Disease. Current Atherosclerosis Reports. 2020;22(9):1–12. [DOI] [PubMed] [Google Scholar]
- 45.Rodgers GP, Collins FS. Precision nutrition—the answer to “what to eat to stay healthy”. Jama. 2020;324(8):735–736. [DOI] [PubMed] [Google Scholar]
- 46.O’Toole PW, Claesson MJ. Gut microbiota: Changes throughout the lifespan from infancy to elderly. Int Dairy J. 2010;20(4):281–291. [Google Scholar]
- 47.Johnson AJ, Zheng JJ, Kang JW, Saboe A, Knights D, Zivkovic AM. A Guide to Diet-Microbiome Study Design. Frontiers in nutrition. 2020;7:79–79. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 48.Kaczmarek JL, Musaad SM, Holscher HD. Time of day and eating behaviors are associated with the composition and function of the human gastrointestinal microbiota. Am J Clin Nutr. November 2017;106(5):1220–1231. [DOI] [PubMed] [Google Scholar]
- 49.Klurfeld DM, Davis CD, Karp RW, Allen-Vercoe E, Chang EB, Chassaing B, Fahey GC, Hamaker BR, Holscher HD, Lampe JW, Marette A, Martens E, O’Keefe SJ, Rose DJ, Saarela M, Schneeman BO, Slavin SL, Sonnenburg JL, Swanson KS, Wu GD, Lynch CJ. Considerations for best practices in studies of fiber or other dietary components and the intestinal microbiome. American Journal of Physiology-Endocrinology and Metabolism. 2018;315(6):E1087–E1097. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 50.Ward RE, Benninghoff AD, Hintze KJ. Food matrix and the microbiome: considerations for preclinical chronic disease studies. Nutrition Research. 2020/06/01/ 2020;78:1–10. [DOI] [PubMed] [Google Scholar]
- 51.Carmody RN, Bisanz JE, Bowen BP, et al. Cooking shapes the structure and function of the gut microbiome. Nature Microbiology. 2019/12/01 2019;4(12):2052–2063. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 52.U.S. Food and Drug Administration (FDA). Additional Information about High-Intensity Sweeteners Permitted for Use in Food in the United States. Available at: https://www.fda.gov/food/food-additives-petitions/additional-information-about-high-intensity-sweeteners-permitted-use-food-united-states. Accessed 01/08/2021, 2021.
- 53.Martyn D, Darch M, Roberts A, et al. Low-/no-calorie sweeteners: a review of global intakes. Nutrients. 2018;10(3):357. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 54.Roberts A The safety and regulatory process for low calorie sweeteners in the United States. Physiology & Behavior. 2016/10/01/ 2016;164:439–444. [DOI] [PubMed] [Google Scholar]
- 55.Lobach AR, Roberts A, Rowland IR. Assessing the in vivo data on low/no-calorie sweeteners and the gut microbiota. Food and Chemical Toxicology. 2019;124:385–399. [DOI] [PubMed] [Google Scholar]
- 56.Di Rienzi SC, Britton RA. Adaptation of the Gut Microbiota to Modern Dietary Sugars and Sweeteners. Advances in Nutrition. 2019;11(3):616–629. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 57.Ruiz-Ojeda FJ, Plaza-Díaz J, Sáez-Lara MJ, Gil A. Effects of Sweeteners on the Gut Microbiota: A Review of Experimental Studies and Clinical Trials. Advances in Nutrition. 2019;10(suppl_1):S31–S48. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 58.Magnuson BA, Carakostas MC, Moore NH, Poulos SP, Renwick AG. Biological fate of low-calorie sweeteners. Nutrition Reviews. 2016;74(11):670–689. [DOI] [PubMed] [Google Scholar]
- 59.Suez J, Korem T, Zeevi D, et al. Artificial sweeteners induce glucose intolerance by altering the gut microbiota. Nature. October 9 2014;514(7521):181–186. [DOI] [PubMed] [Google Scholar]
- 60.Yu Z, Wang Y, Lu J, Bond PL, Guo J. Nonnutritive sweeteners can promote the dissemination of antibiotic resistance through conjugative gene transfer. The ISME Journal. 2021/02/15 2021. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 61.Turner A, Veysey M, Keely S, Scarlett CJ, Lucock M, Beckett EL. Intense Sweeteners, Taste Receptors and the Gut Microbiome: A Metabolic Health Perspective. International Journal of Environmental Research and Public Health. 2020;17(11):4094. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 62.Khan TA, Ayoub-Charette S, Sievenpiper JL, Comelli EM. Non-Nutritive Sweeteners and their Effects on Human Health and the Gut Microbiome. 2020.
