Skip to main content
Poultry Science logoLink to Poultry Science
editorial
. 2021 Jun 29;100(7):101256. doi: 10.1016/j.psj.2021.101256

The 100 most cited Poultry Science papers

Robert L Taylor Jr, Editor-in-Chief
PMCID: PMC8258603  PMID: 34210466

Poultry Science continues the journal's centennial celebration. A total of 79,218 peer-reviewed papers were published from 1921 to 2020. These papers encompassed a breadth of topics as well as sphere of influence. The results reported in some papers produced immediate impact by changing practices or procedures, whereas other articles yielded a steady increase in influence once their value was perceived. Questions arose about the papers that epitomize significant contributions to our discipline. Cumulative citation data represent one measure of a paper's utility.

Citation data were only available for 1945 to 2020 and were drawn from Clarivate's Web of Science Platform (https://clarivate.libguides.com/webofscienceplatform). Therefore, the 100 most cited papers cover that period rather than the entire Poultry Science centennial, 1921 to 2020. Citations from all databases on the Web of Science Platform were included rather than limiting the numbers to a single platform. The top 100 papers have been cited 26,404 times for an average of 264.04 citations per article, a number which would rank 28th in the top 100 citation list.

Interesting facts are highlighted in the top citations list and the associated tables. A total of 319 authors appeared on the 100 most cited papers, meaning that the average authors per paper were 3.19. Two hundred seventy-six unique authors contributed to these publications. Thirty-one authors appeared multiple times, with seven authors who occurred 3 or more times (Table 1). The corresponding author listed for each publication was used to identify originating organization and country. These 100 papers came from 56 unique sources. Eight points of origin represented thirty-six percent of the total (Table 2). These sources were influenced by the most cited authors, but the 2 factors lacked universal association. Country of origin had 16 unique entities with 13 countries appearing multiple times (Table 2). Eighty-one percent of the papers came from 5 countries.

Table 1.

Authors appearing three or more times in the 100 most cited papers published in Poultry Science 1945 to 2020.

Name Total author (n) First or last author (n)
Uni, Z. 5 5
Sklan, D. 5 4
Ferket, P. R. 4 0
Havenstein, G. B. 3 3
Silversides, F. G. 3 2
Noy, Y. 3 1
Smith, M. O. 3 1

Table 2.

Institution or agency and country of corresponding authors of the 100 most cited papers published in Poultry Science 1945 to 2020.

Corresponding author institution n
Hebrew University of Jerusalem, Israel 6
University of Georgia 5
USDA-ARS 5
Agriculture and Agri-Food Canada 4
Michigan State University 4
North Carolina State University 4
Purdue University 4
Roslin Institute, Scotland 4
Others 64

Corresponding author country n

US 52
Canada 12
Israel 8
Spain 5
Scotland 4
Others 19

The publication decade, which covered every ten-year period decade between 1950 and 2010, is shown in Table 3. The oldest paper was published in 1952, whereas the most recent article appeared in 2014. Seventy-seven percent of the papers were published since 1990 and 52% were published after 2000. Four papers in the list were dated in the 1950s, including those ranked 2 and 3. Eight papers were published in 2000, the top single year.

Table 3.

Decade issued of the 100 most cited papers published in Poultry Science 1945 to 2020.

Decade published n Top year (n)
1950 4 1956 (2)
1960 5 1962 (2)
1970 5 1970, 1975, 1976, 1978, 1979 (1)
1980 9 1980, 1985, 1987, 1988 (2)
1990 25 1999 (6)
2000 44 2000 (8)
2010 8 2010, 2011 (3)

Table 4 shows the topics covered based upon author-defined key words. Two caveats are noted for this information. First, the titles were not parsed for their word content and earlier publications did not have key words. Second, related variants of key words were combined to give the totals. The seven most frequent key words were broiler, antibiotic, intestinal microflora, egg, immunity, intestine, and layer.

Table 4.

Most frequent author-defined key words for the 100 most cited papers published in Poultry Science 1945 to 2020.

