Skip to main content
Acta Veterinaria Scandinavica logoLink to Acta Veterinaria Scandinavica
. 1981 Jun 1;22(2):198–210. doi: 10.1186/BF03547509

The Epithelium Covering Peyer’s Patches in Young Milk-Fed Calves

An Ultrastructural and Enzyme Histochemical Investigation

Epitelet over Peyerplettene hos unge melke-fôrede kalver. En Ultrastrukturell og enzymhistokjemisk undersøkelse

Thor Landsverk 1,
PMCID: PMC8300452  PMID: 7304361

Abstract

Between the ordinary villi over Peyer’s patches there are small domes or “pseudovilli” caused by bulges in the lymphoid tissue. These “pseudovilli” were studied in 5 healthy milk-fed, about 3-week-old, pre-ruminant calves. Scanning electron microscopy revealed that the “pseudovilli” were covered by a specialized follicle associated epithelium (FAE). The FAE had poorly developed microvilli and often extensive folding of the cell surface close to the cell borders. By transmission electron microscopy the tips of the marginal folds of the FAE seemed to fuse, probably in the process of enfolding bulk material from the lumen. The FAE apical cytoplasm contained numerous thick-walled and bristle-coated invaginations, tubules and vesicles indicative of micropinocytosis. Multivesicular bodies and large vacuoles were frequent. Indications of extracellular unloading of residual bodies were found. Intraepithelial lymphocytes tended to group together, and some were rich in rough endoplasmic reticulum. Enzyme histochemistry showed weak reactions of adenosine triphosphate splitting enzyme and aminopeptidase in the FAE luminal cell border. Cytoplasmic acid phosrphatase showed a marked basal-apical decrease along the “pseudovillus” probably caused by the onset of endocytosis. The results of this study appear compatible with the concept that the FAE takes up macromolecules from the lumen by pinocytosis and sensitizes lymphocytes.

Keywords: Peyer’s patches, epithelial cells, microfolds, endocytosis, enzymes, calves

Full Text

The Full Text of this article is available as a PDF (4.2 MB).

Footnotes

This study was supported by grants from the Agricultural Research Council of Norway.

