Skip to main content
Data in Brief logoLink to Data in Brief
. 2021 Apr 26;36:107096. doi: 10.1016/j.dib.2021.107096

Dataset on the use of MGIDI index in screening drought-tolerant wild wheat accessions at the early growth stage

Alireza Pour-Aboughadareh a,, Peter Poczai b,
PMCID: PMC8257987  PMID: 34307802

Abstract

The dataset herein indicated the novelty of the article entitled “Dataset on the use of MGIDI in screening drought-tolerant wild wheat accessions at the early growth stage”. Data were gathered during 2018–2019 on a set of wild wheat germplasm under two control and water deficit stress conditions. One hundred and forty-six accessions belonging to Ae. tauschii, Ae. cylindrica, and Ae. crassa were assessed under optimal glasshouse conditions to screen the drought-tolerant samples at the early growth stage. Nine drought tolerance and susceptibility indices along with the multi-trait genotype-ideotype distance index (MGIDI) were used to visualize the dataset. The obtained data can highlight the potential of the MGIDI index in accelerating screening of a large number of plant materials using multiple traits or selection indices in crop breeding programs, especially at the early growth stage.

Keywords: Drought tolerance, Wild wheat, MGIDI index, Multivariate analysis

Specifications Table

Subject Data analysis (Agricultural and Biological Science)
Specific subject area Agronomy and Crop Science
Type of data Tables and Figures
How data were acquired Data were obtained by a study conducted under controlled greenhouse conditions on a set of wild progenitors of wheat belonging to three Aegilops species, such as Ae. cylindrica, Ae. crassa, and Ae. tauschii. Data tables and figures were obtained by calculating nine drought tolerance and susceptibility indices using iPASTIC software. The multi-trait genotype-ideotype distance index (MGIDI) was used to rank the accessions based on information of multiple indices. The MGIDI index was calculated in the R software using the ‘metan’ package.
Data format Raw
Parameters for data collection The conditions considered for data collection were controlled greenhouse conditions of the experiment.
Description of data collection A total of 146 accessions of three Aegilops accessions were investigated under two control and water deficit stress treatments (Field capacity [FC] = 95 ± 5% and 30 ± 5%, respectively). A factorial experiment was performed in a randomized complete block design with three replications in a research greenhouse at the Agronomy and Plant Breeding Department, Tehran University, Karaj, Iran, during the 2018–2019 growing seasons. Thirty days after sowing and water deficit treatment, shoot dry biomass was recorded in all samples. Based on both dry biomass under control (Yp) and water deficit treatment (Ys) of tested samples, nine drought tolerance and susceptibility indices, including tolerance index (TOL), mean productivity (MP), geometric mean productivity (GMP), harmonic mean (HM), stress susceptibility index (SSI), stress tolerance index (STI), yield index (YI), yield stability index (YSI), and relative drought index (RSI) were calculated.
Data source location Department of Agronomy and Plant Breeding, Agricultural College, University of Tehran, Karaj
Data accessibility The raw data associated to this article are provided on Mendeley dataset http://dx.doi.org/10.17632/4tw2hrrdfp.1.
Related research article [1] A. Pour-Aboughadareh, M. Omidi, M.R. Naghavi, A. Etminan, A.A. Mehrabi, P. Poczai, H. Bayat, Effect of water deficit stress on seedling biomass and physio-chemical characteristics in different species of wheat possessing the D genome, Agronomy. 9 (2019) 522. https://doi.org/10.3390/agronomy9090522

Value of the Data

  • The dataset analyzed in this work indicates an overview of the potential of some wild relatives for increasing drought tolerance in wheat breeding programs. Indeed, this dataset provides information for wheat breeders on the breeding capacity of this germplasm to further studies on tolerance mechanisms and discovering new tolerance-related genes or even alleles in alien genomes.

  • The presented drought tolerance and susceptibility indices are important mathematical parameters that are widely used by researchers. However, the multi-trait genotype-ideotype distance index (MGIDI) was used to make a unique index for facilitating the selection of superior genotypes.

  • This dataset can highlight the applicability of the MGIDI index in accelerating the screening of a large number of plant materials using multiple traits or growth parameters in crop breeding programs, especially at the early growth stage.

1. Data Description

Climate change is expected to result in fluctuations in precipitation patterns, including enhanced severity and accelerated frequency of droughts. Under these circumstances, agricultural production is mainly affected by water limitation. Indeed, water deficit is one of the destructive abiotic stresses that decrease crop growth and yield performance in many areas across the world [2]. Wild relatives of wheat are a valuable genetic resource that harbors many genes related to various abiotic stresses. Aegilops species plays an important role in wheat domestication and improvement breeding programs due to its interesting potential [3], [4], [5], [6]. Hence, this germplasm can be a benchmark for wheat breeding programs.

The dataset is presented in two tables and two figures that describe the ability of the MGIDI index to screen for drought-tolerant accessions. Table 2 presents drought tolerance and susceptibility indices in the 146 investigated Aegilops accessions. Based on the indices values in Table 2, accession numbers G150, G153, G157, G160, G164, G175, G180, G183, G184, and G195 form Ae. crassa showed the lowest percent reduction in their shoot dry matter due to water deficit stress compared with control conditions. Table 3 shows the ranking pattern of the investigated accessions based on each calculated index. This table also shows the average sum of ranks and standard deviation of ranks (SD) through Yp, Ys, and other indices. As shown in Table 3, accession numbers G150, G153, G154, G157, G160, G164, G180, G182, G192, and G195 were selected as the top 10 tolerant accessions. Fig. 1 presents the results of screening of the investigated Aegilops accessions based on the MGIDI index. In Fig. 1, the red circle shows the cutpoint according to the selection pressure (SI = 10%). The MGIDI index identified 15 samples as more desirable accessions than others. Except for one accession (G71) that belongs to Ae. tauschii, other selected accessions belong to Ae. crassa. Fig. 2 shows the strengths and weaknesses view of the selected genotypes as shown as the proportion of each factor on the computed MGIDI index. Thus, the MGIDI index can identify the best drought-tolerant genotypes at the early growth stage. The raw data associated to this article are provided on Mendeley dataset.