Key word n Variants
Broiler 13 broilers, broiler chicken
Antibiotic 10 antimicrobial, antibiotic alternative, antibiotic growth promoter, antibiotics, antimicrobial growth promoter, antimicrobial peptide
Intestinal microflora 10 cecal microflora, intestinal microbial population, intestinal microbiome, intestinal microbiota, microflora
Egg 7 egg quality, egg component, egg components, egg composition, egg production and quality
Immunity 7 immune response, immune function, immunoglobulin, inflammation
Intestine 7 intestinal tract, ceca, cecum
Layer 7 laying hen, layer strain

The most cited paper, “Application of prebiotics and probiotics in poultry production” by J. A. Patterson and K. M. Burkholder from Purdue University (Poult. Sci. 82:627–631; https://doi.org/10.1093/ps/82.4.627), was published in 2003. This paper has 742 citations or 2.8% of the total for the 100 most cited works. Prebiotics, bursa of Fabricius, a blood diluent, antibiotics, and a metabolizable energy assay are topics covered in the top 5 most cited papers. Citations for these 5 works totaled 3,332, which represents 12.6% of the total.

The Poultry Science Association invites you to celebrate the success of Poultry Science by examining the journal's 100 most cited papers shown in Table 5. A digital collection of these articles has also been assembled. The link also provides access to the list.

Table 5.

The 100 most cited papers published in Poultry Science 1945 to 2020. Cited equals number of citations across all databases, ties noted (https://clarivate.libguides.com/webofscienceplatform).

