Skip to main content
Viruses logoLink to Viruses
editorial
. 2021 Jun 23;13(7):1211. doi: 10.3390/v13071211

SARS-CoV-2 Variants: A Synopsis of In Vitro Efficacy Data of Convalescent Plasma, Currently Marketed Vaccines, and Monoclonal Antibodies

Daniele Focosi 1,*, Marco Tuccori 2, Andreina Baj 3, Fabrizio Maggi 3
PMCID: PMC8310233  PMID: 34201767

Abstract

We summarize here in vitro evidences of efficacy for convalescent plasma, currently approved vaccines and monoclonal antibodies against SARS-CoV-2 variants of concern (VOC: B.1.1.7, B.1.351, P.1, and B.1.617.2), variants of interest (VOI: B.1.427/B.1.429, P.2, B.1.525, P.3, B.1.526, and B.1.671.1), and other strains (B.1.1.298 and B.1.258delta). While waiting from real world clinical efficacy, these data provide guidance for the treating physician.

Keywords: COVID-19, SARS-CoV-2, convalescent plasma, neutralizing antibody, immune escape, mutations, LyCoV016, etesevimab, REGN10987, imdevimab


The ongoing SARS-CoV-2 pandemic has entered a new dimension thanks to availability of different vaccines and neutralizing antibody-based therapeutics (from convalescent plasma to monoclonal antibodies). Nevertheless, emerging of SARS-CoV-2 variants of concern (VOC) and variants of interest (VOI) [1] has diversified the landscape, jeopardizing the efforts to contain it. Media-informed patients are questioning physicians about the relative efficacy of different vaccines and treatments against different variants.

The majority of registration trials for currently approved monoclonal antibodies and vaccines were run either before the variants emerged, or enrolled patients in countries where such variants were not circulating at that time. While waiting for post-marketing clinical efficacy data (i.e., protection from symptomatic COVID19), many investigators have tested the neutralizing efficacy of monoclonal antibodies, convalescent plasma from previous waves or vaccinee sera in vitro to accelerate availability of surrogate endpoints. Different nonviral (e.g., synthetic RBD) and viral constructs (ranging from isogenic strain, pseudovirus harboring the full mutation set, or authentic variant virus) have been employed to test the efficacy of therapeutics in neutralization assays [2].

On 15 May 2021, we mined PubMed and preprint servers (medrXiv and biorXiv) for in vitro data detailing the efficacy of different anti-Spike vaccines and monoclonal antibodies against different variants compared to wild-type SARS-CoV-2. Table 1 reports the result of our search and analysis. We decided to simplify interpretation of results using a semiquantitative scale according to the number of fold decrease in neutralization efficacy. We also tabulated for each variant the estimated reinfection rates, and the proven reinfection cases (strains from each episode sequenced). Each variant was reported using both the official (PANGOLIN and NextStrain) and the local (VUI/VOC/VOI) naming systems, and colloquial terms (e.g., “UK variant”) in order to provide comprehensive association. The main, alarming finding is the lack of efficacy of single-agent bamlanivimab against most E484K-carrying variants. Accordingly, the FDA has recently withdrawn its emergency use authorization as a single agent, leaving the authorization only for usage in combination with etesevimab. Nevertheless, Q493R mutation, causing resistance to both mAbs, has been recently reported by our group [3]. High-frequency Spike mutations R346K/S, N439K, G446V, L455F, V483F/A, E484Q/V/A/G/D, F486L, F490L/V/S, Q493R, and S494P/L might compromise some of mAbs in clinical trials [4].

Table 1.

Synopsis of efficacy of vaccines and monoclonal antibodies against current SARS-CoV-2 VOCs, VOIs and emerging strains.