Table 2.

Calculated drought tolerance and susceptibility indices in 146 Aegilops accessions.

Code Yp Ys RC TOL MP GMP HM SSI STI YI YSI RSI
G1 0.73 0.32 55.63 0.41 0.53 0.48 0.45 1.01 0.55 1.09 0.44 0.99
G2 0.73 0.28 60.99 0.44 0.51 0.45 0.41 1.11 0.48 0.96 0.39 0.87
G3 0.75 0.34 54.29 0.41 0.54 0.50 0.47 0.99 0.59 1.16 0.46 1.02
G4 0.73 0.33 54.98 0.40 0.53 0.49 0.46 1.00 0.56 1.12 0.45 1.00
G5 0.69 0.30 57.02 0.39 0.49 0.45 0.42 1.04 0.48 1.01 0.43 0.95
G6 0.85 0.30 64.48 0.55 0.58 0.51 0.45 1.17 0.60 1.03 0.36 0.79
G7 0.76 0.30 60.63 0.46 0.53 0.47 0.43 1.10 0.53 1.01 0.39 0.87
G8 0.72 0.29 59.30 0.42 0.50 0.46 0.41 1.08 0.48 0.99 0.41 0.90
G9 0.69 0.27 60.38 0.42 0.48 0.43 0.39 1.10 0.44 0.93 0.40 0.88
G10 0.79 0.27 65.91 0.52 0.53 0.46 0.40 1.20 0.50 0.91 0.34 0.76
G11 0.74 0.33 55.05 0.41 0.54 0.50 0.46 1.00 0.58 1.13 0.45 1.00
G12 0.72 0.27 62.14 0.45 0.50 0.44 0.40 1.13 0.46 0.93 0.38 0.84
G13 0.74 0.38 48.71 0.36 0.56 0.53 0.50 0.89 0.65 1.28 0.51 1.14
G14 0.71 0.26 63.38 0.45 0.49 0.43 0.38 1.15 0.43 0.88 0.37 0.81
G15 0.74 0.29 60.27 0.44 0.51 0.46 0.42 1.10 0.50 0.99 0.40 0.88
G16 0.74 0.23 69.37 0.51 0.48 0.41 0.35 1.26 0.39 0.77 0.31 0.68
G17 0.70 0.26 62.30 0.43 0.48 0.43 0.38 1.13 0.42 0.89 0.38 0.84
G18 0.72 0.28 61.00 0.44 0.50 0.45 0.40 1.11 0.47 0.95 0.39 0.87
G19 0.68 0.34 50.15 0.34 0.51 0.48 0.45 0.91 0.53 1.15 0.50 1.11
G20 0.70 0.24 65.34 0.46 0.47 0.41 0.36 1.19 0.40 0.83 0.35 0.77
G21 0.70 0.39 43.71 0.31 0.55 0.53 0.50 0.80 0.64 1.34 0.56 1.25
G22 0.70 0.32 54.20 0.38 0.51 0.48 0.44 0.99 0.53 1.09 0.46 1.02
G23 0.71 0.32 55.32 0.39 0.51 0.47 0.44 1.01 0.52 1.07 0.45 0.99
G24 0.67 0.27 60.30 0.40 0.47 0.42 0.38 1.10 0.41 0.90 0.40 0.88
G25 0.73 0.30 58.98 0.43 0.51 0.47 0.42 1.07 0.51 1.01 0.41 0.91
G26 0.66 0.23 65.14 0.43 0.44 0.39 0.34 1.18 0.35 0.78 0.35 0.77
G27 0.75 0.26 64.75 0.48 0.50 0.44 0.39 1.18 0.46 0.89 0.35 0.78
G28 0.70 0.24 65.62 0.46 0.47 0.41 0.36 1.19 0.39 0.82 0.34 0.76
G29 0.66 0.25 61.93 0.41 0.46 0.41 0.37 1.13 0.39 0.85 0.38 0.85
G30 0.72 0.28 60.34 0.43 0.50 0.45 0.41 1.10 0.47 0.96 0.40 0.88
G31 0.73 0.28 61.92 0.45 0.50 0.45 0.40 1.13 0.47 0.94 0.38 0.85
G32 0.67 0.31 53.44 0.36 0.49 0.46 0.42 0.97 0.48 1.05 0.47 1.03
G33 0.65 0.25 62.33 0.41 0.45 0.40 0.36 1.13 0.37 0.83 0.38 0.84
G34 0.73 0.24 66.62 0.48 0.48 0.42 0.36 1.21 0.41 0.82 0.33 0.74
G35 0.85 0.32 62.85 0.53 0.58 0.52 0.46 1.14 0.62 1.07 0.37 0.83
G36 0.64 0.25 61.15 0.39 0.45 0.40 0.36 1.11 0.37 0.84 0.39 0.86
G37 0.68 0.25 62.90 0.43 0.47 0.42 0.37 1.14 0.40 0.86 0.37 0.82
G38 0.69 0.33 52.39 0.36 0.51 0.48 0.45 0.95 0.53 1.11 0.48 1.06
G39 0.75 0.29 61.42 0.46 0.52 0.47 0.42 1.12 0.50 0.98 0.39 0.86
G40 0.71 0.32 55.16 0.39 0.51 0.47 0.44 1.00 0.52 1.07 0.45 1.00
G41 0.72 0.33 54.22 0.39 0.53 0.49 0.45 0.99 0.56 1.12 0.46 1.02
G42 0.68 0.31 55.34 0.38 0.49 0.46 0.42 1.01 0.48 1.03 0.45 0.99
G43 0.72 0.26 63.64 0.46 0.49 0.43 0.38 1.16 0.43 0.88 0.36 0.81
G44 0.70 0.27 61.23 0.43 0.49 0.44 0.39 1.11 0.44 0.92 0.39 0.86
G45 0.68 0.34 50.29 0.34 0.51 0.48 0.45 0.91 0.53 1.15 0.50 1.10
G46 0.70 0.28 60.23 0.42 0.49 0.44 0.40 1.10 0.45 0.94 0.40 0.88
G47 0.68 0.35 49.49 0.34 0.51 0.49 0.46 0.90 0.55 1.17 0.51 1.12
G48 0.68 0.29 56.64 0.38 0.49 0.45 0.41 1.03 0.46 1.00 0.43 0.96