Rank T = ties Cited (n) Publication
1 742 Patterson, J. A., and K. M. Burkholder. 2003. Application of prebiotics and probiotics in poultry production. Poult. Sci. 82:627–631. https://doi.org/10.1093/ps/82.4.627
2 710 Glick, B., T. S. Chang, and R. G. Jaap. 1956. The bursa of Fabricius and antibody production. Poult. Sci. 35:224–225. https://doi.org/10.3382/ps.0350224
3 683 Natt, M. P., and C. A. Herrick. 1952. A new blood diluent for counting the erythrocytes and leucocytes of the chicken. Poult. Sci. 31:735–738. https://doi.org/10.3382/ps.0310735
4 663 Dibner, J. J., and J. D. Richards. 2005. Antibiotic growth promoters in agriculture: history and mode of action. Poult. Sci. 84:634–643. https://doi.org/10.1093/ps/84.4.634
5 534 Sibbald, I. R. 1976. Bioassay for true metabolizable energy in feedingstuffs. Poult. Sci. 55:303–308. https://doi.org/10.3382/ps.0550303
6 493 Spring, P., C. Wenk, K. A. Dawson, and K. E. Newman. 2000. The effects of dietary mannanoligosaccharides on cecal parameters and the concentrations of enteric bacteria in the ceca of salmonella-challenged broiler chicks. Poult. Sci. 79:205–211. https://doi.org/10.1093/ps/79.2.205
7 491 Hernandez, F., J. Madrid, V. Garcia, J. Orengo, and M. D. Megias. 2004. Influence of two plant extracts on broilers performance, digestibility, and digestive organ size. Poult. Sci. 83:169–174. https://doi.org/10.1093/ps/83.2.169
8 484 Ricke, S. C. 2003. Perspectives on the use of organic acids and short chain fatty acids as antimicrobials. Poult. Sci. 82:632–639. https://doi.org/10.1093/ps/82.4.632
9 478 Simopoulos, A. P. 2000. Human requirement for n-3 polyunsaturated fatty acids. Poult. Sci. 79:961–970. https://doi.org/10.1093/ps/79.7.961
10 469 Castanon, J. I. R. 2007. History of the use of antibiotic as growth promoters in European poultry feeds. Poult. Sci. 86:2466–2471. https://doi.org/10.3382/ps.2007-00249
T11 438 Havenstein, G. B., P. R. Ferket, and M. A. Qureshi. 2003. Growth, livability, and feed conversion of 1957 versus 2001 broilers when fed representative 1957 and 2001 broiler diets. Poult. Sci. 82:1500–1508. https://doi.org/10.1093/ps/82.10.1500
T11 438 Xu, Z. R., C. H. Hu, M. S. Xia, X. A. Zhan, and M. Q. Wang. 2003. Effects of dietary fructooligosaccharide on digestive enzyme activities, intestinal microflora and morphology of male broilers. Poult. Sci. 82:1030–1036. https://doi.org/10.1093/ps/82.6.1030
13 437 Salih, A. M., D. M. Smith, J. F. Price, and L. E. Dawson. 1987. Modified extraction 2-thiobarbituric acid method for measuring lipid oxidation in poultry. Poult. Sci. 66:1483–1488. https://doi.org/10.3382/ps.0661483
14 423 Cook, M. E., C. C. Miller, Y. Park, and M. Pariza. 1993. Immune modulation by altered nutrient metabolism: nutritional control of immune-induced growth depression. Poult. Sci. 72:1301–1305. https://doi.org/10.3382/ps.0721301
15 409 Mashaly, M. M., G. L. Hendricks, M. A. Kalama, A. E. Gehad, A. O. Abbas, and P. H. Patterson. 2004. Effect of heat stress on production parameters and immune responses of commercial laying hens. Poult. Sci. 83:889–894. https://doi.org/10.1093/ps/83.6.889
16 390 Awad, W. A., K. Ghareeb, S. Abdel-Raheem, and J. Bohm. 2009. Effects of dietary inclusion of probiotic and synbiotic on growth performance, organ weights, and intestinal histomorphology of broiler chickens. Poult. Sci. 88:49–56. https://doi.org/10.3382/ps.2008-00244
17 357 Mountzouris, K. C., P. Tsirtsikos, E. Kalamara, S. Nitsch, G. Schatzmayr, and K. Fegeros. 2007. Evaluation of the efficacy of a probiotic containing Lactobacillus, Bifidobacterium, Enterococcus, and Pediococcus strains in promoting broiler performance and modulating cecal microflora composition and metabolic activities. Poult. Sci. 86:309–317. https://doi.org/10.1093/ps/86.2.309
