Abstract
Selected enzymes were examined in the small intestine of twelve 2–5 week-old calves, 8 with diarrhea and 4 convalescents. The diarrheic calves showed a reduction of enzyme reactions mainly in the duodenum and middle small intestine, and the crypt reactions appeared most severely affected. In the duodenum, villous alkaline phosphatase, adenosine triphosphate-(ATP)-splitting enzyme, and β-D-galactosidase were reduced in 3 calves; the reaction in the corresponding crypts was decreased in 6 calves for the ATP-splitting enzyme and in 4 calves for the β-D-galactosidase. Six calves showed decrease of villous brush border acid phosphatase, and 3 of villous non-specific esterase. In the middle jejunum, villous ATP-splitting enzyme was reduced in 3 calves, while 5 showed decrease of the corresponding crypt reaction. Convalescents had no enzyme reduction in the duodenum, whereas 1 showed marked reduction of the ATP-splitting enzyme and aminopeptidase in the middle and posterior jejunum. The decreased enzyme reactions in the present material may be caused by immaturity of epithelial cells associated with regenerative crypt hyperplasia and/or microbial destruction of enzymes.
Keywords: enzyme histochemistry, small intestine, villous atrophy, diarrhea, calves
Sammendrag
Et utvalg av enzymer i tynntarmsmukosa ble studert hos tolv 2–5 uker gamle kalver, 8 med diaré og 4 rekonvalesenter. Diarékalvene viste reduksjon av enzymene spesielt i duodenum og midtre jejunum; krypt-reaksjonene syntes å være sterkest affisert. I duodenum var alkalisk fosfatase, adenosintrifosfat (ATP)-spaltende enzym og β-D-galaktosidase langs villi redusert hos 3 kalver; reaksjonen i de tilsvarende kryptene var nedsatt hos henholdsvis 6 kalver når det gjaldt ATP-spaltende enzym og 4 når det gjaldt β-D-galaktosidase. Seks kalver viste reduksjon av sur fasfatase i „børstesømmen“ av villi og 3 hadde nedgang i reaksjonen av uspesifikk esterase i villi. I midtre jejunum var ATP-spaltende enzym langs villi redusert hos 3 kalver, mens 5 viste nedgang i den tilsvarende krypt-reaksjonen. Rekonvalesentene viste ingen nedgang av enzym-reaksjoner i duodenum, men i midtre og bakre jejunum var det en markert reduksjon av ATP-spaltende enzym og aminopeptidase hos én kalv. De nedsatte enzymreaksjoner i dette materialet kan skyldes en mangelfull differensiering av epitelcellene forbundet med regenerativ hyperplasi i kryptene og/eller mikrobiell destruksjon av enzymene.
Full Text
The Full Text of this article is available as a PDF (1.6 MB).
Footnotes
This study was supported by grants from the Agricultural Research Council of Norway.
References
- Blythman H E, Waksman B H. Effect of irradiation and appendicostomy on appendix structure and responses of appendix cells to mitogens. J. Immunol. 1973;111:171–182. [PubMed] [Google Scholar]
- Bockman D E, Cooper M D. Pinocytosis by epithelium associated with lymphoid follicles in the bursa of Fabricius, appendix and Peyer’s patches. An electron microscopic study. Amer. J. Anat. 1973;136:455–478. doi: 10.1002/aja.1001360406. [DOI] [PubMed] [Google Scholar]
- Carter P B, Collins F M. The route of enteric infection in normal mice. J. exp. Med. 1974;139:1189–1203. doi: 10.1084/jem.139.5.1189. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cebra, J. J., R. Kamat, P. Gearhart, S. M. Robertson & J. Tseng: The secretory IgA system of the gut. In: Immunology of the gut. Ciba Foundation Symposium 46. Excerpta Medica, Amsterdam, Oxford, New York 1979, p. 5–28. [DOI] [PubMed]
- Cooper G N, Thonard J C, Crosby R L, Dalbow M H. Immunological responses in rats following antigenic stimulation of Peyer’s patches. II. Histological changes in germ-free animals. Aust. J. exp. Biol. med. Sci. 1968;46:407–414. doi: 10.1038/icb.1968.34. [DOI] [PubMed] [Google Scholar]
- Craig S W, Cebra J J. Peyer’s patches: An enriched source of precursors for IgA-producing immunocytes in the rabbit. J. exp. Med. 1971;134:188–200. doi: 10.1084/jem.134.1.188. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Doughri A M, Young S, Storz J. Pathologic changes in intestinal chlamydial infection of newborn calves. Amer. J. vet. Res. 1974;35:939–944. [PubMed] [Google Scholar]
- Gianella R A, Formal S B, Dammin G J, Collins H. Pathogenesis of salmonellosis. Studies of fluid secretion, mucosal invasion, and morphologic reaction in the rabbit ileum. J. clin. Invest. 1973;52:441–453. doi: 10.1172/JCI107201. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hohmann, A. W., G. Schmidt & D. Rowley: Intestinal colonization and virulence of Salmonella in mice. Infect. Immun. 1978, 22, 763– 770. [DOI] [PMC free article] [PubMed]
- Husband A J, Gowans J L. The origin and antigen-dependent distribution of IgA-containing cells in the intestine. J. exp. Med. 1978;148:1146–1160. doi: 10.1084/jem.148.5.1146. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Husband, A. J., H. J. Monié & J. L. Gowans: The natural history of the cells producing IgA in the gut. In: Imunology of the gut. Ciba Foundation Symposium 46. Excerpta Medica, Amsterdam, Oxford, New York 1979, p. 29–42. [DOI] [PubMed]
- Karnousky, M. J.: A formaldehyde-glutaraldehyde fixative of high osmolality for use in electron microscopy. J. cell Biol. 1965, 27, 137A–138A.