G49 0.82 0.27 66.99 0.55 0.55 0.47 0.41 1.22 0.52 0.92 0.33 0.73
G50 0.59 0.14 76.24 0.45 0.36 0.29 0.22 1.39 0.19 0.47 0.24 0.53
G51 0.67 0.19 71.28 0.48 0.43 0.36 0.30 1.30 0.30 0.65 0.29 0.64
G52 0.67 0.16 75.63 0.51 0.42 0.33 0.26 1.38 0.26 0.56 0.24 0.54
G53 0.63 0.18 70.98 0.45 0.41 0.34 0.29 1.29 0.27 0.62 0.29 0.64
G54 0.78 0.23 70.23 0.55 0.50 0.42 0.36 1.28 0.42 0.78 0.30 0.66
G55 0.61 0.17 71.92 0.44 0.39 0.32 0.27 1.31 0.24 0.58 0.28 0.62
G56 0.61 0.19 69.06 0.42 0.40 0.34 0.29 1.26 0.27 0.64 0.31 0.69
G57 0.55 0.30 45.72 0.25 0.42 0.40 0.39 0.83 0.38 1.01 0.54 1.21
G58 0.55 0.18 66.42 0.36 0.37 0.32 0.28 1.21 0.23 0.62 0.34 0.75
G59 0.54 0.21 60.71 0.33 0.37 0.34 0.30 1.10 0.26 0.72 0.39 0.87
G60 0.50 0.29 41.77 0.21 0.39 0.38 0.37 0.76 0.34 0.98 0.58 1.29
G61 0.57 0.19 67.02 0.38 0.38 0.33 0.28 1.22 0.25 0.63 0.33 0.73
G62 0.64 0.21 67.29 0.43 0.42 0.37 0.31 1.22 0.31 0.71 0.33 0.73
G63 0.61 0.20 66.94 0.41 0.40 0.35 0.30 1.22 0.28 0.68 0.33 0.73
G64 0.59 0.16 72.74 0.43 0.37 0.31 0.25 1.32 0.22 0.54 0.27 0.61
G65 0.65 0.16 75.69 0.49 0.40 0.32 0.25 1.38 0.24 0.54 0.24 0.54
G66 0.65 0.21 67.85 0.44 0.43 0.37 0.31 1.23 0.31 0.70 0.32 0.71
G67 0.67 0.18 73.76 0.49 0.42 0.34 0.28 1.34 0.27 0.59 0.26 0.58
G68 0.59 0.17 71.09 0.42 0.38 0.32 0.26 1.29 0.23 0.58 0.29 0.64
G69 0.54 0.19 64.86 0.35 0.36 0.32 0.28 1.18 0.23 0.64 0.35 0.78
G70 0.51 0.19 62.89 0.32 0.35 0.31 0.28 1.14 0.23 0.64 0.37 0.82
G71 0.55 0.17 69.64 0.38 0.36 0.30 0.26 1.27 0.21 0.57 0.30 0.67
G72 0.63 0.20 68.62 0.43 0.41 0.35 0.30 1.25 0.29 0.67 0.31 0.70
G73 0.70 0.14 79.57 0.55 0.42 0.31 0.24 1.45 0.23 0.48 0.20 0.45
G74 0.61 0.15 74.88 0.45 0.38 0.30 0.24 1.36 0.21 0.52 0.25 0.56
G75 0.55 0.19 65.70 0.36 0.37 0.32 0.28 1.19 0.24 0.64 0.34 0.76
G76 0.59 0.18 68.77 0.40 0.38 0.33 0.28 1.25 0.25 0.62 0.31 0.69
G77 0.54 0.17 69.32 0.38 0.35 0.30 0.25 1.26 0.21 0.56 0.31 0.68
G78 0.54 0.17 69.27 0.37 0.35 0.30 0.25 1.26 0.21 0.56 0.31 0.68
G79 0.55 0.18 67.52 0.37 0.36 0.31 0.27 1.23 0.23 0.60 0.32 0.72
G80 0.58 0.27 53.57 0.31 0.42 0.39 0.36 0.97 0.36 0.90 0.46 1.03
G81 0.57 0.21 63.33 0.36 0.39 0.35 0.31 1.15 0.28 0.71 0.37 0.81
G82 0.63 0.19 70.29 0.44 0.41 0.34 0.29 1.28 0.27 0.63 0.30 0.66
G83 0.56 0.23 58.09 0.32 0.39 0.36 0.33 1.06 0.30 0.79 0.42 0.93
G84 0.61 0.24 60.56 0.37 0.43 0.38 0.35 1.10 0.34 0.82 0.39 0.88
G85 0.61 0.25 59.54 0.37 0.43 0.39 0.35 1.08 0.35 0.84 0.40 0.90
G86 0.64 0.20 67.87 0.43 0.42 0.36 0.31 1.23 0.30 0.69 0.32 0.71
G87 0.56 0.24 56.89 0.32 0.40 0.37 0.34 1.03 0.31 0.82 0.43 0.96
G88 0.56 0.23 59.79 0.34 0.39 0.36 0.32 1.09 0.30 0.77 0.40 0.89
G89 0.54 0.18 66.85 0.36 0.36 0.31 0.27 1.22 0.22 0.61 0.33 0.74
G90 0.53 0.25 53.23 0.28 0.39 0.36 0.34 0.97 0.30 0.83 0.47 1.04
G91 0.54 0.20 63.36 0.34 0.37 0.32 0.29 1.15 0.24 0.66 0.37 0.81
G92 0.62 0.21 66.83 0.42 0.42 0.36 0.31 1.22 0.30 0.70 0.33 0.74
G93 0.59 0.23 61.02 0.36 0.41 0.37 0.33 1.11 0.32 0.78 0.39 0.87
G94 0.55 0.18 67.76 0.37 0.36 0.31 0.27 1.23 0.23 0.60 0.32 0.72
G95 0.63 0.17 72.48 0.45 0.40 0.33 0.27 1.32 0.25 0.58 0.28 0.61
G96 0.64 0.22 66.41 0.43 0.43 0.37 0.32 1.21 0.32 0.73 0.34 0.75
G97 0.55 0.25 53.83 0.30 0.40 0.37 0.35 0.98 0.32 0.86 0.46 1.03
