Skip to main content
. 2021 Jun 26;69:103444. doi: 10.1016/j.ebiom.2021.103444

Table 2.

Model performance of four classifiers on the validation set; a random forest wrapper method (Boruta), regression partition trees (Rpart), LASSO, and extreme gradient boosting (XGBoost).

Random forest Rpart LASSO XGBoost Ensemble
miRNAs selected by model, n 10 4 13 8 20
Sensitivity
(95% CI)
0.86 (0.65-0.97) 0.91 (0.71-0.99) 0.77 (0.55-0.92) 0.91 (0.71-0.99) 0.91 (0.71-0.99)
Specificity
(95% CI)
0.71(0.42-0.92) 0.64 (0.35-0.87) 0.64 (0.35-0.87) 0.71 (0.42-0.92) 0.64 (0.35-0.87)
Positive predictive value (95% CI) 0.83 (0.61-0.95) 0.80 (0.59-0.93) 0.77 (0.55-0.92) 0.83 (0.63-0.95) 0.80 (0.59-0.93)
Negative predictive value (95% CI) 0.77 (0.46-0.95) 0.82 (0.48-0.92) 0.64 (0.35-0.86) 0.83 (0.52-0.98) 0.82 (0.48-0.92)
Correct classification rate (95% CI) 0.81 (0.64-0.92) 0.81 (0.64-0.92) 0.72 (0.55-0.86) 0.83 (0.67-0.94) 0.81 (0.64-0.92)
AUC
(95% CI)
0.84 (0.69-1) 0.79 (0.63-0.95) 0.79 (0.63-0.94) 0.82 (0.66-0.99) 0.85 (0.70-1)