- 63.Walter J, Armet AM, Finlay BB, Shanahan F. Establishing or Exaggerating Causality for the Gut Microbiome: Lessons from Human Microbiota-Associated Rodents. Cell. 2020;180(2):221–232. [DOI] [PubMed] [Google Scholar]
- 64.Nguyen TL, Vieira-Silva S, Liston A, Raes J. How informative is the mouse for human gut microbiota research? Dis Model Mech. January 2015;8(1):1–16. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 65.Turnbaugh PJ, Ridaura VK, Faith JJ, Rey FE, Knight R, Gordon JI. The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice. Sci Transl Med. November 11 2009;1(6):6ra14. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 66.Nagpal R, Wang S, Solberg Woods LC, et al. Comparative Microbiome Signatures and Short-Chain Fatty Acids in Mouse, Rat, Non-human Primate, and Human Feces. Frontiers in Microbiology. 2018-November-30 2018;9(2897). [DOI] [PMC free article] [PubMed] [Google Scholar]
- 67.Pepino MY. Metabolic effects of non-nutritive sweeteners. Physiology & behavior. 2015;152:450–455. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 68.Uebanso T, Ohnishi A, Kitayama R, et al. Effects of low-dose non-caloric sweetener consumption on gut microbiota in mice. Nutrients. 2017;9(6):560. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 69.Bian X, Chi L, Gao B, Tu P, Ru H, Lu K. The artificial sweetener acesulfame potassium affects the gut microbiome and body weight gain in CD-1 mice. PLoS One. 2017;12(6):e0178426. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 70.Stichelen O-V, Rother KI, Hanover JA. Maternal exposure to non-nutritive sweeteners impacts progeny’s metabolism and microbiome. Frontiers in microbiology. 2019;10:1360. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 71.Frankenfeld CL, Sikaroodi M, Lamb E, Shoemaker S, Gillevet PM. High-intensity sweetener consumption and gut microbiome content and predicted gene function in a cross-sectional study of adults in the United States. Annals of Epidemiology. 2015;25(10):736–742. e734. [DOI] [PubMed] [Google Scholar]
- 72.Palmnäs MS, Cowan TE, Bomhof MR, et al. Low-dose aspartame consumption differentially affects gut microbiota-host metabolic interactions in the diet-induced obese rat. PloS one. 2014;9(10):e109841. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 73.Ahmad SY, Friel J, Mackay D. The Effects of Non-Nutritive Artificial Sweeteners, Aspartame and Sucralose, on the Gut Microbiome in Healthy Adults: Secondary Outcomes of a Randomized Double-Blinded Crossover Clinical Trial. Nutrients. 2020;12(11):3408. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 74.Matsui M, Hayashi N, Konuma H, Tanimura A, Kurata H. Studies on Metabolism of Food Additives by Microorganisms Inhabiting Gastrointestinal Tract (IV). Food Hygiene and Safety Science (Shokuhin Eiseigaku Zasshi). 1976;17(1):54–58_51. [Google Scholar]
- 75.Chi L, Bian X, Gao B, et al. Effects of the artificial sweetener neotame on the gut microbiome and fecal metabolites in mice. Molecules. 2018;23(2):367. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 76.Anderson R, Kirkland J. The effect of sodium saccharin in the diet on caecal microflora. Food and cosmetics toxicology. 1980;18(4):353–355. [DOI] [PubMed] [Google Scholar]
