Skip to main content
Microorganisms logoLink to Microorganisms
. 2021 Jul 14;9(7):1509. doi: 10.3390/microorganisms9071509

Predicted Cellular Interactors of the Endogenous Retrovirus-K Integrase Enzyme

Ilena Benoit 1,, Signy Brownell 1,, Renée N Douville 1,2,*
Editors: Martin S Staege, Alexander Emmer
PMCID: PMC8303831  PMID: 34361946

Abstract

Integrase (IN) enzymes are found in all retroviruses and are crucial in the retroviral integration process. Many studies have revealed how exogenous IN enzymes, such as the human immunodeficiency virus (HIV) IN, contribute to altered cellular function. However, the same consideration has not been given to viral IN originating from symbionts within our own DNA. Endogenous retrovirus-K (ERVK) is pathologically associated with neurological and inflammatory diseases along with several cancers. The ERVK IN interactome is unknown, and the question of how conserved the ERVK IN protein–protein interaction motifs are as compared to other retroviral integrases is addressed in this paper. The ERVK IN protein sequence was analyzed using the Eukaryotic Linear Motif (ELM) database, and the results are compared to ELMs of other betaretroviral INs and similar eukaryotic INs. A list of putative ERVK IN cellular protein interactors was curated from the ELM list and submitted for STRING analysis to generate an ERVK IN interactome. KEGG analysis was used to identify key pathways potentially influenced by ERVK IN. It was determined that the ERVK IN potentially interacts with cellular proteins involved in the DNA damage response (DDR), cell cycle, immunity, inflammation, cell signaling, selective autophagy, and intracellular trafficking. The most prominent pathway identified was viral carcinogenesis, in addition to select cancers, neurological diseases, and diabetic complications. This potentiates the role of ERVK IN in these pathologies via protein–protein interactions facilitating alterations in key disease pathways.

Keywords: endogenous retrovirus, integrase, interactome, eukaryotic linear motif, DNA damage response, viral carcinogenesis, cancer, amyotrophic lateral sclerosis, diabetes, model organisms

1. Introduction

Viral proteins often usurp and alter cellular signaling pathways. For exogenous viruses, this tweaking of cellular function serves to enhance their replicative success through the modulation of pathways related to virion production, dissemination, cell survival, and immunity [1,2]. It is less clear in what manner ever-present viral symbionts such as endogenous retroviruses (ERVs) interact with the proteome of their hosts.

The genomes of eukaryotic organisms are widely populated with ERVs [3,4,5]. Endogenous retrovirus-K (ERVK/HERV-K) is a biomedically-relevant symbiont within the primate lineage [6,7]. Its expression has been associated with a variety of cancers [8], neurological conditions [9,10,11,12,13], autoimmune diseases [14], and infections [13,15]. A common thread that weaves through ERVK-associated disease is genomic instability. DNA damage and genomic alterations are hallmarks of many cancers [16], as well as in the neurons of patients with the motor neuron disease ALS [17,18]. One protein known to cause DNA damage during the retroviral life cycle is the integrase (IN) enzyme [19]. Recovery from IN-driven lesions is reliant on the host DNA damage response (DDR) [20,21].

We have previously shown that several ERVK insertions in the human genome have the potential to produce functional ERVK IN enzymes with the identical DDE active site motif found in human immunodeficiency virus (HIV) IN [22]. Based on homology modeling, we predict that the ERVK IN enzyme contains all the essential motifs and domain structures for retroviral IN function [22]. A recombinant ERVK-10 integrase enzyme also confirms that it has the potential for strand-transfer activity [23]. A remaining question is how ERVK IN interacts with cellular proteins and pathways, as has been shown for many other retroviral integrases [19,24,25,26].

Retroviral INs are involved in pre-integration complex (PIC) transport [27], viral genome integration into host DNA [19], and virion maturation [28]. Thus, retroviral integrase enzymes exhibit a diversity of cellular partners and have been shown to impact cell signaling and survival processes, including the DDR [19,29]. For example, retroviral IN often recruits viral proteins (reverse transcriptase, matrix, and capsid) and cellular factors (BANF1, HGMA1, LEDGF) to participate in the viral DNA integration process [30,31]. Moreover, successful viral DNA integration requires engagement of the host DDR proteins to repair residual single-stranded DNA gaps flanking the integration site [20,29,32]. In contrast, failed provirus insertion or unresolved lesions can lead to double-stranded DNA (dsDNA) breaks in the host genome [29]. The level of γH2AX foci is positively correlated with the number of double-stranded DNA breaks (DSB) in mammalian cells, and it is widely used as a quantitative biomarker of retrovirus-mediated DSBs [19,33,34]. This genomic damage is particularly hazardous to the cell, as DSB potentially lead to chromosomal rearrangements, cellular deregulation, and apoptosis [35,36]. Thus, as an intrinsic protective measure, select host proteins (RAD51, Kap1, TREX1, p21, HDAC10, TRIM33) are known antagonists of the retroviral integration process [31,37,38,39,40]. Many studies have identified direct protein binding partners and cellular complexes which interact with HIV integrase [41,42,43]; in contrast, the ERVK IN interactome remains unknown.

A complicating factor for the development of model systems to study the impact of ERVK proteins in vivo is that many other organisms contain ERVs with similarity to ERVK. Given the known cellular impacts of retroviral integrases, we hypothesized that a computational biology approach would identify potential cellular partners of ERVK IN and point toward its capacity to modulate cellular pathways. Additionally, a comparison with similar integrases in eukaryotic organism and model species may inform the future establishment of in vivo models for ERVK IN-driven pathology.

2. Materials and Methods

2.1. Database Curation

Integrases with sequence similarity to ERVK IN (based on ERVK-10 [22]; P10266.2) were identified using the National Centre for Biotechnology’s (NCBI) Protein–protein Basic Local Alignment Search Tool (BLASTp) within the non-redundant (nr), model organisms (mo), and transcriptome shotgun assembly proteins (tsa) databases [44]. Default algorithm parameters were used, with E-value cut-offs for each database as follows: E < 3.0 × 10−70 (nr), E < 0.01 (mo), E < 2.0 × 10−10 (tsa). Sequences were grouped based on phylogeny as informed by ICTV (International Committee on Taxonomy of Viruses; 2021, https://talk.ictvonline.org/ (accessed on 16 May 2021)) or OneZoom (OneZoom Tree of Life Explorer; version 3.4.1; Software for Technical Computation; United Kingdom, 2021, https://www.onezoom.org/ (accessed on 16 May 2021)) [45] and are listed in Table A1, Table A2, Table A3 and Table A4.

2.2. Protein Alignments and Eukaryotic Linear Motif Annotation

The ERVK IN protein sequence, as well as select representative integrases from exogenous Betaretroviruses (Figure 1) or endogenous retroviruses (Figure 2) were aligned using Geneious Prime (version 2021.0.3; Software for Technical Computation; San Diego, CA, USA; Auckland, New Zealand, 2021) software [46]. A global alignment with free end gaps using BLOSUM62 matrix was performed. Longer sequences were truncated to overlap with the ERVK IN reference sequence. Figures depict the sequence logo and integrase active sites, with HHCC and DDE regions highlighted based on Conserved Domains Database (CDD) annotation [47].

Figure 1.

Figure 1

ERVK integrase and exogenous betaretrovirus integrases share common eukaryotic linear motifs. In silico examination of the conserved and differential eukaryotic linear motifs (ELMs) within Endogenous retrovirus-K (ERVK) and similar betaretroviral integrases. A betaretroviral integrase consensus sequence was constructed using GenBank sequences as follows: Endogenous retrovirus-K (ERVK; P10266.2), Exogenous mouse mammary tumor virus (MMTV; AAF31469.1), Mason–Pfizer monkey virus 5 (M-PMV; BBG56792.1), Enzootic nasal tumor virus (ENTV; ANG58699.1) and Jaagsiekte sheep retrovirus (JSRV; NP_041186.1). The HHCC region and DDE active site motif (gray, with key aa. in black) was positioned based on Conserved Domains annotations. ELMs were grouped based on related pathways: DNA damage response (dark blue), cell cycle (cyan), cell signaling (green), cell trafficking (magenta), autophagy (mauve), and glycosylation (red). ELM abbreviations used include: 14-3-3 = 14-3-3 protein interaction site, BRCT = BRCA1 C-terminus domain interaction site, CK1-P = casein kinase 1 phosphorylation site, Cyclin = cyclin docking site, EBH = end binding homology domain interaction site, ERK/p38 = ERK1/2 and p38 MAP kinase docking site, FHA = Forkhead-associated domain interaction site, GlyNH = glycosaminoglycan attachment site, GSK3-P = GSK3 phosphorylation site, IAP = inhibitor of apoptosis protein interaction site, ITIM = immunoreceptor tyrosine-based inhibitory motif, LIR = site that interacts with Atg8 protein family members, NEK2-P = NEK2 phosphorylation site, p38-P = p38 phosphorylation site, Pex14 = peroxisomal membrane docking via Pex14, PIKK-P = PIKK family phosphorylation site, Pin1 = docking site for Pin1 via WW domain interaction, PKA-P = PKA phosphorylation site, PLK-P = polo-like kinase phosphorylation site, PP1c = protein phosphatase 1 catalytic subunit docking motif, SH2 = Src homology 2 domain interaction motif, SH3 = interaction site for non-canonical class I recognition specificity SH3 domains, STAT3 = STAT3 SH2 domain binding motif, STAT5 = STAT5 SH2 domain binding motif, TRAF2 = major TRAF2 binding consensus motif, USP7 = USP7 MATH (M) or UBL2 (U) domain interaction sites, WDR5 = interaction motif for WDR5 via WW domain interaction. Asterisks indicate ELMs unique to ERVK. Sequence alignment and annotation were performed using Geneious Prime software.

Figure 2.

Figure 2

ERVK integrase and similar endogenous integrases share eukaryotic linear motifs patterns. Modified OneZoom image illustrating the conservation of ELM motifs in integrases from eukaryotic organisms (Homo sapiens, Macaca fasicicularis, Fukomys damarensis, Ochotona princeps, Equis asinus, and Capra hircus). Motifs are color-grouped according to function; DDR (blue), cell cycle (cyan), cell signaling (green), and intracellular trafficking (magenta). The number in each colored shape refers to the number of motifs with the respective integrase enzyme.

Each aligned integrase sequence was submitted to the Eukaryotic Linear Motif (ELM; Software for Technical Computation; 2020, http://elm.eu.org/ (accessed on 16 May 2021)) resource [48]. A complete listing of ELMs identified in each integrase is presented in Table 1 and Table 2. ELMs unique to ERVK IN, as well as ELM sites exhibiting motif consensus above 70% with other integrases, were annotated in Figure 1 and Figure 2.

Table 1.

ELM motifs in integrases from ERVK and exogenous betaretroviruses.

ELM Motif ELM Accession Alignment Notation Integrase Conservation
ERVK MMTV M-PMV ENTV JSRV
Cleavage and
degradation
CLV_C14_Caspase3-7 ELME000321 1 0 0 0 2 0.4
CLV_PCSK_KEX2_1 ELME000108 1 0 0 0 0 0.2
CLV_NRD_NRD_1 ELME000102 0 1 0 1 1 0.6
CLV_PCSK_PC1ET2_1 ELME000100 1 0 0 0 0 0.2
CLV_PCSK_SKI1_1 ELME000146 5 4 4 1 0 0.8
DEG_APCC_DBOX_1 ELME000231 0 0 0 1 0 0.2
Docking DOC_CKS1_1 ELME000358 0 1 0 0 0 0.2
DOC_CYCLIN_RxL_1 ELME000106 Cyclin 2 0 2 0 0 0.4
DOC_MAPK_gen_1 ELME000233 0 2 0 1 1 0.6
DOC_MAPK_MEF2A_6 ELME000432 ERK/p38 1 1 0 1 1 0.8
DOC_PP1_RVXF_1 ELME000137 PP1c 3 1 1 1 1 1.0
DOC_PP2B_LxvP_1 ELME000367 1 0 1 0 0 0.4
DOC_PP4_FxxP_1 ELME000477 0 1 0 1 1 0.6
DOC_USP7_MATH_1 ELME000239 USP7_M 1 3 0 2 2 0.8
DOC_USP7_UBL2_3 ELME000394 USP7_U 1 0 1 0 0 0.4
DOC_WW_Pin1_4 ELME000136 Pin1 3 6 1 3 2 1.0
Ligand LIG_14-3-3_CanoR_1 ELME000417 14-3-3 2 1 1 2 2 1.0
LIG_14-3-3_CterR_2 ELME000418 14-3-3 * 1 0 0 0 0 0.2
LIG_Actin_WH2_2 ELME000313 0 1 0 1 1 0.6
LIG_APCC_ABBA_1 ELME000435 0 1 0 0 0 0.2
LIG_BIR_II_1 ELME000285 IAP 1 1 1 1 1 1.0
LIG_BIR_III_4 ELME000293 0 0 0 1 0 0.2
LIG_BRCT_BRCA1_1 ELME000197 BRCT 1 0 1 1 1 0.8
LIG_BRCT_BRCA1_2 ELME000198 BRCT1 * 1 0 0 0 0 0.2
LIG_CSL_BTD_1 ELME000410 1 1 0 0 0 0.4
LIG_EH1_1 ELME000148 0 0 1 0 1 0.4
LIG_eIF4E_1 ELME000317 0 1 0 0 0 0.2
LIG_FHA_1 ELME000052 FHA 5 1 2 0 1 0.8
LIG_FHA_2 ELME000220 FHA 2 1 1 1 0 0 0.6
LIG_LIR_Apic_2 ELME000369 0 3 2 1 1 0.8
LIG_LIR_Gen_1 ELME000368 LIR 2 0 0 0 0 0.2
LIG_MAD2 ELME000167 0 0 0 1 0 0.2
LIG_NRBOX ELME000045 0 0 0 1 0 0.2
LIG_LIR_Nem_3 ELME000370 0 6 7 1 4 0.8
LIG_Pex14_1 ELME000080 Pex14 1 0 0 0 0 0.2
LIG_Pex14_2 ELME000328 Pex14 2 2 1 1 1 1.0
LIG_PTB_Apo_2 ELME000122 0 0 1 0 1 0.4
LIG_PTB_Phospho_1 ELME000095 0 0 0 0 1 0.2
LIG_RPA_C_Fungi ELME000382 0 0 1 1 1 0.6
LIG_SH2_CRK ELME000458 0 2 0 0 0 0.2
LIG_SH2_NCK_1 ELME000474 0 1 0 0 0 0.2
LIG_SH2_PTP2 ELME000083 SH2 1 1 0 1 1 0.8
LIG_SH2_SRC ELME000081 SH2 1 1 1 1 1 1.0
LIG_SH2_STAP1 ELME000465 2 1 0 0 0 0.4
LIG_SH2_STAT3 ELME000163 STAT3 2 1 1 1 1 1.0
LIG_SH2_STAT5 ELME000182 STAT5 3 3 2 3 3 1.0
LIG_SH3_1 ELME000005 0 1 0 0 0 0.2
LIG_SH3_3 ELME000155 SH3 1 2 1 1 1 1.0
LIG_SH3_4 ELME000156 0 0 0 1 0 0.2
LIG_SxIP_EBH_1 ELME000254 EBH 1 1 1 1 2 1.0
LIG_TRAF2_1 ELME000117 TRAF2 1 1 0 1 1 0.8
LIG_TYR_ITIM ELME000020 ITIM 1 1 1 1 1 1.0
LIG_Vh1_VBS_1 ELME000438 0 0 0 0 1 0.2
LIG_WD40_WDR5_VDV_2 ELME000365 WDR5 2 10 3 8 9 1.0
LIG_WW_3 ELME000135 0 1 0 0 0 0.2
Modification MOD_CDK_SPK_2 ELME000429 0 0 1 0 0 0.2
MOD_CDK_SPxK_1 ELME000153 0 1 0 0 0 0.2
MOD_CK1_1 ELME000063 CK1-P 1 3 2 4 4 1.0
MOD_CK2_1 ELME000064 3 3 1 0 0 0.6
MOD_Cter_Amidation ELME000093 1 0 0 0 0 0.2
MOD_GlcNHglycan ELME000085 GlyNH 1 2 3 1 2 1.0
MOD_GSK3_1 ELME000053 GSK3-P 3 4 2 1 2 1.0
MOD_NEK2_1 ELME000336 NEK2-P 2 3 3 2 4 1.0
MOD_NEK2_2 ELME000337 0 0 1 0 0 0.2
MOD_N-GLC_1 ELME000070 1 0 1 2 0 0.6
MOD_PIKK_1 ELME000202 5 0 1 0 0 0.4
MOD_PKA_1 ELME000008 0 1 0 0 0 0.2
MOD_PKA_2 ELME000062 PKA-P 1 0 1 2 2 0.8
MOD_Plk_1 ELME000442 PLK-P 4 1 2 1 1 1.0
MOD_Plk_4 ELME000444 1 0 1 0 0 0.4
MOD_ProDKin_1 ELME000159 p38-P 3 6 1 3 2 1.0
MOD_SUMO_rev_2 ELME000393 1 1 0 0 0 0.4
Target TRG_ENDOCYTIC_2 ELME000120 2 4 2 1 1 1.0
TRG_Pf-PMV_PEXEL_1 ELME000462 1 2 1 1 1 1.0

GenBank accession numbers for betaretroviral integrase sequences are as follows: Endogenous retrovirus-K (ERVK; P10266.2), Exogenous mouse mammary tumor virus (MMTV; AAF31469.1), Mason–Pzifer monkey virus 5 (M-PMV; BBG56792.1), Enzootic nasal tumor virus (ENTV; ANG58699.1) and Jaagsiekte sheep retrovirus (JSRV; NP_041186.1). Asterisk indicates ERVK-specific ELM motif in Figure 1.