G98 0.68 0.33 51.75 0.35 0.51 0.48 0.45 0.94 0.53 1.12 0.48 1.07
G99 0.71 0.40 43.86 0.31 0.55 0.53 0.51 0.80 0.66 1.35 0.56 1.25
G100 0.65 0.45 30.15 0.20 0.55 0.54 0.53 0.55 0.69 1.54 0.70 1.55
G101 0.60 0.38 37.33 0.22 0.49 0.47 0.46 0.68 0.53 1.27 0.63 1.39
G102 0.79 0.40 49.62 0.39 0.59 0.56 0.53 0.90 0.73 1.35 0.50 1.12
G103 0.62 0.43 30.63 0.19 0.52 0.51 0.51 0.56 0.61 1.45 0.69 1.54
G104 0.66 0.42 36.23 0.24 0.54 0.52 0.51 0.66 0.64 1.42 0.64 1.42
G105 0.76 0.40 47.63 0.36 0.58 0.55 0.52 0.87 0.70 1.35 0.52 1.16
G106 0.67 0.38 43.32 0.29 0.53 0.51 0.49 0.79 0.60 1.29 0.57 1.26
G107 0.65 0.44 31.89 0.21 0.54 0.53 0.52 0.58 0.66 1.49 0.68 1.51
G108 0.69 0.38 45.53 0.32 0.54 0.51 0.49 0.83 0.61 1.28 0.54 1.21
G109 0.66 0.36 45.92 0.30 0.51 0.49 0.46 0.84 0.55 1.21 0.54 1.20
G110 0.63 0.51 19.59 0.12 0.57 0.57 0.56 0.36 0.75 1.72 0.80 1.79
G111 0.65 0.38 40.93 0.26 0.51 0.50 0.48 0.74 0.57 1.29 0.59 1.31
G112 0.66 0.40 39.27 0.26 0.53 0.51 0.50 0.71 0.61 1.35 0.61 1.35
G113 0.74 0.39 46.94 0.35 0.56 0.54 0.51 0.85 0.67 1.32 0.53 1.18
G114 0.61 0.45 25.78 0.16 0.53 0.52 0.52 0.47 0.64 1.53 0.74 1.65
G115 0.66 0.38 42.88 0.28 0.52 0.50 0.48 0.78 0.58 1.28 0.57 1.27
G116 0.71 0.37 47.90 0.34 0.54 0.52 0.49 0.87 0.62 1.26 0.52 1.16
G117 0.64 0.40 38.16 0.25 0.52 0.50 0.49 0.69 0.59 1.35 0.62 1.37
G118 0.68 0.35 48.09 0.33 0.52 0.49 0.46 0.87 0.56 1.20 0.52 1.15
G119 0.68 0.35 47.71 0.32 0.52 0.49 0.46 0.87 0.56 1.20 0.52 1.16
G120 0.67 0.39 41.84 0.28 0.53 0.51 0.50 0.76 0.61 1.33 0.58 1.29
G121 0.63 0.34 45.44 0.28 0.48 0.46 0.44 0.83 0.50 1.16 0.55 1.21
G122 0.67 0.39 42.09 0.28 0.53 0.51 0.49 0.77 0.61 1.31 0.58 1.29
G123 0.60 0.39 34.23 0.20 0.49 0.48 0.47 0.62 0.54 1.33 0.66 1.46
G124 0.62 0.39 38.00 0.24 0.50 0.49 0.48 0.69 0.56 1.30 0.62 1.38
G125 0.62 0.42 31.22 0.19 0.52 0.51 0.50 0.57 0.61 1.43 0.69 1.53
G126 0.65 0.36 44.80 0.29 0.51 0.49 0.47 0.81 0.55 1.22 0.55 1.23
G127 0.62 0.35 43.82 0.27 0.49 0.47 0.45 0.80 0.51 1.19 0.56 1.25
G128 0.63 0.39 37.32 0.23 0.51 0.50 0.48 0.68 0.57 1.33 0.63 1.39
G129 0.69 0.38 45.19 0.31 0.53 0.51 0.49 0.82 0.60 1.27 0.55 1.22
G130 0.64 0.46 27.24 0.17 0.55 0.54 0.53 0.50 0.68 1.57 0.73 1.62
G131 0.63 0.41 35.14 0.22 0.52 0.50 0.49 0.64 0.59 1.38 0.65 1.44
G132 0.66 0.43 34.69 0.23 0.55 0.54 0.52 0.63 0.67 1.47 0.65 1.45
G133 0.61 0.40 33.94 0.21 0.50 0.49 0.48 0.62 0.57 1.36 0.66 1.47
G134 0.61 0.41 32.67 0.20 0.51 0.50 0.49 0.59 0.58 1.38 0.67 1.50
G135 0.69 0.39 43.06 0.30 0.54 0.52 0.50 0.78 0.63 1.34 0.57 1.26
G136 0.76 0.37 51.51 0.39 0.57 0.53 0.50 0.94 0.65 1.25 0.48 1.08
G137 0.65 0.38 41.55 0.27 0.51 0.49 0.48 0.76 0.57 1.28 0.58 1.30
G138 0.60 0.36 40.00 0.24 0.48 0.46 0.45 0.73 0.50 1.22 0.60 1.33
G139 0.66 0.35 47.35 0.31 0.50 0.48 0.46 0.86 0.54 1.18 0.53 1.17
G140 0.67 0.38 43.24 0.29 0.53 0.51 0.49 0.79 0.60 1.29 0.57 1.26
G141 0.62 0.39 36.51 0.23 0.51 0.49 0.48 0.66 0.57 1.33 0.63 1.41
G142 0.66 0.41 38.18 0.25 0.53 0.52 0.50 0.69 0.63 1.38 0.62 1.37
G143 0.66 0.37 43.36 0.28 0.51 0.49 0.47 0.79 0.57 1.26 0.57 1.26
G144 0.64 0.38 40.50 0.26 0.51 0.49 0.48 0.74 0.56 1.28 0.59 1.32
G145 0.64 0.42 34.01 0.22 0.53 0.52 0.51 0.62 0.63 1.43 0.66 1.47
G146 0.63 0.37 41.23 0.26 0.50 0.49 0.47 0.75 0.55 1.26 0.59 1.31