Variants of Concern (VOC) Variants of Interest (VOI) Other
Therapeutic\Variant PANGOLIN name B.1.1.7 B.1.351 P.1 B.1.617.2 P.2 B.1.427 B.1.429 P.3 B.1.525 B.1.526 with E484K or S477N B.1.617.1 B.1.258D B.1.1.298
NextStrain name 20I/S:501Y.V1 20H/S:501Y.V2 20J/S:501Y.V3 21A/S:478K 20B/S.484K 20C/S.452R 20B/S:265C 20A/S484K 20C/S.484K 21A/S:154K - -
PHE name VOC-20DEC-01 VOC-20DEC-02 VOC-21JAN-02 VUI-21APR02 VUI-21JAN-01 - - VUI-21FEB-03 - - - -
WHO name alpha beta gamma delta zeta epsilon theta eta iota kappa - -
GISAID name GRY (formerly GR/501Y.V1) GH/501Y.V2 GR/501Y.V3 G/452R.V3 GR GH/452R.V1 GR G/484K.V3 GH G/452R.V3 - -
local name VUI/VOC 202012/01, UK variant 501Y.V2
VOC 202012/02
B.1.1.28.1
B.1.1.248
VOC 202101/02
Indian variant B.1.1.28.2
B.1.1.28(E484K)
CAL.20C/L452R, West Coast variant - Nigerian variant - Indian variant - Cluster V
country of first detection South-East England, UK South Africa Amazonas, Brazil India Rio de Janeiro, Brazil Southern California, USA Brazil Nigeria New York, USA India Czech Republic, Slovakia Denmark
convalescent plasma (sera) from previous waves
[28,29,30,31,32,33,34,35]
↓↓↓
[29,31,33,34,36,37,38,39,40,41]
↓↓↓
[42]
= [43]
↓[44,45,46]
↓↓ [41]
= [47]
↓↓↓ [48] (hamsters)
↓↓ [49] ? ? ↓↓ [50,51] ?
[52]
?
hyperimmune serum (polyvalent immunoglobulins) = [53] ↓↓↓ [53] ↓↓↓
[53]
? ? = [53] ? ? ? ? ? ?
estimated reinfection rate 0.7% [54] ? 6.4% [55] ? ? ? ? ? ? ? ? ?
proven reinfection 1 case
[56]
1 case
[57]
1 case
[58]
? 2 cases
[59,60]
? ? ? ? ? ? ?
mAbs- Eli Lilly (AbCellera/Junshi) etesevimab (LyCoV016, CB6 or JS016/LY3832479) ↓↓↓
[29,61]
= [29] ↓↓↓
[42,61]
? ? ↓↓ [49] ? ? = [51] ? ? ?
bamlanivimab (LY-CoV555/LY3819253) ↓↓↓
[29,37,62,63]
= [29,63] ↓↓↓
[37,42,62]
↓↓↓
[44,45,46,64]
↓↓↓
[63]
↓↓↓
[49,65]
? ? ↓↓↓ [50,51] ? ? ?
LY-CoV1404 = [66] = [66] = [66] ? ? = [66] ? ? = [66] ? ? ?
Regeneron/Roche REGN-CoV2 imdevimab (REGN10987) = [29] = [29] =
[42,61]
? ? = [49] ? ? = [50,51] ? ↓↓↓
[52]
?
casirivimab (REGN10933) ↓↓↓ [61] ↓↓ [29] ↓↓↓
[37,42,61]
? ? = [49] ? ? ↓↓↓ [50,51]
? ? ?
Celltrion regdanvimab (CT-P59) ↓↓ [67] ? ? ? ? ↓↓ [49] ? ? ? ? ? ?
A-straZeneca AZD7442 long-acting antibody (LAAB) AZD8895/COV2-2196 ↓↓↓ [29]
↓↓↓ [29] = [42] ? ? ? ? ? ? ? ? ?
AZD1061/COV2-2130 = [29] = [29] = [42] ? ? ? ? ? ? ? ? ?
BMS C135 = [29] = [29] ? ? ? ? ? ? ? ? ? ?
C144 ? ? ? ? ? ? ? ? ? ? ? ?
Vir Biotechnology VIR-7831/GSK-4182136 (sotrovimab) and VIR-7832/GSK-4182137 (both derived from S309) = [29,68] = [29,68] = [42,68] ? ? ? ? ? ? ? ? ?
vaccine BioNtech/Pfizer BNT162b2/tozinameran (Comirnaty®) = [69]