Table 2.

ELM motifs in ERVK integrase and similar endogenous integrases in eukaryotes.

ELM Motif ELM Accession ERVK Integrase
(Homo sapiens)
ERVK-8 Pol protein-Like
(Macaca fascicularis)
Pol Protein
(Chlorocebus sabaeus)
Pol Protein
(Fukomys darmarensis)
Putative Protein
(Ochonta princeps)
ERVK-8 pol Protein-Like
(Equus asinus)
ERVK-18 pol Protein-Like
(Capra hircus)
Pol Protein
(Ovis aries)
Putative Protein
(Zonotrichia albicollis)
Putative Protein
(Zosterops borbonicus)
Integrase
(Onchocerca flexuosa)
Motif conservation
Cleavage CLV_C14_Caspase3-7 ELME000321 1 0 0 0 1 0 0 0 0 0 0 0.2
CLV_NRD_NRD_1 ELME000102 0 0 0 0 0 0 0 1 0 0 1 0.2
CLV_PCSK_KEX2_1 ELME000108 1 2 0 0 0 0 0 0 0 1 0 0.3
CLV_PCSK_PC1ET2_1 ELME000100 1 2 0 0 0 0 0 0 0 1 0 0.3
CLV_PCSK_SKI1_1 ELME000146 5 3 4 3 7 8 0 0 3 5 2 0.8
Degradation DEG_APCC_DBOX_1 ELME000231 0 0 0 0 0 0 0 0 0 0 1 0.1
DEG_MDM2_SWIB_1 ELME000184 0 0 0 0 0 0 0 0 1 0 0 0.1
Docking DOC_CKS1_1 ELME000358 0 1 0 0 2 0 0 0 1 2 1 0.5
DOC_CYCLIN_RxL_1 ELME000106 2 1 2 0 2 2 0 0 3 3 1 0.7
DOC_MAPK_DCC_7 ELME000433 0 0 0 1 0 0 0 0 0 0 1 0.2
DOC_MAPK_gen_1 ELME000233 0 1 0 3 5 2 1 1 2 4 1 0.8
DOC_MAPK_HePTP_8 ELME000434 0 0 0 0 0 0 0 0 0 0 1 0.1
DOC_MAPK_MEF2A_6 ELME000432 1 1 0 0 2 1 1 1 3 4 3 0.8
DOC_PP1_RVXF_1 ELME000137 3 3 1 1 0 0 1 1 0 1 1 0.7
DOC_PP2A_B56_1 ELME000425 0 0 0 1 0 0 0 0 0 0 0 0.1
DOC_PP2B_LxvP_1 ELME000367 1 1 2 0 0 0 0 0 1 1 1 0.5
DOC_PP2B_PxIxI_1 ELME000237 0 0 0 0 1 0 0 0 0 0 0 0.1
DOC_PP4_FxxP_1 ELME000477 0 1 1 1 1 1 1 0 0 0 2 0.6
DOC_USP7_MATH_1 ELME000239 1 3 0 1 1 1 2 2 3 1 3 0.9
DOC_USP7_MATH_2 ELME000240 0 1 0 0 1 0 0 0 0 0 0 0.2
DOC_USP7_UBL2_3 ELME000394 1 2 0 0 0 0 0 0 1 3 0 0.4
DOC_WW_Pin1_4 ELME000136 3 0 1 0 6 2 2 2 3 3 1 0.8
Ligand LIG_14-3-3_CanoR_1 ELME000417 2 4 1 1 2 2 1 2 3 1 1 1.0
LIG_14-3-3_CterR_2 ELME000418 1 0 0 0 0 0 0 0 0 0 0 0.1
LIG_Actin_WH2_2 ELME000313 0 0 1 1 0 0 1 1 0 1 1 0.5
LIG_APCC_ABBA_1 ELME000435 0 0 0 1 0 1 0 0 0 0 0 0.2
LIG_BIR_II_1 ELME000285 1 1 1 1 1 1 1 1 1 1 1 1.0
LIG_BIR_III_4 ELME000293 0 0 0 0 0 0 1 1 0 0 0 0.2
LIG_BRCT_BRCA1_1 ELME000197 1 2 0 1 0 0 1 1 0 0 2 0.5
LIG_BRCT_BRCA1_2 ELME000198 1 1 0 0 0 0 0 0 0 0 0 0.2
LIG_CSL_BTD_1 ELME000410 1 0 1 1 1 1 0 0 0 0 0 0.5
LIG_deltaCOP1_diTrp_1 ELME000459 0 0 0 0 0 0 0 0 1 0 0 0.1
LIG_EH1_1 ELME000148 0 0 1 0 0 0 1 1 0 0 0 0.3
LIG_eIF4E_1 ELME000317 0 0 0 0 1 0 0 0 0 0 1 0.2
LIG_FHA_1 ELME000052 5 5 5 3 2 0 0 1 1 1 4 0.8
LIG_FHA_2 ELME000220 1 1 0 1 3 2 0 0 0 1 0 0.5
LIG_LIR_Apic_2 ELME000369 0 3 3 2 1 2 1 1 1 0 1 0.8
LIG_LIR_Gen_1 ELME000368 2 1 1 1 2 1 0 1 1 1 0 0.8
LIG_LIR_Nem_3 ELME000370 6 5 7 6 7 3 4 4 1 3 6 1.0
LIG_LYPXL_S_1 ELME000294 0 0 0 0 0 0 0 0 0 0 1 0.1
LIG_PCNA_PIPBox_1 ELME000140 0 0 1 0 0 0 0 0 0 0 0 0.1
LIG_PCNA_yPIPBox_3 ELME000482 0 0 0 2 2 2 0 0 0 0 0 0.3
LIG_Pex14_1 ELME000080 1 0 0 0 1 0 0 0 2 2 0 0.4
LIG_Pex14_2 ELME000328 2 3 1 2 0 2 1 1 1 2 1 0.9
LIG_PTB_Apo_2 ELME000122 0 0 0 2 1 0 1 1 1 1 0 0.5
LIG_PTB_Phospho_1 ELME000095 0 0 0 1 1 0 1 1 0 0 0 0.4
LIG_REV1ctd_RIR_1 ELME000450 0 0 0 0 0 0 0 0 1 0 0 0.1
LIG_RPA_C_Fungi ELME000382 0 0 0 0 0 0 1 1 0 1 0 0.3
LIG_SH2_CRK ELME000458 0 1 0 1 2 2 0 0 1 1 0 0.5
LIG_SH2_GRB2like ELME000084 0 0 0 0 0 0 0 0 0 0 1 0.1
LIG_SH2_NCK_1 ELME000474 0 1 0 1 0 1 0 0 1 1 0 0.5
LIG_SH2_PTP2 ELME000083 1 0 1 1 1 0 1 1 1 0 1 0.7
LIG_SH2_SRC ELME000081 1 0 2 1 1 1 1 1 1 0 2 0.8
LIG_SH2_STAP1 ELME000465 2 1 0 0 1 1 0 0 1 1 1 0.6
LIG_SH2_STAT3 ELME000163 2 2 1 0 1 1 1 1 0 0 1 0.7
LIG_SH2_STAT5 ELME000182 3 1 3 2 3 2 3 3 3 2 5 1.0
LIG_SH3_3 ELME000155 1 2 1 1 3 2 1 1 5 4 2 1.0
LIG_SUMO_SIM_par_1 ELME000333 0 1 0 1 0 0 0 0 1 2 0 0.4
LIG_SxIP_EBH_1 ELME000254 1 0 1 2 0 1 0 2 0 1 1 0.6
LIG_TRAF2_1 ELME000117 1 1 0 1 1 2 1 1 0 0 0 0.6
LIG_TRAF6 ELME000133 0 0 0 0 0 1 0 0 0 0 0 0.1
LIG_TRFH_1 ELME000249 0 0 0 0 0 0 0 0 0 0 1 0.1
LIG_TYR_ITIM ELME000020 1 0 2 1 1 0 1 1 1 0 1 0.7
LIG_UBA3_1 ELME000395 0 0 1 0 0 0 0 0 0 0 1 0.2
LIG_Vh1_VBS_1 ELME000438 0 0 0 1 0 0 1 1 0 1 0 0.4
LIG_WD40_WDR5_VDV_1 ELME000364 0 0 0 0 0 0 0 0 0 1 0 0.1
LIG_WD40_WDR5_VDV_2 ELME000365 2 10 6 5 6 8 8 8 10 10 12 1.0
LIG_WW_3 ELME000135 0 0 0 1 0 0 0 0 0 0 0 0.1
Modification MOD_CDK_SPK_2 ELME000429 0 0 1 0 1 0 0 0 0 0 1 0.3
MOD_CDK_SPxxK_3 ELME000428 0 0 0 0 1 1 0 0 1 1 0 0.4
MOD_CK1_1 ELME000063 1 0 1 2 3 1 3 3 4 3 3 0.9
MOD_CK2_1 ELME000064 3 2 1 4 3 2 0 0 0 1 0 0.6
MOD_CMANNOS ELME000160 0 0 0 0 1 0 0 0 0 0 0 0.1
MOD_Cter_Amidation ELME000093 1 1 0 0 0 0 0 0 0 0 0 0.2
MOD_GlcNHglycan ELME000085 1 3 3 3 2 0 2 2 4 2 5 0.9
MOD_GSK3_1 ELME000053 3 1 3 4 2 2 1 1 0 4 6 0.9
MOD_NEK2_1 ELME000336 2 3 3 2 2 1 4 4 1 2 3 1.0
MOD_NEK2_2 ELME000337 0 0 1 1 1 1 0 0 1 0 1 0.5
MOD_N-GLC_1 ELME000070 3 0 0 2 1 1 0 0 2 1 1 0.6
MOD_N-GLC_2 ELME000079 0 0 1 0 2 0 0 0 0 0 1 0.3
MOD_PIKK_1 ELME000202 5 3 2 1 2 0 0 0 2 1 0 0.6
MOD_PK_1 ELME000065 0 2 0 0 0 1 0 0 0 0 1 0.3
MOD_PKA_1 ELME000008 0 1 0 1 0 1 0 0 0 1 0 0.4
MOD_PKA_2 ELME000062 1 1 1 1 1 2 0 2 1 0 2 0.8
MOD_Plk_1 ELME000442 4 2 1 2 2 4 1 1 2 3 2 1.0
MOD_Plk_4 ELME000444 1 2 3 2 2 2 0 0 1 2 0 0.7
MOD_ProDKin_1 ELME000159 3 3 1 0 6 2 2 2 3 3 1 0.9
MOD_SUMO_for_1 ELME000002 0 0 0 0 0 0 0 0 2 0 0 0.1
MOD_SUMO_rev_2 ELME000393 1 1 0 0 0 0 0 0 0 0 0 0.2
Targeting TRG_ENDOCYTIC_2 ELME000120 2 1 3 2 2 2 1 1 2 1 2 1.0
TRG_LysEnd_APsAcLL_1 ELME000149 0 0 0 0 0 0 0 0 1 0 1 0.2
TRG_NLS_MonoExtC_3 ELME000278 0 0 0 0 0 1 0 0 0 0 0 0.1
TRG_Pf-PMV_PEXEL_1 ELME000462 1 1 1 1 1 1 1 1 1 1 1 1.0

GenBank accession numbers for endogenous integrase sequences are as follows: Endogenous retrovirus-K (ERVK in Homo sapiens; P10266.2), ERVK-8 pol protein-like (Macaca fascicularis; XP_015309771.1), Pol protein (Chlorocebus sabaeus; KFO35018.1), Pol protein (Fukomys darmarensis; BBC20786.1), Putative protein (Ochonta princeps; XP_012786727.1), ERVK-8 pol protein-like (Equus asinus; XP_014715024.1), ERVK-18 pol protein-like (Capra hircus; XP_017905435.1), Pol protein (Ovis aries; ABV71120.1), Putative protein (Zonotrichia albicollis; TRZ15504.1), Putative protein (Zosterops borbonicus; XP_014125095.1), Integrase (Onchocerca flexuosa; OZC05619.1).

2.3. STRING Analysis and KEGG Pathways

To identify potential ERVK IN binding partners based on ELM motifs, the names of interacting proteins were curated from each ELM reference page. When only a general interaction domain for a given ELM was listed, it was further linked to the InterPro database to curate a list of human proteins containing the interaction domain. Based on the 48 ELMs identified in ERVK IN, a total of 213 putative human protein interaction partners were identified (Table A5). The list was submitted to STRING (String Consortium; version 11.0; Software for Technical Computation; 2020, https://string-db.org/, accessed on 16 May 2021) for network analysis. Full network analysis was performed using Experiment and Databases as active interaction sources. Nodes indicate submitted query proteins only, with edges indicating confidence lines with a minimum interaction score of 0.9 (highest confidence). Query proteins unlinked to the network were excluded from analysis. A payload list was used to color hub proteins based on cellular function. KEGG pathways associated with the network analysis (E value < 1.0 × 10−5) were presented in a heatmap using GraphPad Prism (version 9.1.1) software, and the full list of KEGG pathways is presented in Table A6.

3. Results

3.1. Characterization of Eukaryotic Linear Motifs in ERVK Integrase and Other Betaretroviral Integrases

To establish which exogenous and endogenous retroviruses contain integrase sequences most similar to ERVK IN, we performed BLASTp searches using the nr, mo, and tsa NCIB databases. As expected, exogenous Betaretroviruses were identified through BLASPp search, which included multiple hits for Mouse mammary tumor virus (MMTV), Mason–Pfizer monkey virus (M-PMV), Enzootic Nasal Tumor Virus (ENTV), and Jaagsiekte sheep retrovirus (JSRV) (Table A1).

Eukaryotic linear motif (ELM) analysis of a representative sequence from each genus was compared with ERVK IN and revealed the conservation of select protein motifs (Table 1, Figure 1). Apart from the conservation of the HHCC region and DDE active site motif, all betaretroviral integrases also contained many interaction motifs related to DRR, including Pin1 via [ST]P WW domain interaction motifs [49], PP1c docking motif for target dephosphorylation [50], and a S-X-X-S/T CK1 phosphorylation site [51]. All INs except for MMTV contained a low-affinity BRCA1 carboxy-terminal BRCT domain binding motif (CSKAF, aa. 126–132). Betaretroviral INs were also predicted to be phosphorylated by the cell cycle checkpoint kinases NEK2 [52] and PLK-1 [53], as well as interact with a canonical arginine-containing phospho-motif within cell cycle regulating 14-3-3 proteins [54]. Numerous cell signaling protein interactions were predicted including YXXQ motifs for the SH2 domain binding of STAT3 [55], additional SH2 binding motifs related to STAT5 [56] and SRC family kinases [57], SH3 binding motifs with non-canonical class I recognition specificity [58], an IAP-binding motif (aa. 1–4) for interaction with inhibitor of apoptosis proteins (IAP) [59], an ITIM motif [60], several GSK3 phosphorylation sites [61], and proline-directed ERK/p38 MAPK phosphorylation sites [62]. In addition, most betaretroviral IN enzymes contained features related to protein trafficking, such as a Wxxx[FY] motif (aa. 133–137 in ERVK, MMTV, ENTV, and JRSV) that binds Pex13 and Pex14 for peroxisomal import [63], a SxIP motif (aa. 137–150) that binds to EBH domains in end-binding proteins involved in microtubule transport [64], and a tyrosine-based YXXØ sorting signal (aa. 75–78) for interaction with the μ-subunit of adaptor protein complex [65] and a PEXEL-like motif [66]. The DDE region displayed the most consistent pattern of conserved ELMs among the betaretroviral INs. It is important to note that despite the similar complement of ELM motifs in betaretroviral integrases, many were positioned at sites differently than in ERVK IN. Additional ELMs and their motif frequencies in individual betaretroviral integrases are listed in Table 1.

3.2. Characterization of Eukaryotic Linear Motifs in ERVK Integrase and Other Endogenous Integrases

ERVK integrase-like sequences were found in boreoeutherians, including the Euarchontoglires (primates, rodents, and pikas), and Laurasiatherians (ungulates), along with other clades including Euteleostomi (birds) and Protostomes (worms, insects, and water fleas) (Table A2, Table A3 and Table A4). Results ranged from 26.43 to 83.77% identity and E values ranged from 0.001 to 2.0 × 10−127, demonstrating a high degree of similarity with ERVK IN.

The conservation of ELM motifs was apparent (Table 2, Figure 2), including DDR-related canonical 14-3-3 interaction motifs and WDR5 interaction, cell signaling associated with USP7 binding, IAP-binding motif, STAT5 binding motifs, SH3 protein interaction, as well as phosphorylation sites for CK proteins, GSK3, NEK2, polo-like kinases, and p38. Many LIR motifs for engaging Atg8 proteins during selective autophagy were also apparent. Finally, all IN displayed Pex14 binding motifs and potential to interact with the μ-subunit of the adaptor protein complex. Additional ELMs and their motif frequencies in individual endogenous ERVK-like INs are listed in Table 2.

