Skip to main content
Acta Veterinaria Scandinavica logoLink to Acta Veterinaria Scandinavica
. 2021 Jan 23;22(3-4):459–471. doi: 10.1186/BF03548671

Peyer’s Patches and the Follicle-Associated Epithelium in Diarrheic Calves

Pathomorphology, Morphometry and Acid Phosphatase Histochemistry

Ρeyerplettene og det follikkel-assosierte epitelet hos diarékalver

Thor Landsverk 1,
PMCID: PMC8300447  PMID: 7344534

Abstract

Twelve 2–5-week-old calves affected with a spontaneous intestinal disorder were examined; 8 had diarrhea and 4 were convalescents. In all the affected calves the “pseudovilli” (syn. domes or lymphoid villi) over Peyer’s patches seemed atrophic and appeared enclosed within the mucosa, owing to fusion of ordinary villi with “pseudovilli”. Morphometric examination showed a decrease of lymphoid follicle length in the affected calves as compared with controls (P < 0.01). Convalescents showed longer follicles than diarrheic calves (P<0.05). Often cytoplasmic acid phosphatase of the follicle-associated epithelium (FAE) in affected calves did not show the marked basal-apical decrease along “pseudovillus”, typical of the controls. Scanning electron microscopy revealed sparse development of concentric folds in the luminal plasma membrane of the enclosed FAE, contrasting with their abundance in the normal FAE. Transmission electron microscopy showed that the “pseudovilli” had increased numbers of ordinary villous epithelial cells. Affinity of chlamydia for FAE was shown. It is suggested that the sparse occurrence of surface folds in the FAE and the change in acid phosphatase distribution indicate diminished endocytosis of antigenic material, probably resulting from the enclosure of “pseudovilli”. The atrophy of lymphoid follicles may be another expression of the probable decreased contact with the intestinal contents.

Keywords: Peyer’s patches, epithelium, microfolds, acid phosphatase, intestinal lesions, follicle atrophy, chlamydia, diarrhea, calves

Full Text

The Full Text of this article is available as a PDF (4.1 MB).

Footnotes

This study was supported by grants from the Agricultural Research Council of Norway.

References

  1. Anon.: Selenium-containing gluthione peroxidase: Its synthesis and function in arachidonate metabolism. Nutr. Rev. 1981, 39, 21–23. [DOI] [PubMed]
  2. Anderson P H, Berrei S, Patterson D S P. Erythrocyte glutathione peroxidase and selenium concentration. J. comp. Path. 1978;88:181–183. doi: 10.1016/0021-9975(78)90022-1. [DOI] [PubMed] [Google Scholar]
  3. Caple I W, Edwards S I A, Forsyth W M, Whiteley P, Selth R H, Fulton L J. Blood glutathione peroxidase activity in horses in relation to muscular dystrophy and selenium nutrition. Aust. vet. J. 1978;54:57–60. doi: 10.1111/j.1751-0813.1978.tb00343.x. [DOI] [PubMed] [Google Scholar]
  4. Günzler W A, Krenters H, Flohé L. An improved coupled test procedure for glutathione peroxidase (EC 1.11.1.9) in blood. Z. Klin. Chem. Klin. Biochem. 1974;12:444–448. doi: 10.1515/cclm.1974.12.10.444. [DOI] [PubMed] [Google Scholar]
  5. Hafeman D G, Sunde R A, Hoekstra W G. Effect of dietary selenium on erythrocyte and liver glutathione peroxidase in rat. J. Nutr. 1974;104:580–587. doi: 10.1093/jn/104.5.580. [DOI] [PubMed] [Google Scholar]
  6. Jørgensen P F, Hyldgaard-Jensen J, Moustgaard J. Glutathione peroxidase activity in porcine blood. Acta vet. scand. 1977;18:323–334. doi: 10.1186/BF03548430. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Lawrence RA, Burk R F. Glutathione peroxidase activity in selenium deficient rat liver. Biochem. Biophys. Res. Commun. 1976;71:952–958. doi: 10.1016/0006-291X(76)90747-6. [DOI] [PubMed] [Google Scholar]
  8. Lawrence R A, Burk R F. Species tissue and subcellular distribution of non Se-dependent glutathione peroxidase activity. J. Nutr. 1978;108:211–215. doi: 10.1093/jn/108.2.211. [DOI] [PubMed] [Google Scholar]
  9. Mills G C. The purification and properties of glutathione peroxidase of erythrocytes. J. biol. Chem. 1959;234:502–506. doi: 10.1016/S0021-9258(18)70234-2. [DOI] [PubMed] [Google Scholar]
  10. Mills GC, Randall H P. The protection of hemoglobin from oxidative break-down in the intact erythrocyte. J. biol. Chem. 1958;232:589–598. doi: 10.1016/S0021-9258(19)77379-7. [DOI] [PubMed] [Google Scholar]
  11. Oh S H, Ganther H E, Hoekstra W G. Selenium as a component of glutathione peroxidase isolated from ovine erythrocytes. Biochem. 1974;13:1825–1829. doi: 10.1021/bi00706a008. [DOI] [PubMed] [Google Scholar]
  12. Paglia E D, Valentine W N. Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J. Lab. clin. Med. 1967;70:158–169. [PubMed] [Google Scholar]
  13. Perona, G., G. C. Guidi, A. Piga, R. Cellerino, R. Menna & M. Zatti: In vivo and in vitro variation of human erythrocyte glutathione peroxidase activity as a result of cell ageing, selenium availability and peroxide activation. Brit. J. Haemat. 1978, 39, 399– 408. [DOI] [PubMed]
  14. Rotruck J T, Pope A L, Ganther H E, Swanson A B, Hafeman D G, Hoekstra W G. Selenium biochemical role as a component of glutathione peroxidase. Science. 1973;1979:588–590. doi: 10.1126/science.179.4073.588. [DOI] [PubMed] [Google Scholar]
  15. Smith P J, Tappet A L, Chow C K. Glutathione peroxidase activity as a function of dietary selenomethionine. Nature (Lond.) 1974;247:392–393. doi: 10.1038/247392a0. [DOI] [PubMed] [Google Scholar]
  16. Thompson C D, Rea H M, Doesburg V M, Robinson M F. Selenium concentration and glutathione peroxidase activities in whole blood of New Zealand residents. Brit. J. Nutr. 1977;37:457–460. doi: 10.1079/BJN19770049. [DOI] [PubMed] [Google Scholar]
  17. Wilson P S, Judson G J. Glutathione peroxidase activity in bovine and ovine erythrocytes in relation to blood Selenium concentration. Brit. vet. J. 1976;132:428–434. doi: 10.1016/S0007-1935(17)34644-4. [DOI] [PubMed] [Google Scholar]

Articles from Acta Veterinaria Scandinavica are provided here courtesy of BMC

RESOURCES