18 338 Klasing, K. C. 1998. Nutritional modulation of resistance to infectious diseases. Poult. Sci. 77:1119–1125. https://doi.org/10.1093/ps/77.8.1119
T19 316 Quinteiro, W. M., A. Ribeiro, V. Ferraz-de-Paula, M. L. Pinheiro, M. Sakai, L. R. M. Sa, A. J. P. Ferreira, and J. Palermo-Neto. 2010. Heat stress impairs performance parameters, induces intestinal injury, and decreases macrophage activity in broiler chickens. Poult. Sci. 89:1905–1914. https://doi.org/10.3382/ps.2010-00812
T19 316 Siegel, P. B., and W. B. Gross. 1980. Production and persistence of antibodies in chickens to sheep erythrocytes .1. Directional selection. Poult. Sci. 59:1–5. https://doi.org/10.3382/ps.0590001
21 299 Jin, L. Z., Y. W. Ho, N. Abdullah, and S. Jalaludin. 1998. Growth performance, intestinal microbial populations, and serum cholesterol of broilers fed diets containing Lactobacillus cultures. Poult. Sci. 77:1259–1265. https://doi.org/10.1093/ps/77.9.1259
22 290 Havenstein, G. B., P. R. Ferket, and M. A. Qureshi. 2003. Carcass composition and yield of 1957 versus 2001 broilers when fed representative 1957 and 2001 broiler diets. Poult. Sci. 82:1509–1518. https://doi.org/10.1093/ps/82.10.1509
23 285 Joerger, R. D. 2003. Alternatives to antibiotics: bacteriocins, antimicrobial peptides and bacteriophages. Poult. Sci. 82:640–647. https://doi.org/10.1093/ps/82.4.640
24 277 Noy, Y., and D. Sklan. 1995. Digestion and absorption in the young chick. Poult. Sci. 74:366–373. https://doi.org/10.3382/ps.0740366
25 268 Smith, J. W., and P. B. Hamilton. 1970. Aflatoxicosis in broiler chicken. Poult. Sci. 49:207–215. https://doi.org/10.3382/ps.0490207
T26 265 Mountzouris, K. C., P. Tsitrsikos, I. Palamidi, A. Arvaniti, M. Mohnl, G. Schatzmayr, and K. Fegeros. 2010. Effects of probiotic inclusion levels in broiler nutrition on growth performance, nutrient digestibility, plasma immunoglobulins, and cecal microflora composition. Poult. Sci. 89:58–67. https://doi.org/10.3382/ps.2009-00308
T26 265 Dransfield, E., and A. A. Sosnicki. 1999. Relationship between muscle growth and poultry meat quality. Poult. Sci. 78:743–746. https://doi.org/10.1093/ps/78.5.743
28 264 Uni, Z., S. Ganot, and D. Sklan. 1998. Posthatch development of mucosal function in the broiler small intestine. Poult. Sci. 77:75–82. https://doi.org/10.1093/ps/77.1.75
29 259 Baker, D. H., and Y. M. Han. 1994. Ideal amino acid profile for chicks during the first 3 weeks posthatching. Poult. Sci. 73:1441–1447. https://doi.org/10.3382/ps.0731441
30 257 Julian, R. J. 1998. Rapid growth problems: ascites and skeletal deformities in broilers. Poult. Sci. 77:1773–1780. https://doi.org/10.1093/ps/77.12.1773
31 256 Leveille, G. A., D. R. Romsos, Y. Y. Yeh, and E. K. O'hea. 1975. Lipid biosynthesis in chick. A consideration of site of synthesis, influence of diet and possible regulatory mechanisms. Poult. Sci. 54:1075–1093. https://doi.org/10.3382/ps.0541075
32 245 Silversides, F. G., and T. A. Scott. 2001. Effect of storage and layer age on quality of eggs from two lines of hens. Poult. Sci. 80:1240–1245. https://doi.org/10.1093/ps/80.8.1240
33 244 Rath, N. C., G. R. Huff, W. E. Huff, and J. M. Balog. 2000. Factors regulating bone maturity and strength in poultry. Poult. Sci. 79:1024–1032. https://doi.org/10.1093/ps/79.7.1024
T34 243 Engberg, R. M., M. S. Hedemann, S. Steenfeldt, and B. B. Jensen. 2004. Influence of whole wheat and xylanase on broiler performance and microbial composition and activity in the digestive tract. Poult. Sci. 83:925–938. https://doi.org/10.1093/ps/83.6.925