ELMs within endogenous IN but not or rarely identified in ERVK IN were also noted. An Apicomplexa-specific variant of the canonical LIR motif that binds to Atg8 protein family members was present in all endogenous INs except for ERVK IN. In addition, WDR5 binding motifs were much more prevalent in endogenous INs (5–12 sites) other than ERVK IN (only two sites). ERVK IN contained a single MAPK docking site for ERK/p38, whereas other endogenous INs contained several other motifs for MAPK interaction. Lastly, only human and macaque ERVK INs displayed high-affinity BRCT domain interaction motifs.

3.3. Unlike Similar Enzymes, the ERVK Integrase Contains Distinct ELM Signatures

Two motifs in ERVK IN stand out as unique to this virus, while other signatures are enriched in ERVK IN as compared with similar integrases.

3.3.1. ERVK Integrase has a High-Affinity BRCA1 Binding Site

Among all the integrases examined, only ERVK IN in human and macaque harbored a high-affinity binding site for the BRCT domain of BRCA1 (aa. 125–131, CSKAFQK) (Table 1 and Table 2, Figure 1 and Figure 2).

3.3.2. ERVK Integrase C-Terminus Contains a 14-3-3 Binding RASTE Motif

Although 14-3-3 protein binding was predicted as conserved among ERVK-like integrases, only ERVK IN contained a C-terminal RASTE motif (aa. 276–280) mediating strong interaction with 14-3-3 proteins (Table 1, Figure 1). This suggests a putative ERVK IN interaction with 14-3-3 proteins through both canonical phospho-sites and a C-terminal phospho-site.

3.3.3. ERVK Integrase Is Likely Post-Translationally Sumoylated

Unlike all other INs examined, only ERVK and MMTV contain a C-terminal inverted version (D/ExKphi) of the canonical sumoylation motif [67]. Considering that sumoylation often causes re-localization of nuclear proteins, this modification may be related to ERVK IN nuclear positioning, association with chromatin, and ultimately successful integration of viral DNA [68,69].

3.3.4. ERVK Integrase Exhibits Enhanced Interaction Potential with DDR Proteins

Phospho-Ser/Thr binding domain proteins are key hub proteins in cell cycle regulation and DDR, and they include 14-3-3 proteins, WW domains, Polo-box domains, WD40 repeats, BRCA1 carboxy-terminal (BRCT) domains, and Forkhead-associated (FHA) domains [54], all of which are interacting domains of ELMs identified in ERVK IN (Table 1 and Table 2, Figure 1). Additionally, ERVK IN contained five (ST)Q motifs, which are potential phosphorylation sites for PIKK proteins, such as DDR-related proteins ATR, ATM, DNA-PK, and multi-functional protein mTOR [70]. As compared with exogenous betaretroviruses and endogenous ERVK-like integrases, ERVK IN displayed a greater number of DDR-related motifs: FHA domain protein interaction sites (6), PLK-1 phosphorylation sites (4), and PP1c docking motif for target dephosphorylation (3) [50]. In contrast to MMTV, ENTV, JSRV, and most other endogenous integrases, fewer WD40 repeat domain WDR5 interaction sites were found in ERVK IN (2 vs. 5–12 sites each). This suggests ERVK IN has potentially shifted away from WDR5 interaction in favor of BRCA1 (or BRCT domain) interaction as a means to interact with the DDR pathway [54,71].

3.3.5. ERVK Integrase Contains Canonical Selective Autophagy Motifs

Unlike any of the exogenous betaretroviruses, only ERVK IN and some endogenous integrases contained canonical LIR motifs (ELME000368) for binding Atg8 protein family members (Table 1 and Table 2, Figure 2). All endogenous INs contained nematode-specific LIR motifs (ELME000370). Additionally, most endogenous INs housed Apicomplexa-specific LIR motifs (ELME000369), whereas ERVK IN did not.

3.4. ERVK Interactome Reveals Association with a Diversity of Cellular Pathways

Based on ELMs identified in ERVK IN, a curated list of potential interacting proteins was generated and used to build an ERVK IN interactome network using STRING software (Figure 3). The ERVK IN network contained 189 nodes and 692 edges (expected number of edges 222), resulting in a significant PPI enrichment (p < 1.0 × 10−16). Only direct interactor query proteins are shown without links to second shell interactions. To illustrate key nodes and hub proteins, select network proteins were colored based on function related to DDR, cell cycle, apoptosis, cell signaling, or cellular transport. A complete list of the KEGG pathways significantly associated with the network is presented in Table A6.

Figure 3.

Figure 3

Predicted ERVK integrase interactome. Cellular proteins containing complementary interaction motifs for ELMs identified in Endogenous retrovirus-K (ERVK) integrase were listed as query proteins for STRING network analysis. Only query proteins with a minimum interaction score of 0.9 based on experiments and databases as interaction sources are indicated. Edges indicate both functional and physical protein associations. A payload list was generated to color nodes and hubs related to dominant pathways: DNA damage response (dark blue), cell cycle (cyan), apoptosis (black), cell signaling (green), and cell transport (magenta).

3.4.1. Many DNA Damage Response Proteins Are Potential ERVK Integrase Interactors

Gene ontology (GO) biological processes that were significantly enriched in the network included cellular response to DNA damage stimulus (p < 4.4 × 10−18), DNA repair (p < 4.24 × 10−12), DNA damage checkpoint (p < 4.89 × 10−12), double-strand break repair via non-homologous end joining (NHEJ) (p < 3.57 × 10−9), double-strand break repair (p < 1.06 × 10−8), and signal transduction in response to DNA damage (p < 2.12 × 10−8). Select BRCT domain containing proteins emerged as nodes with a higher-than-average degree of connections, including BRCA1, BARD1, NBN, MDC1, RCF1, TOPBP1, TP53BP1, and PAXIP1, while PARP1 and DRKDC (DNA-PK) appear to be hub proteins between DDR and apoptosis. The ERVK IN network also displayed four prominent DDR-related FHA proteins: CHEK2, NBN, MDC1, and RNF8.

3.4.2. ERVK Integrase Likely Modulates Cell Cycle Pathways

GO biological processes that were significantly enriched in the network included regulation of cell cycle (p < 1.45 × 10−33), cell division (p < 1.12 × 10−20), regulation of cyclin-dependent serine/threonine kinase activity (p < 6.86 × 10−20), mitotic cell cycle (p < 2.78 × 10−17), regulation of apoptotic process (p < 1.45 × 10−17), and cell cycle checkpoint (p < 6.72 × 10−12). Many cyclins and 14-3-3 proteins were identified in the network and are listed in Table A5. IAP-containing protein BIRC5 (also known as survivin) was also identified, which is suggestive of negative regulation of programmed cell death pathways [72]. PLK1 and NEK2 were also tied into the cell cycle framework and are both regulators of mitosis, in addition to displaying oncogenic properties [73,74].

3.4.3. Cell Signaling Pathways Associated with the ERVK Interactome

Among the potential signaling pathways often targeted by retroviruses, ERVK IN-associated cascades emerged as Forkhead box O (FoxO) signaling [75], p53 signaling [76], ErbB signaling [77], Wnt signaling [78], modulation of kinase activity [79,80], and multiple aspects of immune signaling [81] (Figure 4). Within these pathways, prominent immune-related signaling intermediates included STAT3 [55], STAT5 [56], and TRAF2 [82]. The SH2 and SH3 containing tyrosine-protein kinase ABL1 (Abelson murine leukemia viral oncogene homolog 1 [57]) appears to be a key hub protein linking DDR and downstream signaling cascades.

Figure 4.

Figure 4

KEGG pathways associated with ERVK integrase interactome. Predicted interacting partners were curated based on ERVK IN ELM motifs and submitted to STRING network analysis software. Enriched KEGG pathways are reported along with significance scores (−log10 p value). ERVK IN is predicted to interact with cellular pathways involved in the cell cycle, cell signaling, immunity, and inflammation, as well as disease pathways associated with several cancers, the nervous system, and diabetes.

3.4.4. ERVK Integrase May Utilize Specific Cellular Transport Systems

The ERVK interactome contains proteins related to cellular transport. EB1 (MAPRE1) is an end-binding (EB) protein connected with both cell cycle and signaling pathways and is functionally associated with the regulation of microtubule dynamics [83]. Adaptor protein complex 2 associated proteins (AP2M1 and CTTN) were identified and indicate a role in cargo internalization via clathrin-mediated endocytosis and actin dynamics [65,84]. Lastly, ERVK IN may interact with Pex14 and Pex13 independently of the main network for peroxisome import [63]. While these pathways were likely important for the ancestral exogenous ERVK to transverse the cell and mediate infection, it remains unclear how endogenous IN may interact with these systems.

3.5. Diseases and Pathways Implicated in the ERVK Integrase Interactome

3.5.1. Cancers

Viral carcinogenesis was the top KEGG pathway identified in the ERVK IN network analysis (strength 1.22, E value 3.7 × 10−23), with 29 of 183 proteins represented (Figure 4). KEGG pathways for several known ERVK-associated cancers were also identified, including lung cancer [85], myeloid leukemia [86], and hepatocellular carcinoma [87] (Figure 4). Glioma was also identified, yet ERVK is downregulated in this condition [88]. Aligned with cellular transformation, proteins associated with cell cycle were also over-represented in the pathway analysis, which are specifically related to the cyclin docking site ELM (DOC_CYCLIN_RxL_1) and numerous FHA domain protein interaction sites (LIG_FHA_1 and LIG_FHA_2) in ERVK IN (Table 1 and Table 2, Figure 1 and Figure 2).

3.5.2. Neurological Disease

KEGG pathways for several ERVK-associated neurological conditions were identified, including ALS [9,12], Alzheimer’s disease [89], and prion disease [90] (Figure 4). Specifically, long-term potentiation and synaptic neurotransmitter release (dopaminergic, glutamatergic, cholinergic, serotonergic, and GABAergic) were associated with the ERVK IN interactome.

3.5.3. Diabetes

The role of ERVK in diabetes remains contentious [91,92,93,94]. However, network analysis suggests that the ERVK IN interactome is potentially linked to AGE-RAGE signaling in diabetic complications, insulin signaling, and insulin resistance (Figure 4).

4. Discussion

ERVK expression has been repeatedly associated with human disease states including cancer, neurological disease, and diabetes. By exploring the potential ERVK integrase interactome, we can postulate how this viral symbiont may contribute to disease pathogenesis via interaction with key proteins and pathways. Our analysis reveals that viral carcinogenesis and modulation of the DNA damage response are the most likely pathways to be pathologically associated with ERVK IN expression.

Retroviral integrase activity causes DNA lesions in the host genome as part of the proviral integration process [19]; therefore, interactions with DDR pathways are to be expected. Several DDR proteins have been shown to be essential for provirus suture into the host genome and maintenance of genome fidelity [19]. Yet, the impairment of select aspects of DDR has also been documented in exogenous retroviral infections, including HIV [95,96] and HTLV-1 [97,98]. This may be driven by the fact that NHEJ proteins also play an essential role in innate immune recognition of retroviral cytosolic ssDNA intermediates and dsDNA pre-integration complexes [98,99]. Thus, retroviruses must balance the benefits and drawbacks of DDR outcomes through the engagement and modulation of specific proteins.

BRCT domain, FHA domain, and 14-3-3 proteins work in concert during the DNA damage response (reviewed in [100]). Many of these DDR proteins are also cellular targets of retroviruses and oncogenic viruses [98,101,102,103,104]. BRCA1 BRCT domains recognize phosphopeptides based on a pSXXF motif, but XX residues and the surrounding amino acids also impact binding affinity and selectivity [105]. All the betaretroviral INs examined showed the capacity to interact with BRCT domains. However, only ERVK IN displayed a high affinity (S.F.K) BRCA1 BRCT domain binding site; the only other similar ELM structure is found in the DDR protein Fanconi anemia group J protein (FACJ/BACH1) [106]. It is also possible that dual anchoring onto the ERVK IN using both a BRCT domain and an FHA domain found in NBN or MDC1 may strengthen protein–protein interactions.

The utilization and evasion of 14-3-3 proteins are common among many viruses [104]. ERVK IN is unique in having a C-terminal RASTE motif, in addition to two other canonical arginine containing phospho-motifs recognized by 14-3-3 proteins. Given that an elevated expression of 14-3-3 proteins occurs in both cancers and neurodegenerative diseases [107,108], ERVK IN interaction with 14-3-3 protein members may be related to either modulation of the cell cycle and oncogenesis or regulation of protein aggregation, respectively. The deregulation of 14-3-3 and RAF kinase interaction can also lead to inappropriate downstream MAPK activity (associated with oncogenesis) [54,109] and may be an aspect to consider for the predicted ERVK IN network.

ABL1 appears to be a key hub protein linking DDR and downstream signaling cascades. Interestingly, DDR is known to be a rapid driver of ABL1 activation [110]. The ablation of ABL1 reduces retrovirus integration [111,112], while active ABL1 can turn on the HIV promoter independently of HIV Tat [113]. Putative interaction between ERVK IN and ABL1 may have been important for ERVK integration into germline cells, and it may additionally play a role in ERVK expression, specifically in neurodegenerative disease displaying enhanced ABL1 activity [114,115].

DDR is intimately tied to innate immune response, specifically NF-κB activation [116]. Considering ERVK’s dependence on NF-κB for driving its own expression [11], it is conceivable that ERVK IN plays a role in preparing the host cell for viral transcription. 14-3-3ϵ activity is key in driving ATM-TAK1-mediated NF-κB signaling during DDR [117,118]; thus, the predicted ERVK IN interaction with 14-3-3ϵ (YWHAE) may be a mechanism to favor viral transcription. The MAPK p38 was also predicted to both phosphorylate and bind ERVK IN. This association may be linked to p38′s regulation of inflammatory signaling, as well as its capacity to enhance the transcriptional activity of NF-κB p65 via modulation of the acetyltransferase activity of coactivator p300 [119]. Sustained NF-κB activity is linked to oncogenesis [116] and ties into the strongest ERVK IN-linked KEGG pathway: viral carcinogenesis. However, enhanced ERVK IN-associated NF-κB signaling may also fit with inflammatory and neurodegenerative conditions.

ERVK IN stability and protein turnover is likely linked to its cellular protein partnerships. In the case of HIV, binding select cellular proteins such as LEDGF/p75 and Ku70 prevents integrase proteosomal degradation [120,121]. Similarly, c-Jun N-terminal kinase (JNK) S57 phosphorylation of the core domain can make HIV IN a target for Pin1, thus enhancing its stability and activity [122,123]. In this study, Pin1′s WW domain was predicted to be an interactor based on three [ST]P motifs in the C-terminal portion of ERVK IN. This raises the possibility that similar to many other viral proteins [124], ERVK IN may be stabilized through Pin1 interaction. The functional significance of this interaction may underlie how elevated levels of ERVK IN are maintained and potentially drive pathology in select diseases, such as ALS and cancer.

Distinct from other exogenous betaretroviruses, only ERVK IN and some endogenous integrases contained canonical LIR motifs for binding Atg8 protein family members. Mammalian Atg8-like proteins include LC3 and GABARAP families, which mediate selective autophagy, as well as play essential roles in antiviral defense and innate immune signaling [125]. However, it is often observed that viruses subvert autophagy processes to avoid viral protein clearance and repurpose Atg8 proteins as well as autophagosomal membranes for viral replication [125,126]. Considering the perturbances of autophagy in neurodegenerative disease [127,128], the interaction between ERVK IN and Atg8 proteins warrants further investigation.

Consistent with genomic instability profiles in cancer [129], ALS [130], and Alzheimer’s disease [131], the ERVK interactome analysis identified each of these conditions as significant KEGG pathways. Despite differences in clinical presentation, the molecular underpinnings in cancer and neurodegenerative disease are remarkably similar and include alterations in DDR [129,130,132], 14-3-3 expression [133,134], p53 signaling [135,136], p38 signaling [137,138], and Wnt signaling [139,140]—which are all KEGG pathways enriched in the ERVK IN network. AGE-RAGE signaling was also identified as a potential pathway associated with the ERVK IN interactome. Not only is this pathway implicated in diabetic complications [141], but it also plays a role in nuclear response to DNA damage [142], carcinogenesis [143], and inflammatory neurodegenerative diseases [144]. Collectively, our results point to ERVK IN driving a pattern of pathology that, depending on cellular context, may lead to carcinogenesis, neurodegeneration, or contribute to diabetic complications. However, the engagement of DDR can also have beneficial impacts on lifespan extension, depending on tissue context and host genotype; thus, non-pathogenic effects of ERVK IN should also be considered [145,146].

Apart from the importance of putative ERVK IN interaction partners, it is also important to consider which cellular proteins were not associated with the ERVK IN interactome. One interaction that was not predicted was with LEDGF/p75, and indeed, this interactor is limited to partnership with lentiviral integrases [147,148]. Another set of DDR proteins commonly found to impact retroviral integration and replication is the DNA-PK complex [99,149]. HIV integrase directly interacts with Ku70 [120]; while ERVK IN was predicted to be phosphorylated by DNA-PKcs (PRKDC), it contained no ELMs to suggest direct interaction with Ku80 or Ku70. Another apparent difference is the use of EB proteins in microtubule trafficking for HIV and ERVK. ERVK IN contained an SxIP motif that binds EBH domains, whereas HIV capsid conversely has EB-like motifs that interact with SxIP motifs in plus-end tracking protein (+TIP) [150]. These genus-specific distinctions are likely to emerge as important considerations for therapeutic targeting strategies and imply that pharmaceuticals geared toward HIV infection may not consistently translate for use in ERVK-associated disease.