Table 3.

Ranking pattern of the 146 Aegilops accessions based on the shoot biomass-based indices.

Code Yp Ys TOL MP GMP HM SSI STI YI YSI RSI AR SD
G1 21 60 93 35 52 58 70 52 60 70 70 58.3 19.1
G2 21 77 121 62 75 76 87 75 77 87 87 76.8 23.7
G3 11 51 93 15 31 42 64 31 51 64 64 47.0 24.2
G4 18 57 90 24 42 52 65 42 57 65 65 52.5 20.3
G5 45 71 89 75 76 72 73 76 71 73 73 72.2 10.3
G6 1 67 144 4 26 59 105 26 67 105 105 64.5 46.8
G7 9 69 130 33 61 66 85 61 69 85 85 68.5 30.9
G8 28 74 103 69 73 73 76 73 74 76 76 72.3 17.2
G9 47 82 99 89 85 83 83 85 82 83 83 81.9 12.6
G10 4 86 141 25 70 79 112 70 86 112 112 81.5 39.8
G11 13 55 97 19 34 48 66 34 55 66 66 50.3 24.2
G12 25 82 123 74 81 82 95 81 82 95 95 83.2 23.4
G13 15 33 64 8 11 18 50 11 33 50 50 31.2 19.8
G14 31 91 124 84 87 89 103 87 91 103 103 90.3 22.8
G15 16 73 120 46 69 70 80 69 73 80 80 70.5 25.1
G16 14 109 140 86 95 102 131 95 109 131 131 103.9 34.8
G17 41 90 114 91 88 90 96 88 90 96 96 89.1 17.6
G18 26 79 116 73 79 78 88 79 79 88 88 79.4 21.1
G19 55 53 57 57 56 55 53 56 53 53 53 54.6 1.7
G20 35 100 131 92 93 96 109 93 100 109 109 97.0 23.5
G21 38 20 42 14 12 15 35 12 20 35 35 25.3 11.7
G22 36 61 80 49 58 62 62 58 61 62 62 59.2 10.6
G23 34 63 83 52 64 65 68 64 63 68 68 62.9 12.0
G24 63 88 92 94 90 88 81 90 88 81 81 85.1 8.6
G25 20 68 110 44 66 68 75 66 68 75 75 66.8 21.9
G26 73 108 108 99 102 105 108 102 108 108 108 102.6 10.3
G27 11 89 135 64 82 85 106 82 89 106 106 86.8 31.2
G28 37 102 131 93 94 97 110 94 102 110 110 98.2 23.1
G29 68 95 98 96 96 93 94 96 95 94 94 92.6 8.3
G30 27 77 113 72 77 77 82 77 77 82 82 76.6 19.7
G31 19 80 126 66 78 80 93 78 80 93 93 80.5 25.6
G32 65 65 63 78 74 67 59 74 65 59 59 66.2 6.6
G33 78 98 96 97 98 99 97 98 98 97 97 95.7 5.9
G34 23 101 135 87 91 95 115 91 101 115 115 97.2 28.5
G35 2 63 142 2 18 49 98 18 63 98 98 59.2 46.3
G36 87 96 87 98 99 98 90 99 96 90 90 93.6 4.8
G37 52 93 109 95 92 91 100 92 93 100 100 92.5 14.5
G38 45 59 68 52 57 60 57 57 59 57 57 57.1 5.5
G39 10 76 133 38 67 71 92 67 76 92 92 74.0 31.6
G40 33 62 83 50 63 64 67 63 62 67 67 61.9 12.3
G41 24 56 86 34 46 53 63 46 56 63 63 53.6 16.4
G42 50 66 78 75 72 69 69 72 66 69 69 68.6 7.2
G43 28 91 129 81 86 87 104 86 91 104 104 90.1 24.7
G44 39 85 107 84 84 84 91 84 85 91 91 84.1 16.4
G45 53 53 59 56 55 54 54 55 53 54 54 54.5 1.8
G46 39 80 102 79 83 81 79 83 80 79 79 78.5 14.7
G47 50 50 55 44 50 50 51 50 50 51 51 50.2 2.5
G48 55 72 82 83 80 74 71 80 72 71 71 73.7 7.8
G49 3 84 145 12 62 75 119 62 84 119 119 80.4 44.8
G50 124 146 122 140 146 146 145 146 146 145 145 141.0 9.1
G51 62 121 134 100 111 120 137 111 121 137 137 117.4 22.2
G52 60 141 139 110 125 138 143 125 141 143 143 128.0 24.9
G53 93 128 125 115 122 124 135 122 128 135 135 123.8 12.0
G54 6 106 143 68 89 100 133 89 106 133 133 100.5 39.1
G55 111 136 116 126 130 136 138 130 136 138 138 130.5 9.3
G56 108 122 103 119 121 121 128 121 122 128 128 120.1 8.0
G57 133 69 22 106 97 86 42 97 69 42 42 73.2 33.9
G58 135 128 71 136 133 131 114 133 128 114 114 121.5 18.8
G59 140 112 52 133 124 117 86 124 112 86 86 106.5 26.2
G60 146 75 11 124 104 92 27 104 75 27 27 73.8 45.2
G61 127 126 79 132 128 126 120 128 126 120 120 121.1 14.5
G62 88 113 111 105 110 112 121 110 113 121 121 111.4 9.4
G63 115 118 93 118 118 119 118 118 118 118 118 115.5 7.5
G64 122 142 105 134 141 143 140 141 142 140 140 135.5 11.7
G65 79 143 137 117 132 140 144 132 143 144 144 132.3 19.5
G66 81 115 118 103 109 113 124 109 115 124 124 112.3 12.4
G67 66 134 138 107 120 129 141 120 134 141 141 124.6 22.3
G68 121 137 101 130 135 137 136 135 137 136 136 131.0 11.0
G69 142 125 61 141 134 128 107 134 125 107 107 119.2 23.3
G70 145 122 49 146 138 130 99 138 122 99 99 117.0 28.8
G71 132 138 81 143 143 139 132 143 138 132 132 132.1 17.6