T34 243 Qiao, M., D. L. Fletcher, D. P. Smith, and J. K. Northcutt. 2001. The effect of broiler breast meat color on pH, moisture, water-holding capacity, and emulsification capacity. Poult. Sci. 80:676–680. https://doi.org/10.1093/ps/80.5.676
36 239 Goto, N., H. Kodama, K. Okada, and Y. Fujimoto. 1978. Suppression of phytohemagglutinin skin response in thymectomized chickens. Poult. Sci. 57:246–250. https://doi.org/10.3382/ps.0570246
37 237 Phillips, T. D., L. F. Kubena, R. B. Harvey, D. R. Taylor, and N. D. Heidelbaugh. 1988. Hydrated sodium calcium aluminosilicate: a high-affinity sorbent for aflatoxin. Poult. Sci. 67:243–247. https://doi.org/10.3382/ps.0670243
38 235 Ravindran, V., S. Cabahug, G. Ravindran, and W. L. Bryden. 1999. Influence of microbial phytase on apparent ileal amino acid digestibility of feedstuffs for broilers. Poult. Sci. 78:699–706. https://doi.org/10.1093/ps/78.5.699
39 233 Havenstein, G. B., P. R. Ferket, S. E. Scheidler, and B. T. Larson. 1994. Growth, livability, and feed conversion of 1957 vs 1991 broilers when fed “typical” 1957 and 1991 broiler diets. Poult. Sci. 73:1785–1794. https://doi.org/10.3382/ps.0731785
40 228 Lay, D. C., R. M. Fulton, P. Y. Hester, D. M. Karcher, J. B. Kjaer, J. A. Mench, B. A. Mullens, R. C. Newberry, C. J. Nicol, N. P. O'Sullivan, and R. E. Porter. 2011. Hen welfare in different housing systems. Poult. Sci. 90:278–294. https://doi.org/10.3382/ps.2010-00962
41 226 Bartlett, J. R., and M. O. Smith. 2003. Effects of different levels of zinc on the performance and immunocompetence of broilers under heat stress. Poult. Sci. 82:1580–1588. https://doi.org/10.1093/ps/82.10.1580
42 225 Hill, F. W., and L. M. Dansky. 1954. Studies of the energy requirements of chickens: 1. The effect of dietary energy level on growth and feed consumption. Poult. Sci. 33:112–119. https://doi.org/10.3382/ps.0330112
43 224 Crespo, N., and E. Esteve-Garcia. 2001. Dietary fatty acid profile modifies abdominal fat deposition in broiler chickens. Poult. Sci. 80:71–78. https://doi.org/10.1093/ps/80.1.71
T44 222 Yegani, M. M., and D. R. Korver. 2008. Factors affecting intestinal health in poultry. Poult. Sci. 87:2052–2063. https://doi.org/10.3382/ps.2008-00091
T44 222 Sandercock, D. A., R. R. Hunter, G. R. Nute, M. A. Mitchell, and P. M. Hocking. 2001. Acute heat stress-induced alterations in blood acid-base status and skeletal muscle membrane integrity in broiler chickens at two ages: implications for meat quality. Poult. Sci. 80:418–425. https://doi.org/10.1093/ps/80.4.418
46 220 Araba, M. and N. M. Dale. 1990. Evaluation of protein solubility as an indicator of overprocessing soybean meal. Poult. Sci. 69:76–83. https://doi.org/10.3382/ps.0690076
47 219 Baurhoo, B., L. Phillip, and C. A. Ruiz-Feria. 2007. Effects of purified lignin and mannan oligosaccharides on intestinal integrity and microbial populations in the ceca and litter of broiler chickens. Poult. Sci. 86:1070–1078. https://doi.org/10.1093/ps/86.6.1070
48 215 Zhang, A. W., B. D. Lee, S. K. Lee, K. W. Lee, G. H. An, K. B. Song, and C. H. Lee. 2005. Effects of yeast (Saccharomyces cerevisiae) cell components on growth performance, meat quality, and ileal mucosa development of broiler chicks. Poult. Sci. 84:1015–1021. https://doi.org/10.1093/ps/84.7.1015
49 214 Harmon, B. G. 1998. Avian heterophils in inflammation and disease resistance. Poult. Sci. 77:972–977. https://doi.org/10.1093/ps/77.7.972
T50 212 Zuidhof, M. J., B. L. Schneider, V. L. Carney, D. R. Korver, and F. E. Robinson. 2014. Growth, efficiency, and yield of commercial broilers from 1957, 1978, and 2005. Poult. Sci. 93:2970–2982. https://doi.org/10.3382/ps.2014-04291
T50 212 Niewold, T. A. 2007. The nonantibiotic anti-inflammatory effect of antimicrobial growth promoters, the real mode of action? A hypothesis. Poult. Sci. 86:605–609. https://doi.org/10.1093/ps/86.4.605