- LaBrec E H, Formal S B. Experimental Shigella infections. IV. Fluorescent antibody studies of an infection in guinea pigs. Immunology. 1961;87:562–572. [PubMed] [Google Scholar]
- Landsverky T. The gastrointestinal mucosa in young milk-fed calves. A scanning electron and light microscopic investigation. Acta vet. scand. 1979;20:572–582. doi: 10.1186/BF03546585. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Landsuerk T. Histochemical distribution of enzymes in the small intestine of young milk-fed calves. Acta vet. scand. 1980;21:402–414. doi: 10.1186/BF03546873. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Landsuerk, T.: The epithelium covering Peyer’s patches in young milk-fed calves. An ultrastructural and enzyme histochemical investigation. Acta vet. scand. 1981a, 22, 198–210. [DOI] [PMC free article] [PubMed]
- Landsuerk, T.: Pathomorphology of the intestinal mucosa in diarrheic calves. Acta vet. scand. 1981b, 22, 435–448. [DOI] [PMC free article] [PubMed]
- Landsuerk, T.: An enzyme histochemical investigation of the intestinal mucosa in diarrheic calves. Acta vet. scand. 1981c, 22, 449–458. [DOI] [PMC free article] [PubMed]
- Landsuerk, T. et al: in prep.
- Le Feure M E, Vanderhoff J W, Laissue J A, Joel D D. Accumulation of 2-µm latex particles in mouse Peyer’s patches during chronic latex feeding. Experientia. 1978;34:120–122. doi: 10.1007/BF01921939. [DOI] [PubMed] [Google Scholar]
- MacDonald W C, Trier J S, Euerett N B. Cell proliferation and migration in the stomach, duodenum, and rectum of man : radio-autographic studies. Gastroenterology. 1964;40:405–417. doi: 10.1016/S0016-5085(64)80102-5. [DOI] [PubMed] [Google Scholar]
- Maenza R M, Powell D W, Plotkin G R, Formal S B, Jeruis H R, Sprinz H. Experimental diarrhea: Salmonella enterocolitis in the rat. J. infect. Dis. 1970;121:475–485. doi: 10.1093/infdis/121.5.475. [DOI] [PubMed] [Google Scholar]
- Miyai, K.: Scanning electron microscopy of hepatic tissue. In: M. A. Hayat: Principles and Techniques of Scanning Electron Microscopy. Van Nostrand Reinhold Company, London, Toronto, Melbourne 1978, p. 204–235.
- Owen R L. Sequential uptake of horseradish peroxidase by lymphoid follicle epithelium of Peyer’s patches in the normal unobstructed mouse intestine: an ultrastructural study. Gastroenterology. 1977;72:440–451. doi: 10.1016/S0016-5085(77)80254-0. [DOI] [PubMed] [Google Scholar]
- Perey D YE, Good R A. Experimental arrest and induction of lymphoid development in intestinal lymphoepithelial tissues of rabbits. Lab. Invest. 1968;18:15–26. [PubMed] [Google Scholar]
- Pollard, M. & N. Sharon: Responses of the Peyer’s patches in germ-free mice to antigenic stimulation. Infect. Immun. 1970, 2, 96– 100. [DOI] [PMC free article] [PubMed]
- Prescott J F, Johnson J A, Markham R J F. Experimental studies on the pathogenesis of Corynebacterium equi infection in foals. Canad. J. comp. Med. 1980;44:280–288. [PMC free article] [PubMed] [Google Scholar]
- Reynolds J. Gut-associated lymphoid tissues in lambs before and after birth. Monogr. Allergy. 1980;16:187–202. [PubMed] [Google Scholar]
- Sprinz, H., M. Landy, S. Gaines & G. Edsall: Experimental typhoid fever in chimpanzees. III. Pathogenesis. Fed. Proc. 1956, 15, 614–615 (abstr.).
- Stramignoni A, Mollo F, Ruà S, Palestro G. Development of the lymphoid tissue in the rabbit appendix isolated from the intestinal tract. J. Path. 1969;99:265–269. doi: 10.1002/path.1710990402. [DOI] [PubMed] [Google Scholar]
- Takeuchi A. Electron microscopic studies of experimental salmonella infection. 1. Penetration into the intestinal epithelium by Salmonella typhimurium. Amer. J. Path. 1967;50:109–136. [PMC free article] [PubMed] [Google Scholar]
- Thorbecke G J. Some histological and functional aspects of lymphoid tissue in germ-free animals. I. Morphological studies. Ann. N. Y. Acad. Sci. 1959;78:237–246. doi: 10.1111/j.1749-6632.1959.tb53106.x. [DOI] [PubMed] [Google Scholar]
- Waksman B H, Ozer H, Blythman H E. Appendix and γM-anti-body formation. VI. The functional anatomy of the rabbit appendix. Lab. Invest. 1973;28:614–626. [PubMed] [Google Scholar]