[15,29,31,33,35,37,63,70,71,72,73,74,75]
RBD ↓↓↓ [76,77,78]
COVID19 75% [79]
=/↓
[29,31,32,33,35,63,70,71,72,73,74,75,80,81,82]
RBD [78]
COVID19 90% [79,83]-93% [84]
↓↓ [35,42,75,76,85]
↓↓↓ [44,45,46,86,87]
COVID19 88% [84]

[63]
=/↓↓ [49,75]
RBD [78]
? ↓ [88] ↓↓ [50,51] ? ? = [75]
Moderna mRNA-1273
[15,29,38,74,75,89]
↓ NHP COVID19
[90]
=
[29,30,89]
↓ [74,75,91,92]
=/↓ [42,75] ↓↓ [44,87] ? =/↓↓ [49,75] ? ? ↓↓ [50,51] ? ? = [75]
AstraZeneca AZD1222/ChAdOx1 (Vaxzevria®, Covishield®) ↓↓↓
[93]
= hamster COVID19 [94]
COVID19 22%
?
COVID19 90% [83]-66% [84]
= hamster COVID19 [94]
↓↓ [85] ↓ [45,95]
COVID19 % [84]
? ? ? ? ? ? ? ?
Gamaleya Sputnik V/Gam-Covid-Vac ↓↓↓ [96] = [96] ? ? ? ? ? ? ? ? ? ?
Novovax NVX-CoV2373 (Covovax®) ?
COVID19: 51% [97]
↓ [92] ? ? ? ? ? ? ? ? ? ?
Bharat Biotech BBV152/Covaxin ? = [98]
↓ [41]
? = [43]
↓ [41]
↓ [47] ? ? ? ? ? ? ?
SinoVac CoronaVac ↓↓↓ [99] = [99] ↓↓ [99] ? ? = [99] ? ? ↓↓ [99] ? ? ?
J&J/Janssen JNJ-78436735/Ad26.COV2.S ? ↓↓↓ [100] ? ? ? ? ? ? ? ? ? ?

VOC: variants of concern; VOI: variant of interest; NHP: nonhuman primates. = and arrows indicate fold-reductions in neutralizing activity compared to wild-type D614G strain. =: no reduction; ↓: 1-3 fold reduction; ↓↓: 3-5 fold reduction; ↓↓↓: > 5 fold reduction; ?: data not available). COVID19 refers to vaccine efficacy against symptomatic diseases in humans (if not otherwise indicated) or in animal models (specified). RBD: ACE2-RBD competition assay.

We could not find any in vitro evidence of efficacy against SARS-CoV-2 variants for several widely used vaccines (e.g., Sinopharm’s BBIBP-CorV), stressing the need for more studies.

Meta-analysis of 56 vaccine studies, including 2483 individuals and 8590 neutralization tests, showed that, compared with lineage B, there was a 1.5-fold reduction in neutralization against the B.1.1.7, 8.7-fold reduction against B.1.351 and 5.0-fold reduction against P.1. The estimated neutralization reductions for B.1.351 compared to lineage B were 240.2-fold reduction for non-replicating vector platform, 4.6-fold reduction for RNA platform, and 1.6-fold reduction for protein subunit platform. The neutralizing antibodies induced by administration of inactivated vaccines and mRNA vaccines against lineage P.1 were also remarkably reduced by an average of 5.9-fold and 1.5-fold [5]. Efficacy of convalescent plasma from previous waves is also generally lowered: convalescent plasma from a donor affected during the early 2020 protected against SARS-CoV-2 WA-1 wild-type strain but was insufficient to protect against challenge with B.1.1.7 and B.1.351 in a mouse model [6].