Another consideration that stems from this study is the choice and caveats of using animal models in ERVK research. A diversity of animals outside of the primate lineage are host to ERVK IN-like sequences, such as rodents, ungulates, fish, and insects. Drosophila, a common model organism, also contained ERVK IN-like elements in their genome, specifically LTR retrotransposons flea and Xanthias, as identified by FlyBase (Table A4). The transposable element Xanthias is known to be active in D. melanogaster [151,152], and it shares a degree of similarity with ERVK IN. The presence and activity of these ERVs is an important factor to consider when performing experiments.

It is shocking how little we understand of the impact endogenous viral symbionts have on cellular functioning. Herein, we have predicted that ERVK IN may participate in the modulation of cellular pathways such as DDR, cell cycle regulation, and kinase signaling cascades by way of select protein interaction motifs. The main caveat of in silico predictions is the requirement for experimental validation; while research into ERVK IN is currently underway, this study suggests there remains a myriad of disease-related betaretroviral integrase interactions to explore.

Acknowledgments

The authors would like to thank Samuel Narvey, Megan Rempel and Alex Vandenakker for their peer review of the manuscript drafts.

Appendix A

Table A1.

Exogenous viruses with similarity to ERVK integrase based on BLASTp search.

Host Species Protein Name Accession Number Database Percent Identity E Value Alignment
Retroviridae—Betaretrovirus
Mus Musculus Mouse mammary tumor virus
(MMTV)
MMTV strain BR6 Integrase, partial 5CZ2_A nr 56.46% 3.00 × 10−71
Unnamed protein product CAA25954.1 nr 52.36% 2.00 × 10−70
Chain A. Integrase
(Core model of the MMTV Intasome)
3JCA_A nr 51.50% 2.00 × 10−82
Pr160 NP_056880.1 nr 51.11% 7.00 × 10−76
Pr160 gag pro pol precursor AAA46542.1 nr 51.11% 7.00 × 10−76
p30DU-p13PR-RT-IN NP_955564.1 nr 51.11% 2.00 × 10−76
Gag-Pro-Pol polyprotein P11283.2 nr 51.11% 3.00 × 10−75
MMTV putative integrase AAC24859.1 nr 50.37% 5.00 × 10−81
Gag-Pol-Pro polyprotein, partial BAA03767.1 nr 49.65% 1.00 × 10−77
Exogenous MMTV Gag-Pro-Pol AAF31469.1 nr 49.65% 4.00 × 10−76
Endogenous MTV1 Gag-Pro-Pol AAF31464.1 nr 49.65% 4.00 × 10−76
Capra hircus Enzootic Nasal Tumor Virus
(ENTV)
Pol protein, partial AVG72436.1 nr 48.79% 3.00 × 10−72
Pol protein, partial AVG72437.1 nr 48.79% 3.00 × 10−71
Pol protein, partial AVG72438.1 nr 48.79% 7.00 × 10−71
Pol protein, partial AVG72441.1 nr 48.39% 3.00 × 10−71
Pol protein, partial AVG72440.1 nr 48.39% 4.00 × 10−71
Pol protein, partial AVG72435.1 nr 48.39% 2.00 × 10−70
Gag-Pro-Pol protein QBP05340.1 nr 47.41% 3.00 × 10−73
Pol protein, partial ANG58667.1 nr 47.41% 2.00 × 10−72
Pol protein QEQ26602.1 nr 47.41% 3.00 × 10−72
Pol protein, partial ANG58699.1 nr 47.41% 2.00 × 10−71
Pol protein, partial ANG58695.1 nr 47.41% 2.00 × 10−71
Pol protein, partial ANG58691.1 nr 47.41% 2.00 × 10−71
Pol protein, partial ANG58679.1 nr 47.41% 5.00 × 10−71
Endogenous ENTV pol protein QPG92760.1 nr 47.41% 3.00 × 10−73
Endogenous ENTV pol protein QPG92768.1 nr 47.41% 1.00 × 10−72
Gag-Pro-Pol, partial AOZ60515.1 nr 47.04% 1.00 × 10−72
Pol protein, partial ANG58671.1 nr 47.04% 1.00 × 10−71
Pol protein, partial ANG58683.1 nr 47.04% 3.00 × 10−70
Pol protein, partial ANG58687.1 nr 47.04% 2.00 × 10−71
Pol protein, partial ANG58663.1 nr 47.04% 8.00 × 10−71
Gag-Pro-Pol protein ANC55859.1 nr 46.67% 5.00 × 10−73
Gag-Pro-Pol protein, partial ADI50273.1 nr 46.67% 4.00 × 10−72
Gag-Pro-Pol protein, partial AOZ60519.1 nr 46.67% 7.00 × 10−72
Pol protein, partial ANG58675.1 nr 46.67% 3.00 × 10−71
Gag-Pro-Pol fusion, partial NP_862833.2 nr 46.67% 7.00 × 10−71
Pol protein, partial ANG58659.1 nr 46.10% 1.00 × 10−72
Macaca genus Mason-Pfizer monkey virus
(M-PMV)
Simian AIDS retrovirus SRV-1-Pol polyprotein GNLJSA nr 48.30% 2.00 × 10−70
Simian retrovirus SRV-5-Pol polyprotein BBG56792.1 nr 47.57% 5.00 × 10−71
Simian retrovirus SRV-Y-Pol protein, partial BAM71050.1 nr 47.57% 2.00 × 10−70
Ovis Aries Jaagsiekte sheep retrovirus Reverse transcriptase, partial CAA77117.1 nr 46.67% 5.00 × 10−75
Reverse transcriptase, partial CAA77113.1 nr 46.67% 2.00 × 10−74
Pol protein NP_041186.1 nr 46.30% 1.00 × 10−70

BLAST databases: nr denotes non-redundant protein database. Circle symbol: denotes integrase sequences used in protein alignment in Figure 1.

Table A2.

Boreoeutherian genomes with similarity to ERVK integrase based on BLASTp searches.

Species Protein Name Accession Number Database Percent Identity E Value
Homo sapiens Human Endogenous Retrovirus K
(HERV-K/
ERVK)
Pol/env ORF (bases 3878-8257) first start codon at 4172; Xxx; putative AAA88033.1 nr 100.00% 0
Endogenous retrovirus group K member 10 Pol protein P10266.2 nr 100.00% 0
Gag-Pro-Pol-Env protein AAD51793.1 nr 100.00% 0
Pol protein, partial CAA71417.1 nr 100.00% 2.00 × 10−101
Endogenous retrovirus group K member 11 Pol protein Q9UQG0.2 nr 99.64% 0
Endogenous retrovirus group K member 7 Pol protein P63135.1 nr 99.29% 0
Reverse transcriptase, partial AGQ55918.1 nr 99.28% 1.00 × 10−94
Reverse transcriptase, partial AGQ55922.1 nr 99.28% 7.00 × 10−94
Polymerase, partial AAO27434.1 nr 99.27% 0
Gag-Pro-Pol protein AAD51796.1 nr 99.17% 5.00 × 10−161
Endogenous retrovirus group K member 113 Pol protein P63132.1 nr 98.21% 0
Polymerase, partial AAK11553.1 nr 98.21% 0
Endogenous retrovirus group K member 6 Pol protein Q9BXR3.2 nr 98.21% 0
Endogenous retrovirus group K member 8 Pol protein P63133.1 nr 98.21% 0
Gag-Pro-Pol protein AAD51797.1 nr 98.21% 0
Pol protein CAA76885.1 nr 97.86% 0
Pol protein CAA76879.1 nr 97.86% 0
Polymerase, partial AAK11554.1 nr 97.86% 0
Reverse transcriptase, partial AGQ55928.1 nr 97.84% 6.00 × 10−93
Reverse transcriptase, partial AGQ55923.1 nr 97.84% 8.00 × 10−93
Reverse transcriptase, partial AGQ55925.1 nr 97.83% 2.00 × 10−92
Reverse transcriptase, partial AGQ55927.1 nr 97.83% 3.00 × 10−92
Reverse transcriptase, partial AGQ55914.1 nr 97.76% 6.00 × 10−89
Pol protein CAA76882.1 nr 97.50% 0
Endogenous retrovirus group K member 19 Pol protein Q9WJR5.2 nr 97.50% 0
Endogenous retrovirus group K member 25 Pol protein P63136.1 nr 97.50% 0
Pol protein AAL60056.1 nr 97.30% 1.00 × 10−152
Reverse transcriptase, partial AGQ55924.1 nr 97.12% 2.00 × 10−92
Reverse transcriptase, partial AGQ55926.1 nr 97.10% 9.00 × 10−92
Reverse transcriptase, partial AGQ55921.1 nr 97.10% 9.00 × 10−92
Reverse transcriptase, partial AGQ55919.1 nr 97.10% 1.00 × 10−91
Pol/env protein, partial AET81039.1 nr 96.97% 1.00 × 10−81
Reverse transcriptase, partial AGQ55920.1 nr 96.38% 2.00 × 10−91
Pol protein CAB56603.1 nr 90.13% 2.00 × 10−132
Endogenous retrovirus group K member 18 Pol protein Q9QC07.2 nr 90.13% 2.00 × 10−130
hCG1808534 EAW92672.1 nr 87.38% 3.00 × 10−130
Macaca
fascicularis
PREDICTED: endogenous retrovirus group K member 8 Pol protein-like XP_015309771.1 nr 83.77% 2.00 × 10−127
Chlorocebus
sabaeus
Pol protein, partial BBC20786.1 nr 47.01% 3.00 × 10−70
Oryctolagus
cuniculus
PREDICTED: endogenous retrovirus group K member 8 Pol protein-like XP_017205812.1 nr 49.82% 1.00 × 10−76
Marmota
marmota
PREDICTED: endogenous retrovirus group K member 11 Pol protein-like XP_015349278.1 nr 47.96% 4.00 × 10−71
Ochotona
princeps
Uncharacterized protein LOC105942652 XP_012786727.1 nr 47.33% 1.00 × 10−70
Mus musculus
(mouse)
Agouti-signaling protein isoform X1 XP_017174599.2 mo 46.93% 6.00 × 10−70
Contactin-5 isoform X2 XP_036010832.1 mo 44.11% 3.00 × 10−63
Contactin-5 isoform X1 XP_036010831.1 mo 44.11% 4.00 × 10−63
Contactin-5 isoform X3 XP_036010833.1 mo 44.11% 4.00 × 10−63
Protein NYNRIN-like isoform X1 XP_036020530.1 mo 30.15% 9.00 × 10−14
Uncharacterized protein Gm39701 XP_011237194.2 mo 30.15% 9.00 × 10−14
Uncharacterized protein LOC118567641, partial XP_036010828.1 mo 29.71% 2.00 × 10−12
Fukomys
damarensis
Pol polyprotein KFO35018.1 nr 45.14% 1.00 × 10−71
Sus scrofa TPA: uncharacterized protein HCZ91355.1 tsa 61.54% 2.00 × 10−65
TPA: uncharacterized protein HDB33152.1 tsa 61.54% 2.00 × 10−65
Endogenous retrovirus group K member 11 Pol protein-like HDB62800.1 tsa 60.66% 2.00 × 10−17
TPA: uncharacterized protein HCZ89879.1 tsa 52.24% 1.00 × 10−39
Nuclear autoantigenic sperm protein isoform X4 HDA97069.1 tsa 49.06% 2.00 × 10−21
Nuclear autoantigenic sperm protein isoform 2 HCZ78574.1 tsa 48.86% 5.00 × 10−15
Nuclear autoantigenic sperm protein isoform 2 HDB80991.1 tsa 48.42% 7.00 × 10−17
TPA: uncharacterized protein HCZ87894.1 tsa 42.67% 5.00 × 10−58
TPA: uncharacterized protein HDB20633.1 tsa 41.78% 1.00 × 10−53
TPA: uncharacterized protein HDC25054.1 tsa 39.81% 7.00 × 10−48
TPA: uncharacterized protein HDA81201.1 tsa 38.84% 1.00 × 10−47
Transmembrane protein 161B isoform X6-like HDB13612.1 tsa 31.52% 2.00 × 10−13
TPA: uncharacterized protein HDC69173.1 tsa 31.07% 2.00 × 10−13
TPA: uncharacterized protein HDC69046.1 tsa 30.90% 3.00 × 10−13
Transmembrane protein 161B isoform X12-like HDC79805.1 tsa 30.81% 1.00 × 10−12
Transmembrane protein 161B isoform X12-like HDB85007.1 tsa 30.81% 1.00 × 10−12
Transmembrane protein 161B isoform X6-like HDA96697.1 tsa 30.81% 1.00 × 10−12
Transmembrane protein 161B isoform X12-like HDB79678.1 tsa 30.81% 2.00 × 10−12
Transmembrane protein 161B isoform X6 HDB81123.1 tsa 30.77% 1.00 × 10−11
Transmembrane protein 161B isoform X6 HDB82421.1 tsa 30.71% 2.00 × 10−10
TPA: uncharacterized protein HDC70342.1 tsa 30.41% 6.00 × 10−12
TPA: uncharacterized protein HDC70174.1 tsa 30.41% 6.00 × 10−12
TPA: uncharacterized protein HDC69016.1 tsa 30.41% 6.00 × 10−12
putative protein-like HDB95244.1 tsa 30.23% 3.00 × 10−12
TPA: uncharacterized protein HDB49716.1 tsa 30.23% 5.00 × 10−12
TPA: uncharacterized protein HDB49718.1 tsa 30.23% 5.00 × 10−12
TPA: uncharacterized protein HDC70066.1 tsa 30.23% 5.00 × 10−12
TPA: uncharacterized protein HDC69012.1 tsa 30.23% 7.00 × 10−12
TPA: uncharacterized protein HDB50090.1 tsa 29.82% 2.00 × 10−11
TPA: uncharacterized protein HDB54298.1 tsa 29.65% 1.00 × 10−11
Transmembrane protein 161B isoform X3-like HDC79806.1 tsa 29.65% 2.00 × 10−11
Endogenous retrovirus group K member 25 Pol HCZ79815.1 tsa 29.65% 3.00 × 10−11
Transmembrane protein 161B isoform X2-like HDC79761.1 tsa 29.59% 1.00 × 10−10
Endogenous retrovirus group K member 25 Pol HDA78544.1 tsa 29.24% 4.00 × 10−11
Endogenous retrovirus group K member 25 Pol HDA79987.1 tsa 29.24% 7.00 × 10−11
TPA: uncharacterized protein HDA79350.1 tsa 29.24% 9.00 × 10−11
Endogenous retrovirus group K member 25 Pol HDA79988.1 tsa 29.24% 9.00 × 10−11
TPA: uncharacterized protein HDA79349.1 tsa 29.24% 1.00 × 10−10
TPA: uncharacterized protein HDC13198.1 tsa 29.24% 1.00 × 10−10
Transmembrane protein 161B isoform X6-like HDB88647.1 tsa 29.07% 3.00 × 10−11
TPA: uncharacterized protein HDA61679.1 tsa 29.07% 5.00 × 10−11
TPA: uncharacterized protein HDB82700.1 tsa 29.07% 1.00 × 10−10
Equus asinus PREDICTED: endogenous retrovirus group K member 8 Pol protein-like XP_014715024.1 nr 56.46% 3.00 × 10−95
Capra hircus PREDICTED: LOW QUALITY
PROTEIN: endogenous retrovirus group K member 18 Pol protein-like
XP_017905435.1 nr 47.41% 3.00 × 10−71
Ovis aries Pol protein ABV71120.1 nr 47.04% 2.00 × 10−72
Pol protein ABV71104.1 nr 46.67% 4.00 × 10−71
Pol protein ABV71084.1 nr 46.67% 4.00 × 10−71
Pol protein ABV71074.1 nr 46.67% 4.00 × 10−71
Pol protein ABV71079.1 nr 46.67% 4.00 × 10−71
Pol protein ABV71069.1 nr 46.67% 4.00 × 10−71
Pol protein (endogenous virus) AST51848.1 nr 46.67% 5.00 × 10−71
Pol protein ABV71094.1 nr 46.30% 2.00 × 10−70

BLAST databases: nr = non-redundant protein database; mo = model organisms database; tsa = transcriptomics shotgun analysis non-redundant database. TPA = third party annotation.

Table A3.

Euteleostomi genomes with similarity to ERVK integrase based on BLASTp searches.