T50 212 Zanella, I., N. K. Sakomura, F. G. Silversides, A. Fiqueirdo, and M. Pack. 1999. Effect of enzyme supplementation of broiler diets based on corn and soybeans. Poult. Sci. 78:561–568. https://doi.org/10.1093/ps/78.4.561
53 210 Qian, H., E. T. Kornegay, and D. M. Denbow. 1997. Utilization of phytate phosphorus and calcium as influenced by microbial phytase, cholecalciferol, and the calcium:total phosphorus ratio in broiler diets. Poult. Sci. 76:37–46. https://doi.org/10.1093/ps/76.1.37
54 207 Puvadolpirod, S., and J. P. Thaxton. 2000. Model of physiological stress in chickens 1. Response parameters. Poult. Sci. 79:363–369. https://doi.org/10.1093/ps/79.3.363
55 205 Amit-Romach, E., D. Sklan, and Z. Uni. 2004. Microflora ecology of the chicken intestine using 16S ribosomal DNA primers. Poult. Sci. 83:1093–1098. https://doi.org/10.1093/ps/83.7.1093
56 204 Whitehead, C. C., and R. H. Fleming. 2000. Osteoporosis in cage layers. Poult. Sci. 79:1033–1041. https://doi.org/10.1093/ps/79.7.1033
T57 203 Gao, J., H. J. Zhang, S. H. Yu, S. G. Wu, I. Yoon, J. Quigley, Y. P. Gao, and G. H. Qi. 2008. Effects of yeast culture in broiler diets on performance and immunomodulatory functions. Poult. Sci. 87:1377–1384. https://doi.org/10.3382/ps.2007-00418
T57 203 Van Laack, R. L., C. H. Liu, M. O. Smith, H. D. Loveday, and R. M. Van Laack. 2000. Characteristics of pale, soft, exudative broiler breast meat. Poult. Sci. 79:1057–1061. https://doi.org/10.1093/ps/79.7.1057
59 202 Viveros, A., S. Chamorro, M. Pizarro, I. Arija, C. Centeno, and A. Brenes. 2011. Effects of dietary polyphenol-rich grape products on intestinal microflora and gut morphology in broiler chicks. Poult. Sci. 90:566–578. https://doi.org/10.3382/ps.2010-00889
60 201 Hamilton, R. M. G. 1982. Methods and factors that affect the measurement of eggshell quality. Poult. Sci. 61:2022–2039. https://doi.org/10.3382/ps.0612022
61 198 Moran, E. T. 2007. Nutrition of the developing embryo and hatchling. Poult. Sci. 86:1043–1049. https://doi.org/10.1093/ps/86.5.1043
62 197 Viveros, A., A. Brenes, I. Arija, and C. Centeno. 2002. Effects of microbial phytase supplementation on mineral utilization and serum enzyme activities in broiler chicks fed different levels of phosphorus. Poult. Sci. 81:1172–1183. https://doi.org/10.1093/ps/81.8.1172
T63 196 Siegel, P. B. 1962. Selection for body weight at 8 weeks of age: 1. Short term response and heritabilities. Poult. Sci. 41:954–962. https://doi.org/10.3382/ps.0410954
T63 196 Donaldson, W. E., G. F. Combs, and G. L. Romoser. 1956. Studies on energy levels in poultry rations .1. The effect of calorie-protein ratio of the ration on growth, nutrient utilization and body composition of chicks. Poult. Sci. 35:1100–1105. https://doi.org/10.3382/ps.0351100
T65 195 Meng, X., B. A. Slominski, C. M. Nyachoti; L. D. Campbell, and W. Guenter. 2005. Degradation of cell wall polysaccharides by combinations of carbohydrase enzymes and their effect on nutrient utilization and broiler chicken performance. Poult. Sci. 84:37–47. https://doi.org/10.1093/ps/84.1.37
T65 195 Whitehead, C. C. 2004. Overview of bone biology in the egg-laying hen. Poult. Sci. 83:193–199. https://doi.org/10.1093/ps/83.2.193
T65 195 Nelson, T. S. 1967. Utilization of phytate phosphorus by poultry—a review. Poult. Sci. 46:862–871. https://doi.org/10.3382/ps.0460862
T68 194 Fanatico, A. C., P. B. Pillai, J. L. Emmert, and C. M. Owens. 2007. Meat quality of slow- and fast-growing chicken genotypes fed low nutrient or standard diets and raised indoors or with outdoor access. Poult. Sci. 86:2245–2255. https://doi.org/10.1093/ps/86.10.2245