References

  1. Abrahams S J, Holtzman E. Secretion and endocytosis in insulin-stimulated rat adrenal medulla cells. J. Cell Biol. 1973;56:540–558. doi: 10.1083/jcb.56.2.540. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Andrew, W. & Y. Shimuzu: Lymphocyte-epithelial relations in the rabbit appendix. Anat. Rec. 1966, 154, 309. (abstr.)
  3. Bookman D E, Cooper M D. Pinocytosis by epithelium associated with lymphoid follicles in the bursa of Fabricius, appendix, and Peyer’s patches. An electron microscopic study. Amer. J. Anat. 1973;136:455–478. doi: 10.1002/aja.1001360406. [DOI] [PubMed] [Google Scholar]
  4. Bookman D E, Cooper M D. Early lymphoepithelial relationships in human appendix. A combined light- and electron-microscopic study. Gastroenterology. 1975;68:1160–1168. doi: 10.1016/S0016-5085(75)80230-7. [DOI] [PubMed] [Google Scholar]
  5. Carter P B, Collins F M. The route of enteric infection in normal mice. J. exp. Med. 1974;139:1189–1203. doi: 10.1084/jem.139.5.1189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chapman H A, Johnson J S, Cooper M D. Ontogeny of Peyer’s patches and immunoglobulin-containing cells in pigs. J. Immunol. 1974;112:555–563. [PubMed] [Google Scholar]
  7. Chu R M, Glock R D, Foss R F. Gut-associated lymphoid tissues of young swine with emphasis on dome epithelium of aggregated lymph nodules (Peyer’s patches) of the small intestine. Amer. J. vet. Res. 1979;40:1720–1728. [PubMed] [Google Scholar]
  8. Clark S L. The ingestion of proteins and colloidal materials by columnar absorptive cells of the small intestine in suckling rats and mice. J. biophys. biochem. Cytol. 1959;5:41–65. doi: 10.1083/jcb.5.1.41. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Craig S W, Cebra J J. Peyer’s patches: An enriched source of precursors for IgA-producing immunocytes in the rabbit. J. exp. Med. 1971;134:188–200. doi: 10.1084/jem.134.1.188. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. de Duve D, Wattiaux R. Functions of lysosomes. Ann. Rev. Physiol. 1966;28:435–492. doi: 10.1146/annurev.ph.28.030166.002251. [DOI] [PubMed] [Google Scholar]
  11. Fawcett D W. Surface specializations of absorbing cells. J. Histochem. Cytochem. 1965;13:75–91. doi: 10.1177/13.2.75. [DOI] [PubMed] [Google Scholar]
  12. Friedenstein A, Goncharenko I. Morphological evidence of immunological relationships in the lymphoid tissue of rabbit appendix. Nature (Lond.) 1965;206:1113–1115. doi: 10.1038/2061113b0. [DOI] [PubMed] [Google Scholar]
  13. Friend D S, Farquhar M G. Functions of coated vesicles during protein absorption in the rat vas deferens. J. Cell Biol. 1967;35:357–376. doi: 10.1083/jcb.35.2.357. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Genze J J, Kramer M F. Function of coated membranes and multivesicular bodies during membrane regulation in stimulated exocrine pancreas cells. Cell Tissue Res. 1974;156:1–20. doi: 10.1007/BF00220098. [DOI] [PubMed] [Google Scholar]
  15. Gowans J L, Knight E J. The route of recirculation of lymphocytes in the rat. Proc. roy. Soc. B. 1964;159:257–282. doi: 10.1098/rspb.1964.0001. [DOI] [PubMed] [Google Scholar]
  16. Hohmann A W, Schmidt G, Rowley D. Intestinal colonization and virulence of Salmonella in mice. Infect. Immun. 1978;22:763–770. doi: 10.1128/IAI.22.3.763-770.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Humphreys, W. J., B. O. Spurlock & J. S. Johnson: Critical-point drying of cryofractured specimens. In: M. A. Hayat: Principles and Techniques of Scanning Electron Microscopy. Biological Applications, Van Nostrand Reinhold Company. New York, London, Toronto, Melbourne 1978, pp. 136–158.
  18. Husband A J, Gowans J L. The origin and antigen-dependent distribution of IgA-containing cells in the intestine. J. exp. Med. 1978;148:1146–1160. doi: 10.1084/jem.148.5.1146. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Isomäki, A. M.: A new cell type (tuft cell) in the gastrointestinal mucosa of the rat. A transmission and scanning electron microscopic study. Acta path, microbiol. scand. 1973, suppl. 230. [PubMed]
  20. Karnovsky, M. J.: A formaldehyde-glutaraldehyde fixative of high osmolality for use in electron microscopy. J. Cell Biol. 1965, 27, 137A–138A.
  21. Kerr J F R. Liver defaecation: An electron microscope study of the discharge of lysosomal residual bodies into the intercellular space. J. Path. 1970;100:99–104. doi: 10.1002/path.1711000204. [DOI] [PubMed] [Google Scholar]
  22. Kraehenbuhl J P, Campiche M A. Early stages of intestinal absorption of specific antibodies in the newborn. An ultrastructural, cytochemical, and immunological study in the pig, rat, and rabbit. J. Cell Biol. 1969;42:345–365. doi: 10.1083/jcb.42.2.345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. La Brec E H, Formal S B. Experimental Shigella infections. IV. Fluorescent antibody studies of an infection in guinea pigs. Immunol. 1961;87:562–572. [PubMed] [Google Scholar]