Species Protein Name Accession Number Data base Percent Identity E Value
Micrurus
lemniscatus
carvalhoi
Hypothetical protein, partial LAA32932.1 tsa 58.47% 2.00 × 10−40
Hypothetical protein, partial LAA32929.1 tsa 57.63% 6.00 × 10−40
Hypothetical protein, partial LAA32939.1 tsa 48.29% 4.00 × 10−54
Hypothetical protein, partial LAA32941.1 tsa 44.00% 1.00 × 10−26
Zosterops
borbonicus
Hypothetical protein HGM15179_011615 TRZ15504.1 nr 46.97% 3.00 × 10−71
Zonotrichia
albicollis
Uncharacterized protein LOC106629581 XP_014125095.1 nr 46.24% 1.00 × 10−71
Micrurus
corallinus
Hypothetical protein, partial LAA64555.1 tsa 46.21% 2.00 × 10−26
Hypothetical protein, partial LAA64556.1 tsa 45.08% 2.00 × 10−21
Micrurus
lemniscatus lemniscatus
Hypothetical protein, partial LAA89554.1 tsa 44.57% 4.00 × 10−18
Hypothetical protein, partial LAA89545.1 tsa 43.75% 1.00 × 10−23
Bird
metagenome
Gag-Pro-Pol polyprotein, partial MBY11728.1 tsa 44.31% 3.00 × 10−43
Gallirallus
okinawae
Hypothetical protein, partial LAC45429.1 tsa 43.96% 3.00 × 10−57
Fundulus
heteroclitus
Integrase core domain, partial JAQ81073.1 tsa 35.05% 2.00 × 10−11
Danio rerio
(zebrafish)
Uncharacterized protein LOC108190699 XP_017212567.1 mo 33.64% 4.00 × 10−12
Uncharacterized protein K02A2.6-like XP_021334762.1 mo 30.18% 4.00 × 10−11
Uncharacterized protein K02A2.6-like XP_017210639.2 mo 29.20% 8.00 × 10−9
Uncharacterized protein LOC101886116 XP_021327301.1 mo 28.47% 1.00 × 10−5
Uncharacterized protein LOC110439859 XP_021332670.1 mo 28.17% 0.001
Uncharacterized protein K02A2.6-like XP_003199161.1 mo 27.78% 5.00 × 10−10
Uncharacterized protein K02A2.6-like XP_002663225.3 mo 27.78% 8.00 × 10−10
Uncharacterized protein LOC110438047 XP_021323131.1 mo 26.43% 0.006
Nothobranchius korthausae Uncharacterized protein SBQ67355.1 tsa 32.02% 8.00 × 10−11
Nothobranchius kadleci Uncharacterized protein SBP84572.1 tsa 32.00% 8.00 × 10−11
Nothobranchius furzeri Uncharacterized protein SBS54329.1 tsa 31.25% 5.00 × 10−13
Nothobranchius
rachovii
Uncharacterized protein SBS11479.1 tsa 30.07% 2.00 × 10−10

BLAST databases: nr = non-redundant protein database; mo = model organisms database; tsa = transcriptomics shotgun analysis non-redundant database.

Table A4.

Nephrozoa (non-boreoeutherian) genomes with similarity to ERVK integrase based on BLASTp searches.

Species Protein Name Accession Number Data base Percent Identity E Value
Onchocerca flexuosa Integrase core domain protein OZC05619.1 nr 45.68% 6.00 × 10−73
Ixodes ricinus Putative tf2-11 polyprotein MXV00662.1 tsa 35.81% 2.00 × 10−10
Putative tick transposon, partial JAP73380.1 tsa 30.67% 1.00 × 10−11
Putative tick transposon, partial JAR90689.1 tsa 30.67% 6.00 × 10−11
Putative bell all, partial JAA73039.1 tsa 30.00% 2.00 × 10−10
Putative gypsy11-i sp, partial JAP69562.1 tsa 30.00% 2.00 × 10−10
Putative tick transposon, partial JAR92200.1 tsa 28.06% 4.00 × 10−13
Putative transposon tf2-9 polyprotein MXV00940.1 tsa 27.37% 9.00 × 10−13
Littorina littorea Transposon Ty3-G Gag-Pol polyprotein MBX96210.1 tsa 35.54% 4.00 × 10−12
Transposon Ty3-I Gag-Pol polyprotein MBX97975.1 tsa 30.00% 4.00 × 10−14
Ixodes scapularis Putative tick transposon, partial MOY42200.1 tsa 34.29% 4.00 × 10−12
Putative tick transposon, partial MOY42203.1 tsa 32.67% 2.00 × 10−13
Putative tick transposon, partial MOY42202.1 tsa 32.67% 7.00 × 10−13
Putative gypsy-17 ga-i, partial MOY42236.1 tsa 31.09% 2.00 × 10−12
Hypothetical protein, partial MOY42219.1 tsa 30.00% 6.00 × 10−11
Putative gypsy11-i sp, partial MOY42209.1 tsa 29.17% 7.00 × 10−12
Putative gypsy21-i sp, partial MOY42223.1 tsa 29.17% 8.00 × 10−12
Putative tick transposon, partial MOY42227.1 tsa 28.50% 4.00 × 10−13
Putative tick transposon, partial MOY42214.1 tsa 28.25% 9.00 × 10−11
Putative gypsy-27 xt-i, partial MOY35588.1 tsa 26.44% 1.00 × 10−10
Lygus hesperus Retrotransposable element Tf2 protein type 3, partial JAQ12551.1 tsa 33.58% 6.00 × 10−13
Uncharacterized protein JAG20083.1 tsa 33.58% 6.00 × 10−13
Hypothetical protein, partial CM83_13537, partial JAG31779.1 tsa 29.93% 5.00 × 10−11
Uncharacterized protein, partial K02A2.6, partial JAG32119.1 tsa 28.87% 1.00 × 10−11
Uncharacterized protein, partial K02A2.6, partial JAG38901.1 tsa 26.82% 8.00 × 10−12
Amblyomma sculptum Putative gypsy-7 adi-i, partial JAU00762.1 tsa 32.88% 1.00 × 10−12
Putative tick transposon, partial JAU00733.1 tsa 30.00% 2.00 × 10−10
Putative tick transposon, partial JAU00744.1 tsa 30.00% 2.00 × 10−10
Rhipicephalus
microplus
Putative tick transposon NIE47479.1 tsa 32.45% 4.00 × 10−11
Strongylocentrotus purpuratus Integrase, catalytic core containing protein MOS08875.1 tsa 32.19% 2.00 × 10−16
Integrase, catalytic core containing protein MOS08729.1 tsa 32.03% 7.00 × 10−13
Integrase, catalytic core containing protein MOS14051.1 tsa 30.57% 2.00 × 10−13
Reverse transcriptase domain-containing protein MOS08491.1 tsa 30.57% 2.00 × 10−13
Reverse transcriptase domain-containing protein MOS11069.1 tsa 29.93% 5.00 × 10−12
Integrase, catalytic core containing protein MOS08728.1 tsa 29.76% 2.00 × 10−10
Integrase, catalytic core containing protein MOS08842.1 tsa 28.57% 4.00 × 10−11
Integrase, catalytic core containing protein MOS08745.1 tsa 24.12% 2.00 × 10−10
Ornithodoros turicata Putative transposon tf2-9 polyprotein MBY06492.1 tsa 32.00% 1.00 × 10−10
Ornithodoros moubata Esterase D, partial JAW02195.1 tsa 29.86% 2.00 × 10−10
Photinus pyralis Hypothetical protein JAV53763.1 tsa 29.20% 2.00 × 10−13
Lepeophtheirus
salmonis
Uncharacterized protein K02A2.6like, partial CDW28658.1 tsa 28.28% 1.00 × 10−10
Drosophila
melanogaster
(Fruit fly)
Unnamed protein product CAA30503.1 nr-DM 28.87% 0.004
Sd02026p AAK84933.1 nr-DM 28.57% 3.00 × 10−9
Blastopia polyprotein CAA81643.1 nr-DM 28.19% 2.00 × 10−9
Polyprotein ACI62137.1 nr-DM 28.00% 2.00 × 10−4

BLAST databases: nr = non-redundant protein database; nr-DM = non-redundant protein database with Drosophila specified as species search constraint; tsa = transcriptomics shotgun analysis non-redundant database.

Table A5.

List of query proteins for STRING analysis based on ELM interaction motifs in ERVK integrase.

Category ELM STRING Predicted Interactor
(Gene Name)
Network
Cleavage CLV_C14_Caspase3-7 CASP3
CASP7
CLV_PCSK_KEX2_1
CLV_PCSK_PC1ET2_1
CLV_PCSK_SKI1_1
PCSK1
PCSK2
PCSK3
PCSK4
PCSK5
PCSK6
PCSK7
PCSK8
PCSK9
Docking site DOC_CYCLIN_RXL_1 CCNA1
CCNA2
CCNB1
CCNB2
CCNB3
CCNC
CCND1
CCND2
CCND3
CCNE1
CCNE2
CCNF
CCNG1
CCNG2
CCNH
CCNI
CCNI2
CCNJ
CCNJL
CCNK
CCNL1
CCNL2
CCNO
CCNP
CCNT1
CCNT2
CCNY
CCNYL1
CNTD1
DOC_MAPK_MEF2A_6 MAPK1
MAPK3
MAPK7
MAPK11
MAPK14
DOC_PP1_RVXF_1 PPP1CA
PPP1CB
PPP1CC
PPP3CA
PPP3CB
PPP3CC
DOC_PP2B_LxvP_1 PPP3R1
DOC_USP7_MATH_1
DOC_USP7_UBL2_3
USP7
DOC_WW_Pin1_4 PCIF1
PIN1
SENP6
Ligand LIG_14-3-3_CanoR_1
LIG_14-3-3_CterR_2
SFN
YWHAB
YWHAE
YWHAG
YWHAH
YWHAQ
YWHAZ
LIG_BIR_II_1 BIRC2
BIRC3
BIRC5
BIRC6
BIRC7
NAIP
XIAP
LIG_BRCT_BRCA1_1 BARD1
BRCA1
CTDP1
DNTT
ECT2
LIG4
MCPH1
MDC1
NBN
PARP1
PARP4
PAXIP1
PES1
RBPJ
REV1
RFC1
TOPBP1
TP53BP1
XRCC1
LIG_FHA_1
LIG_FHA_2
AGGF1
APLF
APTX
CEP170
CEP170B
CHEK2
CHFR
FHAD1
FOXK1
FOXK2
KIF13A
KIF13B
KIF14
KIF16B
KIF1A
KIF1B
KIF1C
MCRS1
MDC1
MKI67
MLLT4
NBN
PHF12
PPP1R8
RNF8
SLC4A1AP
SLMAP
SNIP1
STARD9
TCF19
TIFA
TIFAB
LIG_CSL_BTD_1 CHEK2
MRC1
RAD9A
XRCC1
XRCC4
LIG_LIR_Gen_1
LIG_LIR_Nem_4
GABARAP
GABARAPL1
GABARAPL2
MAP1LC3A
MAP1LC3B
MAP1LC3B2
MAP1LC3C
LIG_Pex14_1 PEX13
PEX14
LIG_SH2_PTP2 PLCG1
PTPN11
LIG_SH2_SRC BLK
FGR
FRK
FYN
HCK
LCK
LYN
SRC
YES1
LIG_SH2_STAP1 STAP1
LIG_TYR_ITIM ABL1
ABL2
FYN
LCK
MATK
PI3KCA
PLCG1
SH2D1A
SHF
PTPN6
PTPN11
SRC
SYK
LIG_SH2_STAT3 STAT3
LIG_SH2_STAT5 STAT5A
STAT5B
LIG_SH3_3 ARHGEF7
CTTN
LIG_SxIP_EBH_1 MAPRE1
MAPRE2
MAPRE3
LIG_TRAF2_1 TRAF2
LIG_WD40_WDR5_VDV_2 WDR5
Modification MOD_CK1_1 CSNK1A1
MOD_CK2_1 CSNK2A1
MOD_GSK3_1 GSK3A
GSK3B
MOD_N-GLC_1 DDOST
MOD_NEK2_1 NEK2
MOD_PIKK_1 ATM
ATR
mTOR
PRKDC
SMG1
TRRAP
MOD_PKA_2 PAK1
PRKACA
PRKACB
PRKACG
PRKCA
PRKCB
PRKCE
PRKCG
PRKCH
PRKCI
PRKCQ
PRKCZ
MOD_Plk_1
MOD_Plk_4
PLK1
PLK2
PLK3
PLK4
MOD_ProDKin_1 MAPK11
MAPK12
MAPK13
MAPK14
MOD_SUMO_rev_2 SUMO2
Targeting TRG_ENDOCYTIC_2 AP1M1
AP2M1
AP3M1
AP3M2
AP4M1
AP5M1
ARCN1
FCHO1
FCHO2
SGIP1
STON1
STON2
TRG_Pf-PMV_PEXEL_1 None

Circle symbol: denotes protein depicted in network analysis in Figure 3.

Table A6.

Full list of KEGG pathways identified in the STRING analysis of the ERVK integrase interactome.