T68 194 Mitsch, P., K. Zitterl-Eglseer, B. Kohler, C. Gabler, R. Losa, and I. Zimpernik. 2004. The effect of two different blends of essential oil components on the proliferation of Clostridium perfringens in the intestines of broiler chickens. Poult. Sci. 83:669–675. https://doi.org/10.1093/ps/83.4.669
70 192 Muir, W. M. 1996. Group selection for adaptation to multiple-hen cages: selection program and direct responses. Poult. Sci. 75:447–458. https://doi.org/10.3382/ps.0750447
71 191 Sibbald, I. R. 1979. Bioassay for available amino acids and true metabolizable energy in feedingstuffs. Poult. Sci. 58:668–673. https://doi.org/10.3382/ps.0580668
72 190 Corrier, D. E., and J. R. DeLoach. 1990. Evaluation of cell-mediated, cutaneous basophil hypersensitivity in young chickens by an interdigital skin test. Poult. Sci. 69:403–408. https://doi.org/10.3382/ps.0690403
73 189 Mujahid, A., Y. Yoshiki, Y. Akiba, and M. Toyomizu. 2005. Superoxide radical production in chicken skeletal muscle induced by acute heat stress. Poult. Sci. 84:307–314. https://doi.org/10.1093/ps/84.2.307
T74 188 Uni, Z., P. R. Ferket, E. Tako, and O. Kedar. 2005. In ovo feeding improves energy status of late-term chicken embryos. Poult. Sci. 84:764–770. https://doi.org/10.1093/ps/84.5.764
T74 188 Scott, T. A., and F. G. Silversides. 2000. The effect of storage and strain of hen on egg quality. Poult. Sci. 79:1725–1729. https://doi.org/10.1093/ps/79.12.1725
T76 187 Burkholder, K. M., K. L. Thompson, M. E. Einstein, T. J. Applegate, and J. A. Patterson. 2008. Influence of stressors on normal intestinal microbiota, intestinal morphology, and susceptibility to Salmonella Enteritidis colonization in broilers. Poult. Sci. 87:1734–1741. https://doi.org/10.3382/ps.2008-00107
T76 187 Satterlee, D. G., and W. A. Johnson. 1988. Selection of Japanese quail for contrasting blood corticosterone response to immobilization. Poult. Sci. 67:25–32. https://doi.org/10.3382/ps.0670025
T78 186 Shepherd, E. M., and B. D. Fairchild. 2010. Footpad dermatitis in poultry. Poult. Sci. 89:2043–2051. https://doi.org/10.3382/ps.2010-00770
T78 186 Engberg, R. M., M. S. Hedemann, T. D. Leser, and B. B. Jensen. 2000. Effect of zinc bacitracin and salinomycin on intestinal microflora and performance of broilers. Poult. Sci. 79:1311–1319. https://doi.org/10.1093/ps/79.9.1311
T78 186 Fletcher, D. L. 1999. Broiler breast meat color variation, pH, and texture. Poult. Sci. 78:1323–1327. https://doi.org/10.1093/ps/78.9.1323
T78 186 Sebastian, S., S. P. Touchburn, E. R. Chavez, and C. Lague. 1996. The effects of supplemental microbial phytase on the performance and utilization of dietary calcium, phosphorus, copper, and zinc in broiler chickens fed corn-soybean diets. Poult. Sci. 75:729–736. https://doi.org/10.3382/ps.0750729
82 184 Berri, C. C., N. Wacrenier, N. Millet, and E. Le Bihan-Duval. 2001. Effect of selection for improved body composition on muscle and meat characteristics of broilers from experimental and commercial lines. Poult. Sci. 80:833–838. https://doi.org/10.1093/ps/80.7.833
T83 183 Wei, S., M. Morrison, and Z. Yu. 2013. Bacterial census of poultry intestinal microbiome. Poult. Sci. 92:671–683. https://doi.org/10.3382/ps.2012-02822
T83 183 Cherian, G., F. W. Wolfe, and J. S. Sim. 1996. Dietary oils with added tocopherols: effects on egg or tissue tocopherols, fatty acids, and oxidative stability. Poult. Sci. 75:423–431. https://doi.org/10.3382/ps.0750423
T83 183 Bailey, J. S., L. C. Blankenship, and N. A. Cox. 1991. Effect of fructooligosaccharide on Salmonella colonization of the chicken intestine. Poult. Sci. 70:2433–2438. https://doi.org/10.3382/ps.0702433