The relevance of these in vitro data in real life remains unclear. Khoury et al, assuming that the neutralization level required for 50% protection against detectable SARS-CoV-2 infection was 20.2% of the mean convalescent level and that the neutralization level for 50% protection from severe infection was 3% of the mean convalescent level, reported that the decay of the neutralization titer over the first 250 days after immunization predicts a significant loss in protection from SARS-CoV-2 infection, although protection from severe disease should be largely retained. Neutralization titers against some SARS-CoV-2 VOC are reduced compared with the vaccine strain [7]. A case-control study showed that, compared with unvaccinated individuals, BNT162b2 vaccinees with documented SARS-CoV-2 infection at least a week after the second dose were disproportionally infected with B.1.351 (odds ratio of 8:1), while those infected between 2 weeks after the first dose and 1 week after the second dose, were disproportionally infected by B.1.1.7 (odds ratio of 26:10), suggesting reduced vaccine efficacy (VE) against both VOCs under different dosage/timing conditions. Nevertheless, the B.1.351 incidence in Israel to-date remains low and VE remains high against B.1.1.7, among those fully vaccinated. These results overall suggest that vaccine breakthrough infection is more frequent with both VOCs, yet a combination of mass-vaccination with two doses coupled with non-pharmaceutical interventions control and contain their spread [8]. With mRNA-1273, binding of vaccine-elicited anti-RBD antibodies is more broadly distributed across epitopes than for infection-elicited anti-RBD antibodies [9]: accordingly, greater IgG2, IgG3, and IgG4 responses and higher ratios of (IgG1 + IgG3)/(IgG2 + IgG4) were seen in subjects vaccinated with either BNT162b2 or mRNA-1273 than in convalescents [10]. This greater binding breadth means single RBD mutations have less impact on neutralization by vaccine sera than convalescent sera. Another striking feature is that for BNT162b2 post-first dose vaccination infection did not increase IgG titres, so that individuals infected post-dose one should receive the second [11]. CoronaVac for which no in vitro efficacy data are available, was 42% effective in the real-world setting of extensive P.1 transmission, but significant protection was not observed until completion of the two-dose regimen [12]. A metaanalysis by Shapiro et al found that, on average, the VE against any disease with infection was 85% after a full course of vaccination. The VE against severe disease, hospitalization or death averages close to 100%. The average VE against infection, regardless of symptoms, was 84%. The average VE against [13] B.1.1.28 (P1) and B.1.351 were 86% (95% CI: 65–84%), 61% (95% CI: 43–73%) and 56% (95% CI: 29–73%), respectively [14].

Additionally, a single injection of mRNA-1273 or BNT162b2 has been shown enough to induce novel antibody specificities that protect against the B.1.351 VOC [15]: a similar phenomenon has been reported after 2 BNT162b2 doses against B.1.1.7 [16]. Neutralizing antibody titers increased in previously infected BNT162b2 vaccinees relative to uninfected vaccinees against every variant tested: 5.2-fold against B.1.1.7, 6.5-fold against B.1.351, 4.3-fold against P.1, and 3.4-fold against original SARS-CoV-2 [17]. Similarly, a single dose of either BNT162b2 or AZD1222 vaccines in convalescents raised the titre of antibodies against the SARS-CoV-2 vaccine strain (B.1) and three major VOCs (B.1.1.7, B.1351 and P.1). A single dose to convalescents is nowadays a well-accepted approach that saves money and side effects [18].

Apart from efficacy, many topics remain under investigation for vaccines:

  • vaccine-elicited T-cell immunity: while neutralizing antibodies are just one arm of the adaptive immune response to vaccines, very few data are available for protection from T-cell immunity, which would be especially relevant in the ones who do not mount antibody responses. Gallagher et al found detectable but diminished T-cell responses to Spike variants (B.1.1.7, B.1.351, and B.1.1.248) among BNT162b2 or mRNA-1273 vaccinated donors [19]. BNT162b2 or mRNA-1273-elicited spike-specific T cells responded similarly to stimulation by Spike epitopes from the ancestral, B.1.1.7 and B.1.351 variant strains, both in terms of cell numbers and phenotypes. In infection-naive individuals, the second dose boosted the quantity but not quality of the T cell response, while in convalescents the second dose helped neither. Spike-specific T cells from convalescent vaccinees differed strikingly from those of infection-naive vaccinees, with phenotypic features suggesting superior long-term persistence and ability to home to the respiratory tract including the nasopharynx [20].