KEGG Term ID Term Description Observed Gene Count Background Gene Count Strength False Discovery Rate
hsa04218 Cellular senescence 28 156 1.27 2.30 × 10−23
hsa05203 Viral carcinogenesis 29 183 1.21 3.47 × 10−23
hsa04110 Cell cycle 25 123 1.32 2.38 × 10−22
hsa04114 Oocyte meiosis 23 116 1.31 2.13 × 10−20
hsa05169 Epstein–Barr virus infection 24 194 1.11 4.01 × 10−17
hsa05205 Proteoglycans in cancer 23 195 1.08 4.79 × 10−16
hsa04650 Natural killer cell-mediated cytotoxicity 19 124 1.2 3.96 × 10−15
hsa04068 FoxO signaling pathway 19 130 1.18 7.58 × 10−15
hsa04750 Inflammatory mediator regulation of TRP channels 17 92 1.28 8.12 × 10−15
hsa05167 Kaposi’s sarcoma-associated herpesvirus infection 21 183 1.07 1.30 × 10−14
hsa04720 Long-term potentiation 15 64 1.38 1.77 × 10−14
hsa05161 Hepatitis B 19 142 1.14 2.19 × 10−14
hsa05206 MicroRNAs in cancer 19 149 1.12 4.49 × 10−14
hsa04370 VEGF signaling pathway 14 59 1.39 1.11 × 10−13
hsa04660 T cell receptor signaling pathway 16 99 1.22 2.39 × 10−13
hsa04012 ErbB signaling pathway 15 83 1.27 3.37 × 10−13
hsa04611 Platelet activation 17 123 1.15 3.37 × 10−13
hsa04921 Oxytocin signaling pathway 18 149 1.09 4.19 × 10−13
hsa04115 p53 signaling pathway 14 68 1.33 4.53 × 10−13
hsa05200 Pathways in cancer 29 515 0.76 6.20 × 10−13
hsa05166 HTLV-I infection 21 250 0.94 1.82 × 10−12
hsa04933 AGE-RAGE signaling pathway in diabetic complications 15 98 1.2 2.24 × 10−12
hsa04510 Focal adhesion 19 197 1 2.57 × 10−12
hsa04659 Th17 cell differentiation 15 102 1.18 3.46 × 10−12
hsa05031 Amphetamine addiction 13 65 1.31 3.95 × 10−12
hsa04728 Dopaminergic synapse 16 128 1.11 4.97 × 10−12
hsa04658 Th1 and Th2 cell differentiation 14 88 1.21 7.29 × 10−12
hsa05165 Human papillomavirus infection 22 317 0.85 1.27 × 10−11
hsa04914 Progesterone-mediated oocyte maturation 14 94 1.19 1.52 × 10−11
hsa04310 Wnt signaling pathway 16 143 1.06 2.02 × 10−11
hsa04390 Hippo signaling pathway 16 152 1.04 4.56 × 10−11
hsa04062 Chemokine signaling pathway 17 181 0.99 5.10 × 10−11
hsa04917 Prolactin signaling pathway 12 69 1.25 1.03 × 10−10
hsa04662 B cell receptor signaling pathway 12 71 1.24 1.35 × 10−10
hsa04919 Thyroid hormone signaling pathway 14 115 1.1 1.47 × 10−10
hsa04064 NF-kappa B signaling pathway 13 93 1.16 1.57 × 10−10
hsa04270 Vascular smooth muscle contraction 14 119 1.08 2.11 × 10−10
hsa04360 Axon guidance 16 173 0.98 2.24 × 10−10
hsa05162 Measles 14 133 1.04 7.76 × 10−10
hsa05223 Non-small cell lung cancer 11 66 1.23 9.08 × 10−10
hsa04666 Fc gamma R-mediated phagocytosis 12 89 1.14 1.18 × 10−9
hsa04380 Osteoclast differentiation 13 124 1.03 3.48 × 10−9
hsa01521 EGFR tyrosine kinase inhibitor resistance 11 78 1.16 4.18 × 10−9
hsa04010 MAPK signaling pathway 18 293 0.8 5.87 × 10−9
hsa04931 Insulin resistance 12 107 1.06 7.37 × 10−9
hsa04910 Insulin signaling pathway 13 134 1 7.61 × 10−9
hsa04724 Glutamatergic synapse 12 112 1.04 1.14 × 10−8
hsa04151 PI3K-Akt signaling pathway 19 348 0.75 1.17 × 10−8
hsa04912 GnRH signaling pathway 11 88 1.11 1.17 × 10−8
hsa04664 Fc epsilon RI signaling pathway 10 67 1.19 1.30 × 10−8
hsa04071 Sphingolipid signaling pathway 12 116 1.03 1.51 × 10−8
hsa04722 Neurotrophin signaling pathway 12 116 1.03 1.51 × 10−8
hsa01522 Endocrine resistance 11 95 1.08 2.24 × 10−8
hsa04014 Ras signaling pathway 15 228 0.83 5.08 × 10−8
hsa04210 Apoptosis 12 135 0.96 6.74 × 10−8
hsa05152 Tuberculosis 13 172 0.89 1.01 × 10−7
hsa04540 Gap junction 10 87 1.07 1.11 × 10−7
hsa05221 Acute myeloid leukemia 9 66 1.15 1.42 × 10−7
hsa05214 Glioma 9 68 1.13 1.74 × 10−7
hsa05222 Small cell lung cancer 10 92 1.05 1.74 × 10−7
hsa01524 Platinum drug resistance 9 70 1.12 2.13 × 10−7
hsa04215 Apoptosis—multiple species 7 31 1.37 2.13 × 10−7
hsa04926 Relaxin signaling pathway 11 130 0.94 3.72 × 10−7
hsa04015 Rap1 signaling pathway 13 203 0.82 5.46 × 10−7
hsa04960 Aldosterone-regulated sodium reabsorption 7 37 1.29 5.77 × 10−7
hsa04668 TNF signaling pathway 10 108 0.98 6.23 × 10−7
hsa04261 Adrenergic signaling in cardiomyocytes 11 139 0.91 6.58 × 10−7
hsa05145 Toxoplasmosis 10 109 0.98 6.58 × 10−7
hsa04725 Cholinergic synapse 10 111 0.97 7.54 × 10−7
hsa05120 Epithelial cell signaling in Helicobacter pylori infection 8 66 1.1 1.53 × 10−6
hsa04340 Hedgehog signaling pathway 7 46 1.2 1.97 × 10−6
hsa04961 Endocrine and other factor-regulated calcium reabsorption 7 47 1.19 2.22 × 10−6
hsa04066 HIF-1 signaling pathway 9 98 0.98 2.44 × 10−6
hsa04520 Adherens junction 8 71 1.06 2.44 × 10−6
hsa04916 Melanogenesis 9 98 0.98 2.44 × 10−6
hsa05225 Hepatocellular carcinoma 11 163 0.84 2.56 × 10−6
hsa04621 NOD-like receptor signaling pathway 11 166 0.83 2.99 × 10−6
hsa05014 Amyotrophic lateral sclerosis (ALS) 7 50 1.16 2.99 × 10−6
hsa05220 Chronic myeloid leukemia 8 76 1.04 3.62 × 10−6
hsa05020 Prion diseases 6 33 1.27 4.44 × 10−6
hsa04020 Calcium signaling pathway 11 179 0.8 5.69 × 10−6
hsa04670 Leukocyte transendothelial migration 9 112 0.92 6.16 × 10−6
hsa04726 Serotonergic synapse 9 112 0.92 6.16 × 10−6
hsa04723 Retrograde endocannabinoid signaling 10 148 0.84 7.20 × 10−6
hsa04727 GABAergic synapse 8 88 0.97 9.28 × 10−6
hsa04934 Cushing’s syndrome 10 153 0.83 9.30 × 10−6
hsa04924 Renin secretion 7 63 1.06 1.09 × 10−5
hsa04024 cAMP signaling pathway 11 195 0.76 1.14 × 10−5
hsa04657 IL-17 signaling pathway 8 92 0.95 1.20 × 10−5
hsa04022 cGMP-PKG signaling pathway 10 160 0.81 1.28 × 10−5
hsa04140 Autophagy—animal 9 125 0.87 1.28 × 10−5
hsa04630 Jak-STAT signaling pathway 10 160 0.81 1.28 × 10−5
hsa04713 Circadian entrainment 8 93 0.95 1.28 × 10−5
hsa05146 Amoebiasis 8 94 0.94 1.32 × 10−5
hsa05215 Prostate cancer 8 97 0.93 1.62 × 10−5
hsa05231 Choline metabolism in cancer 8 98 0.92 1.72 × 10−5
hsa04371 Apelin signaling pathway 9 133 0.84 1.94 × 10−5
hsa04930 Type II diabetes mellitus 6 46 1.13 2.04 × 10−5
hsa03450 Non-homologous end-joining 4 13 1.5 3.50 × 10−5
hsa04072 Phospholipase D signaling pathway 9 145 0.81 3.61 × 10−5
hsa05226 Gastric cancer 9 147 0.8 3.96 × 10−5
hsa05210 Colorectal cancer 7 85 0.93 5.70 × 10−5
hsa04217 Necroptosis 9 155 0.78 5.77 × 10−5
hsa04730 Long-term depression 6 60 1.01 7.67 × 10−5
hsa04925 Aldosterone synthesis and secretion 7 93 0.89 9.48 × 10−5
hsa04530 Tight junction 9 167 0.74 9.70 × 10−5
hsa05131 Shigellosis 6 63 0.99 9.70 × 10−5
hsa05010 Alzheimer’s disease 9 168 0.74 9.98 × 10−5
hsa05164 Influenza A 9 168 0.74 9.98 × 10−5
hsa05160 Hepatitis C 8 131 0.8 0.00011
hsa03440 Homologous recombination 5 40 1.11 0.00012
hsa04922 Glucagon signaling pathway 7 100 0.86 0.00014
hsa05140 Leishmaniasis 6 70 0.95 0.00016
hsa05168 Herpes simplex infection 9 181 0.71 0.00016
hsa04971 Gastric acid secretion 6 72 0.93 0.00018
hsa04918 Thyroid hormone synthesis 6 73 0.93 0.00019
hsa05133 Pertussis 6 74 0.92 0.0002
hsa05212 Pancreatic cancer 6 74 0.92 0.0002
hsa05224 Breast cancer 8 147 0.75 0.00021
hsa04150 mTOR signaling pathway 8 148 0.75 0.00022
hsa05110 Vibrio cholerae infection 5 48 1.03 0.00025
hsa04810 Regulation of actin cytoskeleton 9 205 0.66 0.00037
hsa04911 Insulin secretion 6 84 0.87 0.00037
hsa05130 Pathogenic Escherichia coli infection 5 53 0.99 0.00037
hsa04970 Salivary secretion 6 86 0.86 0.00041
hsa05416 Viral myocarditis 5 56 0.96 0.00046
hsa05032 Morphine addiction 6 91 0.83 0.00053
hsa05213 Endometrial cancer 5 58 0.95 0.00053
hsa04915 Estrogen signaling pathway 7 133 0.73 0.00063
hsa05418 Fluid shear stress and atherosclerosis 7 133 0.73 0.00063
hsa04213 Longevity regulating pathway—multiple species 5 61 0.93 0.00064
hsa04550 Signaling pathways regulating pluripotency of stem cells 7 138 0.72 0.00076
hsa05211 Renal cell carcinoma 5 68 0.88 0.001
hsa04920 Adipocytokine signaling pathway 5 69 0.87 0.0011
hsa05219 Bladder cancer 4 41 1 0.0013
hsa04211 Longevity regulating pathway 5 88 0.77 0.0029
hsa04923 Regulation of lipolysis in adipocytes 4 53 0.89 0.0031
hsa04120 Ubiquitin mediated proteolysis 6 134 0.66 0.0033
hsa04070 Phosphatidylinositol signaling system 5 97 0.72 0.0043
hsa05034 Alcoholism 6 142 0.64 0.0043
hsa05142 Chagas disease (American trypanosomiasis) 5 101 0.71 0.005
hsa04620 Toll-like receptor signaling pathway 5 102 0.7 0.0051
hsa04932 Non-alcoholic fatty liver disease (NAFLD) 6 149 0.62 0.0053
hsa05230 Central carbon metabolism in cancer 4 65 0.8 0.0059
hsa03410 Base excision repair 3 33 0.97 0.0066
hsa05143 African trypanosomiasis 3 34 0.96 0.0071
hsa04622 RIG-I-like receptor signaling pathway 4 70 0.77 0.0075
hsa05218 Melanoma 4 72 0.76 0.0081
hsa05216 Thyroid cancer 3 37 0.92 0.0087
hsa05202 Transcriptional misregulation in cancer 6 169 0.56 0.0091
hsa04152 AMPK signaling pathway 5 120 0.63 0.0093
hsa04962 Vasopressin-regulated water reabsorption 3 44 0.85 0.0132
hsa05132 Salmonella infection 4 84 0.69 0.0132
hsa03015 mRNA surveillance pathway 4 89 0.67 0.0157
hsa04913 Ovarian steroidogenesis 3 49 0.8 0.0171
hsa05030 Cocaine addiction 3 49 0.8 0.0171
hsa03460 Fanconi anemia pathway 3 51 0.78 0.0187
hsa05134 Legionellosis 3 54 0.76 0.0215
hsa04137 Mitophagy—animal 3 63 0.69 0.0314
hsa04714 Thermogenesis 6 228 0.43 0.0314
hsa04927 Cortisol synthesis and secretion 3 63 0.69 0.0314
hsa04976 Bile secretion 3 71 0.64 0.0413
hsa04136 Autophagy—other 2 30 0.84 0.045

Author Contributions

Data curation, methodology, validation, investigation, and formal analysis by S.B., I.B. and R.N.D. Conceptualization, supervision, project administration, resources, visualization, and funding acquisition by R.N.D. Writing original draft preparation and review and editing by R.N.D. and I.B. All authors have read and agreed to the published version of the manuscript.

Funding

This study was funded in part by the ALS Association (#477) and a Discovery grant from Natural Sciences and Engineering Research Council of Canada (NSERC, RGPIN-2016-05761). S.B. was funded by the University of Winnipeg Wiegand Biology Undergraduate Research Fund.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

National Center for Biotechnology Information (NCBI; https://www.ncbi.nlm.nih.gov/, (accessed on 12 July 2021)) can be used to access sequences listed in the paper.

Conflicts of Interest

The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

Dedication

This study is dedicated to patients with ALS—we are working on it!