G72 96 119 115 113 117 118 126 117 119 126 126 117.5 8.4
G73 41 145 146 111 136 145 146 136 145 146 146 131.2 31.7
G74 115 144 127 131 142 144 142 142 144 142 142 137.7 9.4
G75 131 124 70 135 130 125 111 130 124 111 111 118.4 18.2
G76 123 130 90 129 127 127 127 127 130 127 127 124.0 11.4
G77 138 139 77 144 144 141 130 144 139 130 130 132.4 19.2
G78 140 140 75 145 145 142 129 145 140 129 129 132.6 20.2
G79 135 132 74 138 137 134 122 137 132 122 122 125.9 18.3
G80 125 87 43 108 100 94 60 100 87 60 60 84.0 25.1
G81 126 113 66 127 119 116 101 119 113 101 101 109.3 17.1
G82 98 127 119 116 123 123 134 123 127 134 134 123.5 10.4
G83 130 105 50 123 112 109 74 112 105 74 74 97.1 25.1
G84 110 102 73 104 103 104 84 103 102 84 84 95.7 12.1
G85 109 97 72 101 101 101 77 101 97 77 77 91.8 13.2
G86 91 117 112 109 113 115 125 113 117 125 125 114.7 9.7
G87 129 102 48 121 108 106 72 108 102 72 72 94.5 24.9
G88 128 110 54 124 116 111 78 116 110 78 78 100.3 24.0
G89 139 131 67 142 140 133 117 140 131 117 117 124.9 21.5
G90 144 98 30 128 114 107 58 114 98 58 58 91.5 35.5
G91 142 120 56 137 129 122 102 129 120 102 102 114.6 23.9
G92 102 116 100 112 115 114 116 115 116 116 116 112.5 5.9
G93 120 107 65 114 107 108 89 107 107 89 89 100.2 15.6
G94 133 133 76 138 139 135 123 139 133 123 123 126.8 18.0
G95 100 135 128 122 126 132 139 126 135 139 139 129.2 11.4
G96 85 111 106 102 105 110 113 105 111 113 113 106.7 8.2
G97 135 93 39 120 106 103 61 106 93 61 61 88.9 29.6
G98 49 57 62 60 59 61 56 59 57 56 56 57.5 3.5
G99 32 16 45 9 9 10 37 9 16 37 37 23.4 14.2
G100 79 3 6 10 4 3 4 4 3 4 4 11.3 22.6
G101 117 37 14 80 60 47 17 60 37 17 17 45.7 32.1
G102 5 18 85 1 2 4 52 2 18 52 52 26.5 28.9
G103 106 7 4 36 21 13 5 21 7 5 5 20.9 29.9
G104 73 10 19 20 13 9 14 13 10 14 14 19.0 18.2
G105 8 16 69 3 3 7 46 3 16 46 46 23.9 23.4
G106 58 29 37 30 28 28 33 28 29 33 33 33.3 8.7
G107 82 5 10 16 8 6 7 8 5 7 7 14.6 22.5
G108 43 33 47 21 22 25 41 22 33 41 41 33.5 9.7
G109 68 45 41 52 48 46 43 48 45 43 43 47.5 7.5
G110 94 1 1 5 1 1 1 1 1 1 1 9.8 27.9
G111 83 31 27 47 37 35 24 37 31 24 24 36.4 17.0
G112 73 15 24 30 23 20 21 23 15 21 21 26.0 16.1
G113 16 26 60 7 7 11 44 7 26 44 44 26.5 18.8
G114 111 4 2 27 14 8 2 14 4 2 2 17.3 32.1
G115 71 35 33 40 33 34 30 33 35 30 30 36.7 11.7
G116 30 39 58 17 19 26 48 19 39 48 48 35.5 14.2
G117 86 18 21 37 30 24 19 30 18 19 19 29.2 19.9
G118 53 47 53 41 44 45 49 44 47 49 49 47.4 3.7
G119 57 46 50 43 45 44 47 45 46 47 47 47.0 3.8
G120 58 24 31 23 20 21 28 20 24 28 28 27.7 10.7
G121 100 51 34 88 71 63 40 71 51 40 40 59.0 21.6
G122 63 27 31 29 25 23 29 25 27 29 29 30.6 11.0
G123 119 24 8 75 53 40 11 53 24 11 11 39.0 34.4
G124 104 28 18 69 47 37 18 47 28 18 18 39.3 26.9
G125 107 8 5 38 24 17 6 24 8 6 6 22.6 29.9
G126 77 43 38 59 49 43 38 49 43 38 38 46.8 11.9
G127 103 48 29 82 65 57 36 65 48 36 36 55.0 22.6
G128 97 22 17 52 36 31 16 36 22 16 16 32.8 24.2
G129 48 37 44 25 27 30 39 27 37 39 39 35.6 7.4
G130 91 2 3 11 5 2 3 5 2 3 3 11.8 26.4
G131 98 13 13 42 32 22 13 32 13 13 13 27.6 25.5
G132 67 6 16 12 6 5 12 6 6 12 12 14.5 17.8
G133 113 14 9 66 38 32 9 38 14 9 9 31.9 32.5
G134 114 11 7 60 35 27 8 35 11 8 8 29.5 32.7
G135 44 20 40 17 15 16 31 15 20 31 31 25.5 10.4
G136 7 42 87 6 10 19 55 10 42 55 55 35.3 26.7
G137 83 35 28 51 40 36 26 40 35 26 26 38.7 16.6
G138 117 44 20 90 68 56 22 68 44 22 22 52.1 31.7
G139 70 49 46 64 54 51 45 54 49 45 45 52.0 8.2
G140 60 29 36 32 29 29 32 29 29 32 32 33.5 9.0
G141 105 22 15 62 39 33 15 39 22 15 15 34.7 27.6
G142 71 11 23 22 16 14 20 16 11 20 20 22.2 16.7
G143 76 41 35 47 41 39 34 41 41 34 34 42.1 12.0
G144 90 32 24 57 43 38 23 43 32 23 23 38.9 20.1
G145 89 9 12 28 17 12 10 17 9 10 10 20.3 23.5
G146 94 39 26 71 51 41 25 51 39 25 25 44.3 21.9