  24. Landsverk T. The gastrointestinal mucosa in young milk-fed calves. A scanning electron and light microscopic investigation. Acta vet. scand. 1979;20:572–582. doi: 10.1186/BF03546585. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Landsverk T. Histochemical distribution of enzymes in the small intestine of young milk-fed calves. Acta vet. scand. 1980;21:402–414. doi: 10.1186/BF03546873. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Locke M, Collins J V. Protein uptake into multivesicular bodies and storage granules in the fat body of an insect. J. Cell Biol. 1968;36:453–483. doi: 10.1083/jcb.36.3.453. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Maunsbach, A. B.: Functions of lysosomes in kidney cells. In: J. T. Dingle and H. B. Fell: Lysosomes in Biology and Pathology 1. North Holland Publishing Company. Amsterdam, London 1969, pp. 115–154.
  28. Moxon L A, Wild A E, Slade B S. Localisation of proteins in coated micropinocytic vesicles during transport across rabbit yolk sac endoderm. Cell Tissue Res. 1976;171:175–193. doi: 10.1007/BF00219405. [DOI] [PubMed] [Google Scholar]
  29. Müller-Schoop J W, Good R A. Functional studies of Peyer’s patches: Evidence for their participation in intestinal immune response. J. Immunol. 1975;114:1757–1760. [PubMed] [Google Scholar]
  30. Munnell J F, Cork L C. Exocytosis of residual bodies in a lysosomal storage disease. Amer. J. Path. 1980;98:385–394. [PMC free article] [PubMed] [Google Scholar]
  31. Nabeyama A, Leblond C P. “Caveolated cells” characterized by deep surface invaginations and abundant filaments in mouse gastro-intestinal epithelia. Amer. J. Anat. 1974;140:147–166. doi: 10.1002/aja.1001400203. [DOI] [PubMed] [Google Scholar]
  32. Nicander, L. & L. Pløen: Studies on regional fine structure and function in the rabbit epididymis. Int. J. Androl. 1979, 2, 463–481.
  33. Owen R L. Sequential uptake of horseradish peroxidase by lymphoid follicle epithelium of Peyer’s patches in the normal unobstructured mouse intestine: an ultrastructural study. Gastroenterology. 1977;72:440–451. doi: 10.1016/S0016-5085(77)80254-0. [DOI] [PubMed] [Google Scholar]
  34. Owen R L, Jones A L. Epithelial cell specialization within human Peyer’s patches: an ultrastructural study of intestinal lymphoid follicles. Gastroenterology. 1974;66:189–203. doi: 10.1016/S0016-5085(74)80102-2. [DOI] [PubMed] [Google Scholar]
  35. Owen R L, Nemanic P. Antigen processing structures of the mammalian intestinal tract, a SEM study of lymphoepithelial organs. Scanning Electron Microscopy SEM Inc., AMF O’Hare, USA, 1978;11:367–375. [Google Scholar]
  36. Pierce N F, Gowans J L. Cellular kinetics of the intestinal immune response to cholera toxoid in rats. J. exp. Med. 1975;142:1550–1563. doi: 10.1084/jem.142.6.1550. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Rahko T. The pathology of natural Fasciola hepatica infection in cattle. Path. vet. 1969;6:244–256. doi: 10.1177/030098586900600306. [DOI] [PubMed] [Google Scholar]
  38. Reynolds J. Gut associated lymphoid tissues in lambs before and after birth. Monogr. Allergy. 1980;16:187–202. [PubMed] [Google Scholar]
  39. Sawicki W, Kūcharczyk K, Szymanska K, Kujawa M. Lamina propria macrophages of intestine of the guinea pig. Possible role in phagocytosis of migrating cells. Gastroenterology. 1977;73:1340–1344. doi: 10.1016/S0016-5085(19)31511-2. [DOI] [PubMed] [Google Scholar]
  40. Schmedtje, J. F.: Some histochemical characteristics of lymphoepithelial cells of the rabbit appendix. Anat. Rec. 1965, 151, 412–413. (abstr.)
  41. Shimuzu Y, Andrew W. Studies on the rabbit appendix. I. Lymphocyte-epithelial relations and the transport of bacteria from lumen to lymphoid nodule. J. Morph. 1967;123:231–250. doi: 10.1002/jmor.1051230304. [DOI] [PubMed] [Google Scholar]
  42. Sobhon P. The light and the electron microscopic studies of Peyer’s patches in non germ-free adult mice. J. Morph. 1971;135:457–482. doi: 10.1002/jmor.1051350404. [DOI] [PubMed] [Google Scholar]
  43. Waksman B H. The homing pattern of thymus-derived lymphocytes in calf and neonatal mouse Peyer’s patches. J. Immunol. 1973;111:878–884. [PubMed] [Google Scholar]
  44. von Weyrauch K D. Über die Feinstruktur der Büschelzelle in verschiedenen Epithelien der Hauswiederkäuer. (Ultrastructure of the tuftcell in some epithelia of the domestic ruminants) Anat. Anz. 1979;146:141–151. [PubMed] [Google Scholar]

Articles from Acta Veterinaria Scandinavica are provided here courtesy of BMC

RESOURCES