  • duration of protection: according to a mathematical model by Luo et al, after mRNA-1273 vaccination, pseudovirus neutralization test against B.1.351 is expected to fall below the lower limit of detection of 20 geometric mean titers on day 100; variant P.1 on day 202, variant B.1.429 on day 258; and variant B.1.1.7 on day 309 [21]. Real-world data instead suggested that binding and functional antibodies against B.1.1.7, B.1.351, P.1, B.1.429, and B.1.526 variants persisted in most subjects, albeit at low levels, for 6 months after the primary series of mRNA-1273 [22].

  • postponing second doses has been widely implemented in order to optimize vaccine delivery under manufacturing bottlenecks. In nonconvalescent elderlies higher than age 80 who received the second dose of BNT162b2 after 12 weeks instead of 3, the peak antibody response was 3.5-fold higher, but cellular immune responses were 3.6-fold lower [23].

  • heterologous boosting: heterologous immunization strategy combining inactivated and mRNA vaccines can generate robust vaccine responses and therefore provide a rational and effective vaccination regimen [24]. ChAdOx/BNT162b2 booster vaccination was largely comparable to homologous BNT162b2/BNT162b2 vaccination and overall well-tolerated. No major differences were observed in the frequency or severity of local reactions after either of the vaccinations. In contrast, notable differences between the regimens were observed for systemic reactions, which were most frequent after prime immunization with ChAdOx (86%) and less frequent after homologous BNT162b2/BNT162b2 (65%), or heterologous ChAdOx/BNT162b2 boosters (48%) [25]. Neutralizing activity against the prevalent strain B.1.1.7 was 3.9-fold higher than in individuals receiving homologous BNT162b2 vaccination, only 2-fold reduced for variant of concern B.1.351, and similar for variant B.1.617 [26]. Whilst both ChAdOx and BNT162b2 boosted prime-induced immunity, BNT induced significantly higher frequencies of Spike-specific CD4 and CD8 T cells and, in particular, high titers of neutralizing antibodies against the B.1.1.7, B.1.351 and the P.1 VOCs [27].

While the in vitro findings summarized here wait for confirmatory clinical evidences, in the meanwhile they could orient therapeutic and preventive strategies.

Abbreviations

nAb neutralizing antibodies
CCP COVID19 convalescent plasma
RBD receptor-binding domain
RBM receptor-binding motif

Author Contributions

D.F. conceived the design and wrote the first draft. F.M., M.T. and A.B. critically revised the final version. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Data Availability Statement

The data presented in this study are openly available in PubMed.

Conflicts of Interest

We declare we have no conflict of interest related to this manuscript.