Fig. 1.

Fig. 1

Genotype ranking in ascending order for the MGIDI index. The selected genotypes based on this index are shown in red. The central red circle represents the cutpoint according to the selection pressure.

Fig. 2.

Fig. 2

Strengths and weaknesses view of the selected genotypes is shown as the proportion of each factor on the computed MGIDI index. The smallest the proportion explained by a factor (closer to the external edge), the closer the traits within that factor are to the ideotype. The dashed line indicates the theoretical value if all factors had contributed equally.

2. Experimental Design, Materials and Methods

2.1. Plant materials

The plant materials consisted of 146 accessions form Ae. tauschii (DD-genome) Ae. cylindrica (DDCC-genome), and Ae. crassa (DDMM-genome). Additional information on the studied materials is shown in supplementary Table S1. These accessions were accessed from Ilam University Genbank (IUGB).

2.2. Experimental design

Before sowing, seeds of all accessions were stored to 4 °C for 72 h for break dormancy. Five seeds per accession were sown in plastic pots that were filled with a mixture of sand, soil, and humus (1:1:1). All pots were arranged in a factorial experimental based on a randomized complete block in three replications under an optimal growing photoperiod (16 h light, 8 h dark) and temperature (25 °C day, 20±2 °C night) conditions. Seedlings were exposed to the following water treatments at the three-leaf growth stage: (1) well-watered (full field capacity [FC] = 95 ± 5%) as the control and (2) water-stressed (FC = 30 ± 5%) conditions. Thirty days after sowing and applying stress treatment, shoot samples were harvested and exposed to 70 °C for 72 h to measure shoot dry matter.

2.3. Data collection

The data used in this work were collected by measuring Yp and Ys as the shoot dry matter under control and stress conditions, respectively. Nine drought tolerance and susceptibility indices (Table 1), including tolerance index (TOL), mean productivity (MP), geometric mean productivity (GMP), harmonic mean (HM), stress susceptibility index (SSI), stress tolerance index (STI), yield index (YI), yield stability index (YSI), and relative drought index (RSI), were then calculated using iPASTIC software [7].

Table 1.

Mathematical formulas of nine drought tolerance and susceptibility indices.

No. Index Formula Pattern of selection Reference
1 Tolerance Index TOL=YPYS Minimum value [8]
2 Mean Productivity MP=YP+YS2 Maximum value [8]
3 Geometric Mean Productivity GMP=YS×YP Maximum value [9]
4 Harmonic Mean HM=2(YS×YP)(YS+YP) Maximum value [10]
5 Stress Susceptibility Index SSI=1(YS/YP)1(Y¯S/Y¯P) Minimum value [11]
6 Stress Tolerance Index STI=YS×YP(Y¯P)2 Maximum value [9]
7 Yield Index YI=YSY¯s Maximum value [12]
8 Yield Stability Index YSI=YSYP Maximum value [13]
9 Relative Stress Index RSI=(YS/YP)(Y¯S/Y¯P) Maximum value [14]

2.4. Statistical analysis

The multi-trait genotype-ideotype distance index (MGIDI) was used to rank the accessions based on information of multiple indices as proposed by Olivoto and Nardino [15]. In the first step, each trait (rXij) was rescaled using the following equation:

rXij=ηnjφnjηojφoj×(θijηoj)+ηnj

Where φoj and ηoj are the original minimum and maximum values for the index j, respectively; φnj and ηnj are the new minimum and maximum values for index j after rescaling, respectively; and θij is the original value for jth index of the ith accession. The values for ηnj and φnj were chosen as follows: for the indices in which positive gains are desired, φnj = 0 and ηnj = 100 should be used, while for the indices in which negative gains are desired, φnj = 100 and ηnj = 0 should be used [15]. In the next step, a factor analysis (FA) was performed to account for the dimensionality reduction of the data and relationships structure. This analysis was performed according to following model:

F=Z(ATR1)T

where F is a g × f matrix with the factorial score; Z is a g × p matrix with the rescaled means; A is a p × f matrix of canonical loading, and R is a p × p correlation matrix between the indices. Furthermore, g, f, and p indicate the number of accessions, factor retained, and calculated indices, respectively. In the third step, a [1 × p] vector was considered as the ideotype matrix. In the last step, Euclidean distance between the scores of accessions and the ideal accessions was computed as the MGIDI index using following equation:

MGIDI=j=1f[(γijγj)2]0.5

where γij is the score of the ith accession in the jth factor (i = 1, 2,…,tj = 1,2,…,f ), being t and f the number of accessions and factors, respectively; and γj is the jth score of the ideal accession. The accession with the lowest MGIDI is then closer to the ideal accession and thus indicates desired values for all the calculated indices. The selection differential for all traits was performed considering a selection intensity of approximately 10%. Data manipulation and the index computation were performed in the R software using the ‘metan’ package [15].