Footnotes

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  • 1.Christiaansen A., Varga S.M., Spencer J.V. Viral manipulation of the host immune response. Curr. Opin. Immunol. 2015;36:54–60. doi: 10.1016/j.coi.2015.06.012. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.McLean J.E., Ruck A., Shirazian A., Pooyaei-Mehr F., Zakeri Z.F. Viral manipulation of cell death. Curr. Pharm. Des. 2008;14:198–220. doi: 10.2174/138161208783413329. [DOI] [PubMed] [Google Scholar]
  • 3.Garcia-Etxebarria K., Sistiaga-Poveda M., Jugo B.M. Endogenous retroviruses in domestic animals. Curr. Genom. 2014;15:256–265. doi: 10.2174/1389202915666140520003503. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Xu X., Zhao H., Gong Z., Han G.Z. Endogenous retroviruses of non-avian/mammalian vertebrates illuminate diversity and deep history of retroviruses. PLoS Pathog. 2018;14:e1007072. doi: 10.1371/journal.ppat.1007072. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Nelson P.N., Carnegie P.R., Martin J., Davari Ejtehadi H., Hooley P., Roden D., Rowland-Jones S., Warren P., Astley J., Murray P.G. Demystified. Human endogenous retroviruses. Mol. Pathol. 2003;56:11–18. doi: 10.1136/mp.56.1.11. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Mayer J., Meese E. Human endogenous retroviruses in the primate lineage and their influence on host genomes. Cytogenet. Genome Res. 2005;110:448–456. doi: 10.1159/000084977. [DOI] [PubMed] [Google Scholar]
  • 7.Hohn O., Hanke K., Bannert N. HERV-K(HML-2), the Best Preserved Family of HERVs: Endogenization, Expression, and Implications in Health and Disease. Front. Oncol. 2013;3:246. doi: 10.3389/fonc.2013.00246. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Downey R.F., Sullivan F.J., Wang-Johanning F., Ambs S., Giles F.J., Glynn S.A. Human endogenous retrovirus K and cancer: Innocent bystander or tumorigenic accomplice? Int. J. Cancer. 2015;137:1249–1257. doi: 10.1002/ijc.29003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Douville R., Liu J., Rothstein J., Nath A. Identification of active loci of a human endogenous retrovirus in neurons of patients with amyotrophic lateral sclerosis. Ann. Neurol. 2011;69:141–151. doi: 10.1002/ana.22149. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Manghera M., Ferguson-Parry J., Douville R.N. TDP-43 regulates endogenous retrovirus-K viral protein accumulation. Neurobiol. Dis. 2016;94:226–236. doi: 10.1016/j.nbd.2016.06.017. [DOI] [PubMed] [Google Scholar]
  • 11.Manghera M., Ferguson-Parry J., Lin R., Douville R.N. NF-kappaB and IRF1 Induce Endogenous Retrovirus K Expression via Interferon-Stimulated Response Elements in Its 5′ Long Terminal Repeat. J. Virol. 2016;90:9338–9349. doi: 10.1128/JVI.01503-16. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Arru G., Mameli G., Deiana G.A., Rassu A.L., Piredda R., Sechi E., Caggiu E., Bo M., Nako E., Urso D., et al. Humoral immunity response to human endogenous retroviruses K/W differentiates between amyotrophic lateral sclerosis and other neurological diseases. Eur. J. Neurol. 2018;25:e1076–e1084. doi: 10.1111/ene.13648. [DOI] [PubMed] [Google Scholar]
  • 13.Romer C. Viruses and Endogenous Retroviruses as Roots for Neuroinflammation and Neurodegenerative Diseases. Front. Neurosci. 2021;15:648629. doi: 10.3389/fnins.2021.648629. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Greenig M. HERVs, immunity, and autoimmunity: Understanding the connection. PeerJ. 2019;7:e6711. doi: 10.7717/peerj.6711. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Vincendeau M., Gottesdorfer I., Schreml J.M., Wetie A.G., Mayer J., Greenwood A.D., Helfer M., Kramer S., Seifarth W., Hadian K., et al. Modulation of human endogenous retrovirus (HERV) transcription during persistent and de novo HIV-1 infection. Retrovirology. 2015;12:27. doi: 10.1186/s12977-015-0156-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Pilie P.G., Tang C., Mills G.B., Yap T.A. State-of-the-art strategies for targeting the DNA damage response in cancer. Nat. Rev. Clin. Oncol. 2019;16:81–104. doi: 10.1038/s41571-018-0114-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Penndorf D., Witte O.W., Kretz A. DNA plasticity and damage in amyotrophic lateral sclerosis. Neural Regen. Res. 2018;13:173–180. doi: 10.4103/1673-5374.226377. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Gao F.B., Almeida S., Lopez-Gonzalez R. Dysregulated molecular pathways in amyotrophic lateral sclerosis-frontotemporal dementia spectrum disorder. EMBO J. 2017;36:2931–2950. doi: 10.15252/embj.201797568. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Kessl J.J., Kutluay S.B., Townsend D., Rebensburg S., Slaughter A., Larue R.C., Shkriabai N., Bakouche N., Fuchs J.R., Bieniasz P.D., et al. HIV-1 Integrase Binds the Viral RNA Genome and Is Essential during Virion Morphogenesis. Cell. 2016;166:1257–1268.e1212. doi: 10.1016/j.cell.2016.07.044. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Lesbats P., Engelman A.N., Cherepanov P. Retroviral DNA Integration. Chem. Rev. 2016;116:12730–12757. doi: 10.1021/acs.chemrev.6b00125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Daniel R., Kao G., Taganov K., Greger J.G., Favorova O., Merkel G., Yen T.J., Katz R.A., Skalka A.M. Evidence that the retroviral DNA integration process triggers an ATR-dependent DNA damage response. Proc. Natl. Acad. Sci. USA. 2003;100:4778–4783. doi: 10.1073/pnas.0730887100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Skalka A.M., Katz R.A. Retroviral DNA integration and the DNA damage response. Cell Death Differ. 2005;12(Suppl. S1):971–978. doi: 10.1038/sj.cdd.4401573. [DOI] [PubMed] [Google Scholar]
  • 23.Bray S., Turnbull M., Hebert S., Douville R.N. Insight into the ERVK Integrase—Propensity for DNA Damage. Front. Microbiol. 2016;7:1941. doi: 10.3389/fmicb.2016.01941. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Kitamura Y., Ayukawa T., Ishikawa T., Kanda T., Yoshiike K. Human endogenous retrovirus K10 encodes a functional integrase. J. Virol. 1996;70:3302–3306. doi: 10.1128/jvi.70.5.3302-3306.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Van Maele B., Busschots K., Vandekerckhove L., Christ F., Debyser Z. Cellular co-factors of HIV-1 integration. Trends Biochem. Sci. 2006;31:98–105. doi: 10.1016/j.tibs.2005.12.002. [DOI] [PubMed] [Google Scholar]
  • 26.Christ F., Debyser Z. The LEDGF/p75 integrase interaction, a novel target for anti-HIV therapy. Virology. 2013;435:102–109. doi: 10.1016/j.virol.2012.09.033. [DOI] [PubMed] [Google Scholar]
  • 27.Studamire B., Goff S.P. Interactions of host proteins with the murine leukemia virus integrase. Viruses. 2010;2:1110–1145. doi: 10.3390/v2051110. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Jayappa K.D., Ao Z., Wang X., Mouland A.J., Shekhar S., Yang X., Yao X. Human immunodeficiency virus type 1 employs the cellular dynein light chain 1 protein for reverse transcription through interaction with its integrase protein. J. Virol. 2015;89:3497–3511. doi: 10.1128/JVI.03347-14. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Ryan E.L., Hollingworth R., Grand R.J. Activation of the DNA Damage Response by RNA Viruses. Biomolecules. 2016;6:2. doi: 10.3390/biom6010002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Suzuki Y., Craigie R. The road to chromatin—Nuclear entry of retroviruses. Nat. Rev. Microbiol. 2007;5:187–196. doi: 10.1038/nrmicro1579. [DOI] [PubMed] [Google Scholar]
  • 31.Suzuki Y., Chew M.L. Role of host-encoded proteins in restriction of retroviral integration. Front. Microbiol. 2012;3:227. doi: 10.3389/fmicb.2012.00227. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.Daniel R., Greger J.G., Katz R.A., Taganov K.D., Wu X., Kappes J.C., Skalka A.M. Evidence that stable retroviral transduction and cell survival following DNA integration depend on components of the nonhomologous end joining repair pathway. J. Virol. 2004;78:8573–8581. doi: 10.1128/JVI.78.16.8573-8581.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.Turlure F., Devroe E., Silver P.A., Engelman A. Human cell proteins and human immunodeficiency virus DNA integration. Front. Biosci. 2004;9:3187–3208. doi: 10.2741/1472. [DOI] [PubMed] [Google Scholar]
  • 34.Cooper A., Garcia M., Petrovas C., Yamamoto T., Koup R.A., Nabel G.J. HIV-1 causes CD4 cell death through DNA-dependent protein kinase during viral integration. Nature. 2013;498:376–379. doi: 10.1038/nature12274. [DOI] [PubMed] [Google Scholar]
  • 35.Hanahan D., Weinberg R.A. Hallmarks of cancer: The next generation. Cell. 2011;144:646–674. doi: 10.1016/j.cell.2011.02.013. [DOI] [PubMed] [Google Scholar]
  • 36.Mourad R., Ginalski K., Legube G., Cuvier O. Predicting double-strand DNA breaks using epigenome marks or DNA at kilobase resolution. Genome Biol. 2018;19:34. doi: 10.1186/s13059-018-1411-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37.Stetson D.B., Ko J.S., Heidmann T., Medzhitov R. Trex1 prevents cell-intrinsic initiation of autoimmunity. Cell. 2008;134:587–598. doi: 10.1016/j.cell.2008.06.032. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38.Zhang J., Scadden D.T., Crumpacker C.S. Primitive hematopoietic cells resist HIV-1 infection via p21. J. Clin. Investig. 2007;117:473–481. doi: 10.1172/JCI28971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39.Ran X., Ao Z., Olukitibi T., Yao X. Characterization of the Role of Host Cellular Factor Histone Deacetylase 10 during HIV-1 Replication. Viruses. 2019;12:28. doi: 10.3390/v12010028. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 40.Ali H., Mano M., Braga L., Naseem A., Marini B., Vu D.M., Collesi C., Meroni G., Lusic M., Giacca M. Cellular TRIM33 restrains HIV-1 infection by targeting viral integrase for proteasomal degradation. Nat. Commun. 2019;10:926. doi: 10.1038/s41467-019-08810-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41.Mulder L.C., Chakrabarti L.A., Muesing M.A. Interaction of HIV-1 integrase with DNA repair protein hRad18. J. Biol. Chem. 2002;277:27489–27493. doi: 10.1074/jbc.M203061200. [DOI] [PubMed] [Google Scholar]
  • 42.Van Maele B., Debyser Z. HIV-1 integration: An interplay between HIV-1 integrase, cellular and viral proteins. AIDS Rev. 2005;7:26–43. [PubMed] [Google Scholar]
  • 43.Anisenko A.N., Knyazhanskaya E.S., Zalevsky A.O., Agapkina J.Y., Sizov A.I., Zatsepin T.S., Gottikh M.B. Characterization of HIV-1 integrase interaction with human Ku70 protein and initial implications for drug targeting. Sci. Rep. 2017;7:5649. doi: 10.1038/s41598-017-05659-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 44.BLAST. [(accessed on 12 July 2021)]; Available online: https://www.ncbi.nlm.nih.gov/BLAST/
  • 45.Rosindell J., Harmon L.J. OneZoom: A fractal explorer for the tree of life. PLoS Biol. 2012;10:e1001406. doi: 10.1371/journal.pbio.1001406. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 46.Kearse M., Moir R., Wilson A., Stones-Havas S., Cheung M., Sturrock S., Buxton S., Cooper A., Markowitz S., Duran C., et al. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 2012;28:1647–1649. doi: 10.1093/bioinformatics/bts199. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 47.Lu S., Wang J., Chitsaz F., Derbyshire M.K., Geer R.C., Gonzales N.R., Gwadz M., Hurwitz D.I., Marchler G.H., Song J.S., et al. CDD/SPARCLE: The conserved domain database in 2020. Nucleic Acids Res. 2020;48:D265–D268. doi: 10.1093/nar/gkz991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 48.Kumar M., Gouw M., Michael S., Sámano-Sánchez H., Pancsa R., Glavina J., Diakogianni A., Valverde J.A., Bukirova D., Čalyševa J., et al. ELM-the eukaryotic linear motif resource in 2020. Nucleic Acids Res. 2020;48:D296–D306. doi: 10.1093/nar/gkz1030. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 49.Lee Y.M., Liou Y.C. Gears-In-Motion: The Interplay of WW and PPIase Domains in Pin1. Front. Oncol. 2018;8:469. doi: 10.3389/fonc.2018.00469. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 50.Ramos F., Villoria M.T., Alonso-Rodriguez E., Clemente-Blanco A. Role of protein phosphatases PP1, PP2A, PP4 and Cdc14 in the DNA damage response. Cell Stress. 2019;3:70–85. doi: 10.15698/cst2019.03.178. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 51.Knippschild U., Kruger M., Richter J., Xu P., Garcia-Reyes B., Peifer C., Halekotte J., Bakulev V., Bischof J. The CK1 Family: Contribution to Cellular Stress Response and Its Role in Carcinogenesis. Front. Oncol. 2014;4:96. doi: 10.3389/fonc.2014.00096. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 52.Fry A.M., O’Regan L., Sabir S.R., Bayliss R. Cell cycle regulation by the NEK family of protein kinases. J. Cell Sci. 2012;125:4423–4433. doi: 10.1242/jcs.111195. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 53.Kumar S., Sharma G., Chakraborty C., Sharma A.R., Kim J. Regulatory functional territory of PLK-1 and their substrates beyond mitosis. Oncotarget. 2017;8:37942–37962. doi: 10.18632/oncotarget.16290. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 54.Reinhardt H.C., Yaffe M.B. Phospho-Ser/Thr-binding domains: Navigating the cell cycle and DNA damage response. Nat. Rev. Mol. Cell Biol. 2013;14:563–580. doi: 10.1038/nrm3640. [DOI] [PubMed] [Google Scholar]
  • 55.Chang Z., Wang Y., Zhou X., Long J.E. STAT3 roles in viral infection: Antiviral or proviral? Future Virol. 2018;13:557–574. doi: 10.2217/fvl-2018-0033. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 56.Rani A., Murphy J.J. STAT5 in Cancer and Immunity. J. Interferon Cytokine Res. 2016;36:226–237. doi: 10.1089/jir.2015.0054. [DOI] [PubMed] [Google Scholar]
  • 57.Mahajan K., Mahajan N.P. Cross talk of tyrosine kinases with the DNA damage signaling pathways. Nucleic Acids Res. 2015;43:10588–10601. doi: 10.1093/nar/gkv1166. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 58.Teyra J., Huang H., Jain S., Guan X., Dong A., Liu Y., Tempel W., Min J., Tong Y., Kim P.M., et al. Comprehensive Analysis of the Human SH3 Domain Family Reveals a Wide Variety of Non-canonical Specificities. Structure. 2017;25:1598–1610.e3. doi: 10.1016/j.str.2017.07.017. [DOI] [PubMed] [Google Scholar]
  • 59.Lalaoui N., Vaux D.L. Recent advances in understanding inhibitor of apoptosis proteins. F1000Research. 2018;7 doi: 10.12688/f1000research.16439.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 60.Liu H., Li L., Voss C., Wang F., Liu J., Li S.S. A Comprehensive Immunoreceptor Phosphotyrosine-based Signaling Network Revealed by Reciprocal Protein-Peptide Array Screening. Mol. Cell Proteom. 2015;14:1846–1858. doi: 10.1074/mcp.M115.047951. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 61.Beurel E., Grieco S.F., Jope R.S. Glycogen synthase kinase-3 (GSK3): Regulation, actions, and diseases. Pharmacol. Ther. 2015;148:114–131. doi: 10.1016/j.pharmthera.2014.11.016. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 62.Canovas B., Nebreda A.R. Diversity and versatility of p38 kinase signalling in health and disease. Nat. Rev. Mol. Cell Biol. 2021;22:346–366. doi: 10.1038/s41580-020-00322-w. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 63.Covill-Cooke C., Toncheva V.S., Kittler J.T. Regulation of peroxisomal trafficking and distribution. Cell. Mol. Life Sci. 2021;78:1929–1941. doi: 10.1007/s00018-020-03687-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 64.Kumar P., Wittmann T. + TIPs: SxIPping along microtubule ends. Trends Cell Biol. 2012;22:418–428. doi: 10.1016/j.tcb.2012.05.005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 65.Park S.Y., Guo X. Adaptor protein complexes and intracellular transport. Biosci. Rep. 2014;34 doi: 10.1042/BSR20140069. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 66.Egea P.F. Crossing the Vacuolar Rubicon: Structural Insights into Effector Protein Trafficking in Apicomplexan Parasites. Microorganisms. 2020;8:865. doi: 10.3390/microorganisms8060865. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 67.Matic I., Schimmel J., Hendriks I.A., van Santen M.A., van de Rijke F., van Dam H., Gnad F., Mann M., Vertegaal A.C. Site-specific identification of SUMO-2 targets in cells reveals an inverted SUMOylation motif and a hydrophobic cluster SUMOylation motif. Mol. Cell. 2010;39:641–652. doi: 10.1016/j.molcel.2010.07.026. [DOI] [PubMed] [Google Scholar]
  • 68.Zamborlini A., Coiffic A., Beauclair G., Delelis O., Paris J., Koh Y., Magne F., Giron M.L., Tobaly-Tapiero J., Deprez E., et al. Impairment of human immunodeficiency virus type-1 integrase SUMOylation correlates with an early replication defect. J. Biol. Chem. 2011;286:21013–21022. doi: 10.1074/jbc.M110.189274. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 69.Zhao X. SUMO-Mediated Regulation of Nuclear Functions and Signaling Processes. Mol. Cell. 2018;71:409–418. doi: 10.1016/j.molcel.2018.07.027. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 70.Quek H., Lim Y.C., Lavin M.F., Roberts T.L. PIKKing a way to regulate inflammation. Immunol. Cell Biol. 2018;96:8–20. doi: 10.1111/imcb.1001. [DOI] [PubMed] [Google Scholar]
  • 71.Penalosa-Ruiz G., Bousgouni V., Gerlach J.P., Waarlo S., van de Ven J.V., Veenstra T.E., Silva J.C.R., van Heeringen S.J., Bakal C., Mulder K.W., et al. WDR5, BRCA1, and BARD1 Co-regulate the DNA Damage Response and Modulate the Mesenchymal-to-Epithelial Transition during Early Reprogramming. Stem Cell Rep. 2019;12:743–756. doi: 10.1016/j.stemcr.2019.02.006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 72.Wheatley S.P., Altieri D.C. Survivin at a glance. J. Cell Sci. 2019;132 doi: 10.1242/jcs.223826. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 73.Fang Y., Zhang X. Targeting NEK2 as a promising therapeutic approach for cancer treatment. Cell Cycle. 2016;15:895–907. doi: 10.1080/15384101.2016.1152430. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 74.De Carcer G. The Mitotic Cancer Target Polo-Like Kinase 1: Oncogene or Tumor Suppressor? Genes. 2019;10:208. doi: 10.3390/genes10030208. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 75.Van Grevenynghe J., Cubas R.A., DaFonseca S., Metcalf T., Tremblay C.L., Trautmann L., Sekaly R.P., Schatzle J., Haddad E.K. Foxo3a: An integrator of immune dysfunction during HIV infection. Cytokine Growth Factor Rev. 2012;23:215–221. doi: 10.1016/j.cytogfr.2012.05.008. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 76.Aloni-Grinstein R., Charni-Natan M., Solomon H., Rotter V. p53 and the Viral Connection: Back into the Future (double dagger) Cancers. 2018;10:178. doi: 10.3390/cancers10060178. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 77.Ho J., Moyes D.L., Tavassoli M., Naglik J.R. The Role of ErbB Receptors in Infection. Trends Microbiol. 2017;25:942–952. doi: 10.1016/j.tim.2017.04.009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 78.Khanizadeh S., Hasanvand B., Esmaeil Lashgarian H., Almasian M., Goudarzi G. Interaction of viral oncogenic proteins with the Wnt signaling pathway. Iran. J. Basic Med. Sci. 2018;21:651–659. doi: 10.22038/IJBMS.2018.28903.6982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 79.De Martini W., Rahman R., Ojegba E., Jungwirth E., Macias J., Ackerly F., Fowler M., Cottrell J., Chu T., Chang S.L. Kinases: Understanding Their Role in HIV Infection. World J. AIDS. 2019;9:142–160. doi: 10.4236/wja.2019.93011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 80.Medders K.E., Kaul M. Mitogen-activated protein kinase p38 in HIV infection and associated brain injury. J. Neuroimmune Pharmacol. 2011;6:202–215. doi: 10.1007/s11481-011-9260-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 81.Saez-Cirion A., Manel N. Immune Responses to Retroviruses. Annu. Rev. Immunol. 2018;36:193–220. doi: 10.1146/annurev-immunol-051116-052155. [DOI] [PubMed] [Google Scholar]