Footnotes

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  • 1.WHO COVID-19 Weekly Epidemiological Update 25 February 2021. Special Edition: Proposed Working Definitions of SARS-CoV-2 Variants of Interest and Variants of Concern. [(accessed on 17 June 2021)];2021 Available online: https://www.who.int/publications/m/item/covid-19-weekly-epidemiological-update.
  • 2.Focosi D., Mazzetti P., Pistello M.M. Viral infection neutralization tests: A focus on SARS-CoV-2 with implications for convalescent plasma therapy. Rev. Med. Virol. 2020;31:e2170. doi: 10.1002/rmv.2170. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Focosi D., Novazzi F., Genoni A., Dentali F., Dalla Gasperina D., Baj A., Maggi F. Emergence of SARS-CoV-2 Spike Escape Mutation Q493R After Bamlanivimab/Etesevimab Treatment for COVID-19. Res. Sq. 2021 doi: 10.21203/rs.3.rs-524959/v2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Chen J., Gao K., Wang R., Wei G.-W. Revealing the threat of emerging SARS-CoV-2 mutations to antibody therapies. bioRxiv. 2021 doi: 10.1101/2021.04.12.439473. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Chen X., Chen Z., Azman A.S., Sun R., Lu W., Zheng N., Zhou J., Wu Q., Deng X., Zhao Z., et al. Comprehensive mapping of neutralizing antibodies against SARS-CoV-2 variants induced by natural infection or vaccination. medRxiv. 2021 doi: 10.1101/2021.05.03.21256506. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Horspool A.M., Ye C., Wong T.Y., Russ B.P., Lee K.S., Winters M.T., Bevere J.R., Kieffer T., Martinez I., Sourimant J., et al. SARS-CoV-2 B.1.1.7 and B.1.351 variants of concern induce lethal disease in K18-hACE2 transgenic mice despite convalescent plasma therapy. bioRxiv. 2021 doi: 10.1101/2021.05.05.442784. [DOI] [Google Scholar]
  • 7.Khoury D.S., Cromer D., Reynaldi A., Schlub T.E., Wheatley A.K., Juno J.A., Subbarao K., Kent S.J., Triccas J.A., Davenport M.P. Neutralizing antibody levels are highly predictive of immune protection from symptomatic SARS-CoV-2 infection. Nat. Med. 2021:1–7. doi: 10.1038/s41591-021-01377-8. [DOI] [PubMed] [Google Scholar]
  • 8.Kustin T., Harel N., Finkel U., Perchik S., Harari S., Tahor M., Caspi I., Levy R., Leshchinsky M., Ken Dror S., et al. Evidence for increased breakthrough rates of SARS-CoV-2 variants of concern in BNT162b2 mRNA vaccinated individuals. Nat. Med. 2021 doi: 10.1038/s41591-021-01413-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Greaney A.J., Loes A.N., Gentles L.E., Crawford K.H.D., Starr T.N., Malone K.D., Chu H.Y., Bloom J.D. The SARS-CoV-2 mRNA-1273 vaccine elicits more RBD-focused neutralization, but with broader antibody binding within the RBD. bioRxiv. 2021 doi: 10.1101/2021.04.14.439844. [DOI] [Google Scholar]
  • 10.Klingler J., Gregory S., Itri V., Liu S., Bandres J.C., Enyindah-Asonye G., Liu X., Oguntuyo K.Y., Amanat F., Lee B. SARS-CoV-2 mRNA vaccines induce a greater array of spike-specific antibody isotypes with more potent complement binding capacity than natural infection. medRxiv. 2021 doi: 10.1101/2021.05.11.21256972. [DOI] [Google Scholar]
  • 11.Abu Jabal K., Ben Amram H., Beiruti K., Brimat I., Abu Saaa A., Batish Y., Sussan C., Zarka S., Edelstein M. SARS-CoV-2 Immunogenicity in individuals infected before and after COVID-19 vaccination: Israel, January-March 2021: Implications for vaccination policy. medRxiv. 2021 doi: 10.1101/2021.04.11.21255273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Ranzani O.T., Hitchings M., Dorion Neto M., Lang D’Agostini T., Cardoso de Paulha R., Ferreira Pereira de Paula O., de Moura Villela F., Scaramuzzini Torres M.S., Barbosa de Oliveira M., Schulz W., et al. Effectiveness of the CoronaVac vaccine in the elderly population during a P.1 variant-associated epidemic of COVID-19 in Brazil: A test-negative case-control study. medRxiv. 2021 doi: 10.1101/2021.05.19.21257472. [DOI] [Google Scholar]