T86 182 Uni, Z., Y. Noy, and D. Sklan. 1999. Posthatch development of small intestinal function in the poult. Poult. Sci. 78:215–222. https://doi.org/10.1093/ps/78.2.215
T86 182 Teeter, R. G., M. O. Smith, F. N. Owens, S. C. Arp, S. Sangiah, and J. E. Breazile. 1985. Chronic heat stress and respiratory alkalosis: occurrence and treatment in broiler chicks. Poult. Sci. 64:1060–1064. https://doi.org/10.3382/ps.0641060
T86 182 Hill, F. W., D. L. Anderson, R. Renner, and L. B. Carew. 1960. Studies of the metabolizable energy of grain and grain products for chickens. Poult. Sci. 39:573–579. https://doi.org/10.3382/ps.0390573
89 181 Woelfel, R. L., C. M. Owens, E. M. Hirschler, R. Martinez-Dawson, and A. R. Sams. 2002. The characterization and incidence of pale, soft, and exudative broiler meat in a commercial processing plant. Poult. Sci. 81:579–584. https://doi.org/10.1093/ps/81.4.579
T90 180 Scheideler, S. E., and G. W. Froning. 1996. The combined influence of dietary flaxseed variety, level, form, and storage conditions on egg production and composition among vitamin E-supplemented hens. Poult. Sci. 75:1221–1226. https://doi.org/10.3382/ps.0751221
T90 180 Plavnik, I., and S. Hurwitz. 1985. The performance of broiler chicks during and following a severe feed restriction at an early age. Poult. Sci. 64:348–355. https://doi.org/10.3382/ps.0640348
92 179 Bacon, L. D. 1987. Influence of the major histocompatibility complex on disease resistance and productivity. Poult. Sci. 66:802–811. https://doi.org/10.3382/ps.0660802
93 178 Kim, G. B., Y. M. Seo, C. H. Kim, and I. K. Paik. 2011. Effect of dietary prebiotic supplementation on the performance, intestinal microflora, and immune response of broilers. Poult. Sci. 90:75–82. https://doi.org/10.3382/ps.2010-00732
94 177 Mitchell, M. A., and P. J. Kettlewell. 1998. Physiological stress and welfare of broiler chickens in transit: solutions not problems! Poult. Sci. 77:1803–1814. https://doi.org/10.1093/ps/77.12.1803
95 175 Phelps, R. A., F. S. Shenstone, A. R. Kemmerer, and R. J. Evans. 1965. A review of cyclopropenoid compounds: biological effects of some derivatives. Poult. Sci. 44:358–394. https://doi.org/10.3382/ps.0440358
T96 174 Hamal, K. R., S. C. Burgess, I. Y. Pevzner, and G. F. Erf. 2006. Maternal antibody transfer from dams to their egg yolks, egg whites, and chicks in meat lines of chickens. Poult. Sci. 85:1364–1372. https://doi.org/10.1093/ps/85.8.1364
T96 174 Uni, Z., Y. Noy, and D. Sklan. 1995. Posthatch changes in morphology and function of the small intestines in heavy- and light-strain chicks. Poult. Sci. 74:1622–1629. https://doi.org/10.3382/ps.0741622
98 172 Crittenden, L. B., L. L. Provencher, L. Santangelo, I. Levin, H. Abplanalp, R. W. Briles, W. E. Briles, and J. B. Dodgson. 1993. Characterization of a red jungle fowl by white leghorn backcross reference population for molecular mapping of the chicken genome. Poult. Sci. 72:334–348. https://doi.org/10.3382/ps.0720334
T99 170 Hurwitz, S., M. Weiselberg, U. Eisner, I. Bartov, G. Riesenfeld, M. Sharvit, A. Niv, and. S. Bornstein. 1980. The energy requirements and performance of growing chickens and turkeys as affected by environmental temperature. Poult. Sci. 59:2290–2299. https://doi.org/10.3382/ps.0592290
T99 170 Eisen, E. J., B. B. Bohren, and H. E. McKean. 1962. Haugh unit as a measure of egg albumen quality. Poult. Sci. 41:1461–1468. https://doi.org/10.3382/ps.0411461

I thank Diana Jones, Executive Publisher, Nicole Scott, Journal Manager, David Busboom, Managing Editor, and John Carey, Editor-in-Chief, Journal of Applied Poultry Research, for providing initial data and valuable comments.


Articles from Poultry Science are provided here courtesy of Elsevier

RESOURCES