  • 82.Shi J.H., Sun S.C. Tumor Necrosis Factor Receptor-Associated Factor Regulation of Nuclear Factor kappaB and Mitogen-Activated Protein Kinase Pathways. Front. Immunol. 2018;9:1849. doi: 10.3389/fimmu.2018.01849. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 83.Nehlig A., Molina A., Rodrigues-Ferreira S., Honore S., Nahmias C. Regulation of end-binding protein EB1 in the control of microtubule dynamics. Cell. Mol. Life Sci. 2017;74:2381–2393. doi: 10.1007/s00018-017-2476-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 84.Cao H., Orth J.D., Chen J., Weller S.G., Heuser J.E., McNiven M.A. Cortactin is a component of clathrin-coated pits and participates in receptor-mediated endocytosis. Mol. Cell. Biol. 2003;23:2162–2170. doi: 10.1128/MCB.23.6.2162-2170.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 85.Zare M., Mostafaei S., Ahmadi A., Azimzadeh Jamalkandi S., Abedini A., Esfahani-Monfared Z., Dorostkar R., Saadati M. Human endogenous retrovirus env genes: Potential blood biomarkers in lung cancer. Microb. Pathog. 2018;115:189–193. doi: 10.1016/j.micpath.2017.12.040. [DOI] [PubMed] [Google Scholar]
  • 86.Bergallo M., Montanari P., Mareschi K., Merlino C., Berger M., Bini I., Dapra V., Galliano I., Fagioli F. Expression of the pol gene of human endogenous retroviruses HERV-K and -W in leukemia patients. Arch. Virol. 2017;162:3639–3644. doi: 10.1007/s00705-017-3526-7. [DOI] [PubMed] [Google Scholar]
  • 87.Ma W., Hong Z., Liu H., Chen X., Ding L., Liu Z., Zhou F., Yuan Y. Human Endogenous Retroviruses-K (HML-2) Expression Is Correlated with Prognosis and Progress of Hepatocellular Carcinoma. BioMed Res. Int. 2016;2016:8201642. doi: 10.1155/2016/8201642. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 88.Yuan Z., Yang Y., Zhang N., Soto C., Jiang X., An Z., Zheng W.J. Human Endogenous Retroviruses in Glioblastoma Multiforme. Microorganisms. 2021;9:764. doi: 10.3390/microorganisms9040764. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 89.Dembny P., Newman A.G., Singh M., Hinz M., Szczepek M., Kruger C., Adalbert R., Dzaye O., Trimbuch T., Wallach T., et al. Human endogenous retrovirus HERV-K(HML-2) RNA causes neurodegeneration through Toll-like receptors. JCI Insight. 2020;5 doi: 10.1172/jci.insight.131093. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 90.Jeong B.H., Lee Y.J., Carp R.I., Kim Y.S. The prevalence of human endogenous retroviruses in cerebrospinal fluids from patients with sporadic Creutzfeldt-Jakob disease. J. Clin. Virol. 2010;47:136–142. doi: 10.1016/j.jcv.2009.11.016. [DOI] [PubMed] [Google Scholar]
  • 91.Tovo P.A., Rabbone I., Tinti D., Galliano I., Trada M., Dapra V., Cerutti F., Bergallo M. Enhanced expression of human endogenous retroviruses in new-onset type 1 diabetes: Potential pathogenetic and therapeutic implications. Autoimmunity. 2020;53:283–288. doi: 10.1080/08916934.2020.1777281. [DOI] [PubMed] [Google Scholar]
  • 92.Mason M.J., Speake C., Gersuk V.H., Nguyen Q.A., O’Brien K.K., Odegard J.M., Buckner J.H., Greenbaum C.J., Chaussabel D., Nepom G.T. Low HERV-K(C4) copy number is associated with type 1 diabetes. Diabetes. 2014;63:1789–1795. doi: 10.2337/db13-1382. [DOI] [PubMed] [Google Scholar]
  • 93.Dickerson F., Rubalcaba E., Viscidi R., Yang S., Stallings C., Sullens A., Origoni A., Leister F., Yolken R. Polymorphisms in human endogenous retrovirus K-18 and risk of type 2 diabetes in individuals with schizophrenia. Schizophr. Res. 2008;104:121–126. doi: 10.1016/j.schres.2008.05.005. [DOI] [PubMed] [Google Scholar]
  • 94.Cinek O., Kramna L., Odeh R., Alassaf A., Ibekwe M.A.U., Ahmadov G., Elmahi B.M.E., Mekki H., Lebl J., Abdullah M.A. Eukaryotic viruses in the fecal virome at the onset of type 1 diabetes: A study from four geographically distant African and Asian countries. Pediatr. Diabetes. 2021;22:558–566. doi: 10.1111/pedi.13207. [DOI] [PubMed] [Google Scholar]
  • 95.Piekna-Przybylska D., Sharma G., Maggirwar S.B., Bambara R.A. Deficiency in DNA damage response, a new characteristic of cells infected with latent HIV-1. Cell Cycle. 2017;16:968–978. doi: 10.1080/15384101.2017.1312225. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 96.Li D., Lopez A., Sandoval C., Nichols Doyle R., Fregoso O.I. HIV Vpr Modulates the Host DNA Damage Response at Two Independent Steps to Damage DNA and Repress Double-Strand DNA Break Repair. mBio. 2020;11 doi: 10.1128/mBio.00940-20. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 97.Zhi H., Guo X., Ho Y.K., Pasupala N., Engstrom H.A.A., Semmes O.J., Giam C.Z. RNF8 Dysregulation and Down-regulation During HTLV-1 Infection Promote Genomic Instability in Adult T-Cell Leukemia. PLoS Pathog. 2020;16:e1008618. doi: 10.1371/journal.ppat.1008618. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 98.Luftig M.A. Viruses and the DNA Damage Response: Activation and Antagonism. Annu. Rev. Virol. 2014;1:605–625. doi: 10.1146/annurev-virology-031413-085548. [DOI] [PubMed] [Google Scholar]
  • 99.Hristova D.B., Lauer K.B., Ferguson B.J. Viral interactions with non-homologous end-joining: A game of hide-and-seek. J. Gen. Virol. 2020;101:1133–1144. doi: 10.1099/jgv.0.001478. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 100.Mohammad D.H., Yaffe M.B. 14-3-3 proteins, FHA domains and BRCT domains in the DNA damage response. DNA Repair. 2009;8:1009–1017. doi: 10.1016/j.dnarep.2009.04.004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 101.Pancholi N.J., Price A.M., Weitzman M.D. Take your PIKK: Tumour viruses and DNA damage response pathways. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2017;372 doi: 10.1098/rstb.2016.0269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 102.Zimmerman E.S., Chen J., Andersen J.L., Ardon O., Dehart J.L., Blackett J., Choudhary S.K., Camerini D., Nghiem P., Planelles V. Human immunodeficiency virus type 1 Vpr-mediated G2 arrest requires Rad17 and Hus1 and induces nuclear BRCA1 and gamma-H2AX focus formation. Mol. Cell. Biol. 2004;24:9286–9294. doi: 10.1128/MCB.24.21.9286-9294.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 103.Shukrun M., Jabareen A., Abou-Kandil A., Chamias R., Aboud M., Huleihel M. HTLV-1 Tax oncoprotein inhibits the estrogen-induced-ER alpha-Mediated BRCA1 expression by interaction with CBP/p300 cofactors. PLoS ONE. 2014;9:e89390. doi: 10.1371/journal.pone.0089390. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 104.Nathan K.G., Lal S.K. The Multifarious Role of 14-3-3 Family of Proteins in Viral Replication. Viruses. 2020;12:436. doi: 10.3390/v12040436. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 105.Wu Q., Jubb H., Blundell T.L. Phosphopeptide interactions with BRCA1 BRCT domains: More than just a motif. Prog. Biophys. Mol. Biol. 2015;117:143–148. doi: 10.1016/j.pbiomolbio.2015.02.003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 106.Clapperton J.A., Manke I.A., Lowery D.M., Ho T., Haire L.F., Yaffe M.B., Smerdon S.J. Structure and mechanism of BRCA1 BRCT domain recognition of phosphorylated BACH1 with implications for cancer. Nat. Struct. Mol. Biol. 2004;11:512–518. doi: 10.1038/nsmb775. [DOI] [PubMed] [Google Scholar]
  • 107.Fan X., Cui L., Zeng Y., Song W., Gaur U., Yang M. 14-3-3 Proteins Are on the Crossroads of Cancer, Aging, and Age-Related Neurodegenerative Disease. Int. J. Mol. Sci. 2019;20:3518. doi: 10.3390/ijms20143518. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 108.Morales D., Skoulakis E.C., Acevedo S.F. 14-3-3s are potential biomarkers for HIV-related neurodegeneration. J. Neurovirol. 2012;18:341–353. doi: 10.1007/s13365-012-0121-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 109.Roskoski R., Jr. RAF protein-serine/threonine kinases: Structure and regulation. Biochem. Biophys. Res. Commun. 2010;399:313–317. doi: 10.1016/j.bbrc.2010.07.092. [DOI] [PubMed] [Google Scholar]
  • 110.Tang J., Wang J.Y., Parker L.L. Detection of early Abl kinase activation after ionizing radiation by using a peptide biosensor. ChemBioChem Eur. J. Chem. Biol. 2012;13:665–673. doi: 10.1002/cbic.201100763. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 111.McCarthy S.D.S., Leontyev D., Nicoletti P., Binnington B., Kozlowski H.N., Ostrowski M., Cochrane A., Branch D.R., Wong R.W. Targeting ABL1 or ARG Tyrosine Kinases to Restrict HIV-1 Infection in Primary CD4+ T-Cells or in Humanized NSG Mice. J. Acquir. Immune Defic. Syndr. 2019;82:407–415. doi: 10.1097/QAI.0000000000002144. [DOI] [PubMed] [Google Scholar]
  • 112.Kodama D., Tanaka M., Matsuzaki T., Izumo K., Nakano N., Matsuura E., Saito M., Nagai M., Horiuchi M., Utsunomiya A., et al. Inhibition of ABL1 tyrosine kinase reduces HTLV-1 proviral loads in peripheral blood mononuclear cells from patients with HTLV-1-associated myelopathy/tropical spastic paraparesis. PLoS Negl. Trop. Dis. 2020;14:e0008361. doi: 10.1371/journal.pntd.0008361. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 113.Baskaran R., Escobar S.R., Wang J.Y. Nuclear c-Abl is a COOH-terminal repeated domain (CTD)-tyrosine (CTD)-tyrosine kinase-specific for the mammalian RNA polymerase II: Possible role in transcription elongation. Cell Growth Differ. 1999;10:387–396. [PubMed] [Google Scholar]
  • 114.Schlatterer S.D., Acker C.M., Davies P. c-Abl in neurodegenerative disease. J. Mol. Neurosci. 2011;45:445–452. doi: 10.1007/s12031-011-9588-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 115.Kim B.W., Jeong Y.E., Wong M., Martin L.J. DNA damage accumulates and responses are engaged in human ALS brain and spinal motor neurons and DNA repair is activatable in iPSC-derived motor neurons with SOD1 mutations. Acta Neuropathol. Commun. 2020;8:7. doi: 10.1186/s40478-019-0874-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 116.Wang W., Mani A.M., Wu Z.H. DNA damage-induced nuclear factor-kappa B activation and its roles in cancer progression. J. Cancer Metastasis Treat. 2017;3:45–59. doi: 10.20517/2394-4722.2017.03. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 117.Zuo S., Xue Y., Tang S., Yao J., Du R., Yang P., Chen X. 14-3-3 epsilon dynamically interacts with key components of mitogen-activated protein kinase signal module for selective modulation of the TNF-alpha-induced time course-dependent NF-kappaB activity. J. Proteome Res. 2010;9:3465–3478. doi: 10.1021/pr9011377. [DOI] [PubMed] [Google Scholar]
  • 118.Pennington K.L., Chan T.Y., Torres M.P., Andersen J.L. The dynamic and stress-adaptive signaling hub of 14-3-3: Emerging mechanisms of regulation and context-dependent protein-protein interactions. Oncogene. 2018;37:5587–5604. doi: 10.1038/s41388-018-0348-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 119.Saha R.N., Jana M., Pahan K. MAPK p38 regulates transcriptional activity of NF-kappaB in primary human astrocytes via acetylation of p65. J. Immunol. 2007;179:7101–7109. doi: 10.4049/jimmunol.179.10.7101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 120.Zheng Y., Ao Z., Wang B., Jayappa K.D., Yao X. Host protein Ku70 binds and protects HIV-1 integrase from proteasomal degradation and is required for HIV replication. J. Biol. Chem. 2011;286:17722–17735. doi: 10.1074/jbc.M110.184739. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 121.Llano M., Delgado S., Vanegas M., Poeschla E.M. Lens epithelium-derived growth factor/p75 prevents proteasomal degradation of HIV-1 integrase. J. Biol. Chem. 2004;279:55570–55577. doi: 10.1074/jbc.M408508200. [DOI] [PubMed] [Google Scholar]
  • 122.Manganaro L., Lusic M., Gutierrez M.I., Cereseto A., Del Sal G., Giacca M. Concerted action of cellular JNK and Pin1 restricts HIV-1 genome integration to activated CD4+ T lymphocytes. Nat. Med. 2010;16:329–333. doi: 10.1038/nm.2102. [DOI] [PubMed] [Google Scholar]
  • 123.Quy V.C., Carnevale V., Manganaro L., Lusic M., Rossetti G., Leone V., Fenollar-Ferrer C., Raugei S., Del Sal G., Giacca M., et al. HIV-1 integrase binding to its cellular partners: A perspective from computational biology. Curr. Pharm. Des. 2014;20:3412–3421. doi: 10.2174/13816128113199990631. [DOI] [PubMed] [Google Scholar]
  • 124.Kojima Y., Ryo A. Pinning down viral proteins: A new prototype for virus-host cell interaction. Front. Microbiol. 2010;1:107. doi: 10.3389/fmicb.2010.00107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 125.Nieto-Torres J.L., Leidal A.M., Debnath J., Hansen M. Beyond Autophagy: The Expanding Roles of ATG8 Proteins. Trends Biochem. Sci. 2021 doi: 10.1016/j.tibs.2021.01.004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 126.Leymarie O., Lepont L., Berlioz-Torrent C. Canonical and Non-Canonical Autophagy in HIV-1 Replication Cycle. Viruses. 2017;9:270. doi: 10.3390/v9100270. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 127.Vicencio E., Beltran S., Labrador L., Manque P., Nassif M., Woehlbier U. Implications of Selective Autophagy Dysfunction for ALS Pathology. Cells. 2020;9:381. doi: 10.3390/cells9020381. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 128.Watanabe Y., Taguchi K., Tanaka M. Ubiquitin, Autophagy and Neurodegenerative Diseases. Cells. 2020;9:2022. doi: 10.3390/cells9092022. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 129.Negrini S., Gorgoulis V.G., Halazonetis T.D. Genomic instability--an evolving hallmark of cancer. Nat. Rev. Mol. Cell Biol. 2010;11:220–228. doi: 10.1038/nrm2858. [DOI] [PubMed] [Google Scholar]
  • 130.Sun Y., Curle A.J., Haider A.M., Balmus G. The role of DNA damage response in amyotrophic lateral sclerosis. Essays Biochem. 2020;64:847–861. doi: 10.1042/EBC20200002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 131.Hou Y., Song H., Croteau D.L., Akbari M., Bohr V.A. Genome instability in Alzheimer disease. Mech. Ageing Dev. 2017;161:83–94. doi: 10.1016/j.mad.2016.04.005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 132.Madabhushi R., Pan L., Tsai L.H. DNA damage and its links to neurodegeneration. Neuron. 2014;83:266–282. doi: 10.1016/j.neuron.2014.06.034. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 133.Malaspina A., Kaushik N., de Belleroche J. A 14-3-3 mRNA is up-regulated in amyotrophic lateral sclerosis spinal cord. J. Neurochem. 2000;75:2511–2520. doi: 10.1046/j.1471-4159.2000.0752511.x. [DOI] [PubMed] [Google Scholar]
  • 134.Hermeking H. The 14-3-3 cancer connection. Nat. Rev. Cancer. 2003;3:931–943. doi: 10.1038/nrc1230. [DOI] [PubMed] [Google Scholar]
  • 135.Martin L.J. p53 is abnormally elevated and active in the CNS of patients with amyotrophic lateral sclerosis. Neurobiol. Dis. 2000;7:613–622. doi: 10.1006/nbdi.2000.0314. [DOI] [PubMed] [Google Scholar]
  • 136.Ozaki T., Nakagawara A. Role of p53 in Cell Death and Human Cancers. Cancers. 2011;3:994–1013. doi: 10.3390/cancers3010994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 137.Koul H.K., Pal M., Koul S. Role of p38 MAP Kinase Signal Transduction in Solid Tumors. Genes Cancer. 2013;4:342–359. doi: 10.1177/1947601913507951. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 138.Guo W., Vandoorne T., Steyaert J., Staats K.A., Van Den Bosch L. The multifaceted role of kinases in amyotrophic lateral sclerosis: Genetic, pathological and therapeutic implications. Brain. 2020;143:1651–1673. doi: 10.1093/brain/awaa022. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 139.Jiang X., Guan Y., Zhao Z., Meng F., Wang X., Gao X., Liu J., Chen Y., Zhou F., Zhou S., et al. Potential Roles of the WNT Signaling Pathway in Amyotrophic Lateral Sclerosis. Cells. 2021;10:839. doi: 10.3390/cells10040839. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 140.Menck K., Heinrichs S., Baden C., Bleckmann A. The WNT/ROR Pathway in Cancer: From Signaling to Therapeutic Intervention. Cells. 2021;10:142. doi: 10.3390/cells10010142. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 141.Manigrasso M.B., Juranek J., Ramasamy R., Schmidt A.M. Unlocking the biology of RAGE in diabetic microvascular complications. Trends Endocrinol. Metab. 2014;25:15–22. doi: 10.1016/j.tem.2013.08.002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 142.Kumar V., Fleming T., Terjung S., Gorzelanny C., Gebhardt C., Agrawal R., Mall M.A., Ranzinger J., Zeier M., Madhusudhan T., et al. Homeostatic nuclear RAGE-ATM interaction is essential for efficient DNA repair. Nucleic Acids Res. 2017;45:10595–10613. doi: 10.1093/nar/gkx705. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 143.Abe R., Yamagishi S. AGE-RAGE system and carcinogenesis. Curr. Pharm. Des. 2008;14:940–945. doi: 10.2174/138161208784139765. [DOI] [PubMed] [Google Scholar]
  • 144.Derk J., MacLean M., Juranek J., Schmidt A.M. The Receptor for Advanced Glycation Endproducts (RAGE) and Mediation of Inflammatory Neurodegeneration. J. Alzheimers Dis. Parkinsonism. 2018;8 doi: 10.4172/2161-0460.1000421. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 145.Shaposhnikov M., Proshkina E., Shilova L., Zhavoronkov A., Moskalev A. Lifespan and Stress Resistance in Drosophila with Overexpressed DNA Repair Genes. Sci. Rep. 2015;5:15299. doi: 10.1038/srep15299. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 146.Garinis G.A., van der Horst G.T., Vijg J., Hoeijmakers J.H. DNA damage and ageing: New-age ideas for an age-old problem. Nat. Cell Biol. 2008;10:1241–1247. doi: 10.1038/ncb1108-1241. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 147.Engelman A.N. Multifaceted HIV integrase functionalities and therapeutic strategies for their inhibition. J. Biol. Chem. 2019;294:15137–15157. doi: 10.1074/jbc.REV119.006901. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 148.Cherepanov P. LEDGF/p75 interacts with divergent lentiviral integrases and modulates their enzymatic activity in vitro. Nucleic Acids Res. 2007;35:113–124. doi: 10.1093/nar/gkl885. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 149.Anisenko A., Kan M., Shadrina O., Brattseva A., Gottikh M. Phosphorylation Targets of DNA-PK and Their Role in HIV-1 Replication. Cells. 2020;9:1907. doi: 10.3390/cells9081907. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 150.Santos da Silva E., Shanmugapriya S., Malikov V., Gu F., Delaney M.K., Naghavi M.H. HIV-1 capsids mimic a microtubule regulator to coordinate early stages of infection. EMBO J. 2020;39:e104870. doi: 10.15252/embj.2020104870. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 151.De Oliveira D.S., Rosa M.T., Vieira C., Loreto E.L.S. Oxidative and radiation stress induces transposable element transcription in Drosophila melanogaster. J. Evol. Biol. 2021;34:628–638. doi: 10.1111/jeb.13762. [DOI] [PubMed] [Google Scholar]
  • 152.Salces-Ortiz J., Vargas-Chavez C., Guio L., Rech G.E., Gonzalez J. Transposable elements contribute to the genomic response to insecticides in Drosophila melanogaster. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2020;375:20190341. doi: 10.1098/rstb.2019.0341. [DOI] [PMC free article] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Data Availability Statement

National Center for Biotechnology Information (NCBI; https://www.ncbi.nlm.nih.gov/, (accessed on 12 July 2021)) can be used to access sequences listed in the paper.


Articles from Microorganisms are provided here courtesy of Multidisciplinary Digital Publishing Institute (MDPI)

RESOURCES