  • 13.Nadesalingam A., Cantoni D., Wells D.A., Aguinam E.T., Ferrari M., Smith P., Chan A., Carnell G., Ohlendorf L., Einhauser S., et al. Breadth of neutralising antibody responses to SARS-CoV-2 variants of concern is augmented by vaccination following prior infection: Studies in UK healthcare workers and immunodeficient patients. medrXiv. 2021 doi: 10.1101/2021.06.03.21257901. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Shapiro J., Dean N.E., Madewell Z.J., Yang Y., Halloran M.E., Longini I.M. Efficacy Estimates for Various COVID-19 Vaccines: What we Know from the Literature and Reports. medRxiv. 2021 doi: 10.1101/2021.05.20.21257461. [DOI] [Google Scholar]
  • 15.Stamatatos L., Czartoski J., Wan Y.-H., Homad L.J., Rubin V., Glantz H., Nerdilek M., Seydoux E., Jennewein M.F., MacCamy A.J., et al. mRNA vaccination boosts cross-variant neutralizing antibodies elicited by SARS-CoV-2 infection. Science. 2021:eabg9175. doi: 10.1126/science.abg9175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Trinite B., Pradenas E., Marfil S., Rovirosa C., Urrea V., Tarres-Freixas F., Ortiz R., Rodon J., Veragara-Alert J., Segales J., et al. Previous SARS-CoV-2 infection increases B.1.1.7 cross-neutralization by vaccinated individuals. Viruses. 2021;13:1135. doi: 10.3390/v13061135. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Leier H.C., Bates T.A., Lyski Z.L., McBride S.K., Lee D.X., Coulter F.J., Goodman J.R., Lu Z., Curlin M.E., Messer W.B., et al. Previously infected vaccinees broadly neutralize SARS-CoV-2 variants. medRxiv. 2021 doi: 10.1101/2021.04.25.21256049. [DOI] [Google Scholar]
  • 18.Focosi D., Baj A., Maggi F. Is a single COVID-19 vaccine dose enough in convalescents? Hum. Vaccines Immunother. 2021:1–3. doi: 10.1080/21645515.2021.1917238. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Gallagher K.M.E., Leick M.B., Larson R.C., Berger T.R., Katsis K., Yam J.Y., Brini G., Grauwet K. MGH COVID-19 Collection & Processing Team; Maus, M.V. SARS -CoV-2 T-cell immunity to variants of concern following vaccination. bioRxiv. 2021 doi: 10.1101/2021.05.03.442455. [DOI] [Google Scholar]
  • 20.Neidleman J., Luo X., McGregor M., Xie G., Murray V., Greene W.C., Lee S.A., Roan N.R. mRNA vaccine-induced SARS-CoV-2-specific T cells recognize B.1.1.7 and B.1.351 variants but differ in longevity and homing properties depending on prior infection status. bioRxiv. 2021 doi: 10.1101/2021.05.12.443888. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Luo G., Hu Z., Letterio J. Modeling and Predicting Antibody Durability for mRNA-1273 Vaccine for SARS-CoV-2 Variants. medRxiv. 2021 doi: 10.1101/2021.05.04.21256537. [DOI] [Google Scholar]
  • 22.Pegu A., O’Connell S.E., Schmidt S.D., O’Dell S., Talana C.A., Lai L., Albert J., Anderson E., Bennett H., Corbett K., et al. Durability of mRNA-1273-induced antibodies against SARS-CoV-2 variants. bioRxiv. 2021 doi: 10.11.1/2021.05.13.444010. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Parry H.M., Bruton R., Stephens C., Brown K., Amirthalingam G., Hallis B., Otter A., Zuo J., Moss P. Extended interval BNT162b2 vaccination enhances peak antibody generation in older people. medRxiv. 2021 doi: 10.1101/2021.05.15.21257017. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Lin A., Liu J., Ma X., Zhao F., Yu B., He J., Shen M., Huang L., Tang H., Jiang E., et al. Heterologous vaccination strategy for containing COVID-19 pandemic. medRxiv. 2021 doi: 10.1101/2021.05.17.21257134. [DOI] [Google Scholar]
  • 25.Hillus D., Tober-Lau P., Hastor H., Helbig E.T., Lippert L.J., Thibeault C., Solarek A., Kalle C.V., Corman V.M., Kopankiewicz P., et al. Reactogenicity of homologous and heterologous prime-boost immunization with BNT162b2 and ChAdOx1-nCoV19: A prospective cohort study. medRxiv. 2021 doi: 10.1101/2021.05.19.21257334. [DOI] [Google Scholar]