Ethics Statement

The paper is not currently being considered for publication elsewhere.

CRediT Author Statement

Alireza Pour-Aboughadareh: Conceptualization, Methodology, Software, Data curtion, Writing original draft, Investigation; Peter Poczai: Visualization, Writing review & editing.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships which have, or could be perceived to have, influenced the work reported in this article.

Footnotes

Supplementary material associated with this article can be found in the online version at doi:10.1016/j.dib.2021.107096.

Contributor Information

Alireza Pour-Aboughadareh, Email: a.poraboghadareh@ut.ac.ir.

Peter Poczai, Email: peter.poczai@helsinki.fi.

Appendix. Supplementary materials

mmc1.pdf (3MB, pdf)

References

  • 1.Pour-Aboughadareh A., Omidi M., Naghavi M.R., Etminan A., Mehrabi A.A., Poczai P., Bayat H. Effect of water deficit stress on seedling biomass and physio-chemical characteristics in different species of wheat possessing the D genome. Agronomy. 2019;9:522. doi: 10.3390/agronomy9090522. [DOI] [Google Scholar]
  • 2.Liu P.Martre, Ewert F., Porter J.R., Challinor A.J., Muller C., Ruane A.C., Waha K., Thorburn P.J., Aggarwal P.K. Global wheat production with 1.5 and 2.0 C above pre-industrial warming. Glob. Chang. Biol. 2019;25(4):1428–1444. doi: 10.1111/gcb.14542. [DOI] [PubMed] [Google Scholar]
  • 3.Suneja Y., Gupta A.K., Bains N.S. Stress adaptive plasticity: Aegilops tauschii and Triticum dicoccoides as potential donors of drought associated morpho-physiological traits in wheat. Front. Plant Sci. 2019;10:211. doi: 10.3389/fpls.2019.00211. 0.3389/fpls.2019.00211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Ahmadi J., Pour-Aboughadareh A., Fabriki Ourang S., Khalili P., Poczai P. Unraveling salinity stress responses in ancestral and neglected wheat species at early growth stage: a baseline for utilization in future wheat improvement programs. Physiol. Mol. Biol. Plants. 2020;26:537–549. doi: 10.1007/s12298-020-00768-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Pour-Aboughadareh A., Omidi M., Naghavi M.R., Etminan A., Mehrabi A.A., Poczai P. Wild relatives of wheat respond well to water deficit stress: a comparative study of antioxidant enzyme activities and their encoding gene expression. Agriculture. 2020;10:415. doi: 10.3390/agriculture10090415. [DOI] [Google Scholar]
  • 6.Zhao X., Bai S., Li L., Han X., Li J., Zhu Y., Fang Y., Zhang D., Li S. Comparative transcriptome analysis of two Aegilops tauschii with contrasting drought tolerance by RNA-Seq. Int. J. Mol. Sci. 2020;21:3595. doi: 10.3390/ijms21103595. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Pour-Aboughadareh A., Yousefian M., Moradkhani H., Moghaddam Vahed M., Poczai P., Siddique K.H.M. iPASTIC: an online toolkit to estimate plant abiotic stress indices. Appl Plant Sci. 2019;7(7):e11278. doi: 10.1002/aps3.11278. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Rosielle A.A., Hambling J. Theoretical aspects of selection for yield in stress and non-stress environments. Crop. Sci. 1981;21:943–946. doi: 10.2135/cropsci1981.0011183X002100060033x. [DOI] [Google Scholar]
  • 9.Fernandez G.C.J. (1992) Effective selection criteria for assessing stress tolerance. In: Kuo, C.G. (Ed.), Proceedings of the International Symposium on Adaptation of Vegetables and Other Food Crops in Temperature and Water Stress, Publication. Tainan, Taiwan.
  • 10.Bidinger F.R., Mahalakshmi V., Rao G.D. Assessment of drought resistance in pearl millet (Pennisetum americanum (L.) Leeke). II. Estimation of genotype response to stress. Aust. J. Agric. Res. 1987;38:49–59. doi: 10.1071/AR9870049. [DOI] [Google Scholar]
  • 11.Fischer R.A., Maurer R. Drought resistance in spring wheat cultivars. I. Grain yield responses. Aust. J. Agric. Res. 1978;29:897–912. doi: 10.1071/AR9780897. [DOI] [Google Scholar]
  • 12.Gavuzzi P., Rizza F., Palumbo M., Campaline R.G., Ricciardi G.L., Borghi B. Evaluation of field and laboratory predictors of drought and heat tolerance in winter cereals. Can. J. Plant. Sci. 1997;77:523–531. doi: 10.4141/P96-130. [DOI] [Google Scholar]
  • 13.Bouslama M., Schapaugh W.T. Stress tolerance in soybean. Part 1: evaluation of three screening techniques for heat and drought tolerance. Crop. Sci. 1984;24:933–937. doi: 10.2135/cropsci1984.0011183X002400050026x. [DOI] [Google Scholar]
  • 14.Fischer R.A., Wood T. Drought resistance in spring wheat cultivars ІІІ. Yield association with morphological traits. Aust. J. Agric. Res. 1979;30:1001–1020. doi: 10.1071/AR9791001. [DOI] [Google Scholar]
  • 15.T. Olivoto, M. Nardino, MGIDI: toward an effective multivariate selection in biological experiments. Bioinformatics (2020), doi: 10.1093/bioinformatics/btaa981. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

mmc1.pdf (3MB, pdf)

Articles from Data in Brief are provided here courtesy of Elsevier

RESOURCES