- 77.Daly K, Darby AC, Hall N, Nau A, Bravo D, Shirazi-Beechey SP. Dietary supplementation with lactose or artificial sweetener enhances swine gut Lactobacillus population abundance. British journal of nutrition. 2014;111(S1):S30–S35. [DOI] [PubMed] [Google Scholar]
- 78.Daly K, Darby AC, Hall N, et al. Bacterial sensing underlies artificial sweetener‐induced growth of gut L actobacillus. Environmental Microbiology. 2016;18(7):2159–2171. [DOI] [PubMed] [Google Scholar]
- 79.Bian X, Tu P, Chi L, Gao B, Ru H, Lu K. Saccharin induced liver inflammation in mice by altering the gut microbiota and its metabolic functions. Food and Chemical Toxicology. 2017;107:530–539. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 80.Rodriguez-Palacios A, Harding A, Menghini P, et al. The artificial sweetener splenda promotes gut proteobacteria, dysbiosis, and myeloperoxidase reactivity in Crohn’s disease–like ileitis. Inflammatory bowel diseases. 2018;24(5):1005–1020. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 81.Bian X, Chi L, Gao B, Tu P, Ru H, Lu K. Gut microbiome response to sucralose and its potential role in inducing liver inflammation in mice. Frontiers in physiology. 2017;8:487. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 82.Farzi A, Reed F, Zhang L, Holzer P, Herzog H. Peptide YY is a critical regulator of gut microbiota composition specifically under conditions of sucralose or high fat diet exposure. Paper presented at: NEUROGASTROENTEROLOGY AND MOTILITY2017. [Google Scholar]
- 83.Martínez-Carrillo BE, Rosales-Gómez CA, Ramírez-Durán N, et al. Effect of Chronic Consumption of Sweeteners on Microbiota and Immunity in the Small Intestine of Young Mice. International Journal of Food Science. 2019/08/20 2019;2019:9619020. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 84.Wang Q-P, Browman D, Herzog H, Neely GG. Non-nutritive sweeteners possess a bacteriostatic effect and alter gut microbiota in mice. PLOS ONE. 2018;13(7):e0199080. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 85.Xi D, Bhattacharjee J, Salazar-Gonzalez R-M, Warren M, Merritt R, Kohli R. Role of Microbiome in Hepatoprotective Effect of Rebaudioside for Nonalcoholic Steatohepatitis. Gastroenterology. 2019;156(6):S–1294. [Google Scholar]
- 86.Abou-Donia MB, El-Masry EM, Abdel-Rahman AA, McLendon RE, Schiffman SS. Splenda alters gut microflora and increases intestinal p-glycoprotein and cytochrome p-450 in male rats. Journal of Toxicology and Environmental Health, Part A. 2008;71(21):1415–1429. [DOI] [PubMed] [Google Scholar]
- 87.Thomson P, Santibañez R, Aguirre C, Galgani JE, Garrido D. Short-term impact of sucralose consumption on the metabolic response and gut microbiome of healthy adults. British Journal of Nutrition. 2019;122(8):856–862. [DOI] [PubMed] [Google Scholar]
- 88.Li S, Chen T, Dong S, Xiong Y, Wei H, Xu F. The effects of rebaudioside A on microbial diversity in mouse intestine. Food Science and Technology Research. 2014;20(2):459–467. [DOI] [PubMed] [Google Scholar]
- 89.Nettleton JE, Klancic T, Schick A, et al. Low-Dose Stevia (Rebaudioside A) Consumption Perturbs Gut Microbiota and the Mesolimbic Dopamine Reward System. Nutrients. 2019;11(6):1248. [DOI] [PMC free article] [PubMed] [Google Scholar]