  • 26.Gross R., Zanoni M., Seidel A., Conzelmann C., Gilg A., Krnavek D., Erdemci-evin S., Mayer B., Hoffmann M., Poehlmann S., et al. Heterologous ChAdOx1 nCoV-19 and BNT162b2 prime-boost vaccination elicits potent neutralizing antibody responses and T cell reactivity. medrXiv. 2021 doi: 10.1101/2021.05.30.21257971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Barros-Martins J., Hammerschmidt S., Cossmann A., Odak I., Stankov M.V., Morillas Ramos G., Jablonka A., Heidemann A., Ritter C., Friedrichsen M., et al. Humoral and cellular immune response against SARS-CoV-2 variants following heterologous and homologous ChAdOx1 nCoV-19/BNT162b2 vaccination. medrXiv. 2021 doi: 10.1101/2021.06.01.21258172. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Rees-Spear C., Muir L., Griffith S.A., Heaney J., Aldon Y., Snitselaar J., Thomas P., Graham C., Seow J., Lee N., et al. The impact of Spike mutations on SARS-CoV-2 neutralization. Cell Rep. 2021;34:108890. doi: 10.1016/j.celrep.2021.108890. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Wang P., Nair M.S., Lihong L., Iketani S., Luo Y., Guo Y., Wang M., Yu J., Zhang B., Kwong P.D., et al. Antibody resistance of SARS-CoV-2 variants B.1.351 and B.1.1.7. Nature. 2021;593:130–135. doi: 10.1038/s41586-021-03398-2. [DOI] [PubMed] [Google Scholar]
  • 30.Edara V.V., Floyd K., Lai L., Gardner M., Hudson W., Piantadosi A., Waggoner J., Babiker A., Ahmed R., Xie X., et al. Infection and mRNA-1273 vaccine antibodies neutralize SARS-CoV-2 UK variant. medRxiv. 2021 doi: 10.1101/2021.02.02.21250799. [DOI] [Google Scholar]
  • 31.Planas D., Bruel T., Grzelak L., Guivel-Benhassine F., Staropoli I., Porrot F., Planchais C., Buchrieser J., Rajah M.M., Bishop E., et al. Sensitivity of infectious SARS-CoV-2 B.1.1.7 and B.1.351 variants to neutralizing antibodies. Nat. Med. 2021;27:917–924. doi: 10.1038/s41591-021-01318-5. [DOI] [PubMed] [Google Scholar]
  • 32.Brown J.C., Goldhill D.H., Zhou J., Peacock T.P., Frise R., Goonawardane N., Baillon L., Kugathasan R., Pinto A., McKay P.F., et al. Increased transmission of SARS-CoV-2 lineage B.1.1.7 (VOC 2020212/01) is not accounted for by a replicative advantage in primary airway cells or antibody escape. BioRxiv. 2021 doi: 10.1101/2021.02.24.432576. [DOI] [Google Scholar]
  • 33.Bates T.A., Leier H.C., Lyski Z.L., McBride S.K., Coulter F.J., Weinstein J.B., Goodman J.R., Lu Z., Siegel S.A.R., Sullivan P., et al. Neutralization of SARS-CoV-2 variants by convalescent and vaccinated serum. medRxiv. 2021 doi: 10.1101/2021.04.04.21254881. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.Fenwick C., Turelli P., Pellaton C., Farina A., Campos J., Raclot C., Pojer F., Cagno V., Pantaleo G., Trono D. A multiplexed high-throughput neutralization assay reveals a lack of activity against multiple variants after SARS-CoV-2 infection. medRxiv. 2021 doi: 10.1101/2021.04.08.21255150. [DOI] [Google Scholar]
  • 35.Caniels T.G., Bontjer I., van der Straten K., Poniman M., Burger J.A., Appelman B., Lavell A.H.A., Oomen M., Godeke G.-J., Valle C., et al. Emerging SARS-CoV-2 variants of concern evade humoral immune responses from infection and vaccination. medrXiv. 2021 doi: 10.1101/2021.05.26.21257441. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Wibmer C.K., Ayres F., Hermanus T., Madzivhandila M., Kgagudi P., Lambson B.E., Vermeulen M., van den Berg K., Rossouw T., Boswell M., et al. SARS-CoV-2 501Y.V2 escapes neutralization by South African COVID-19 donor plasma. Nat. Med. 2021 doi: 10.1038/s41591-021-01285-x. [DOI] [PubMed] [Google Scholar]
  • 37.Hoffmann M., Arora P., Gross R., Seidel A., Hoernich B., Hahn A., Krueger N., Graichen L., Hofmann-Winkler H., Kempf A., et al. SARS-CoV-2 variants B.1.351 and B.1.1.248: Escape from therapeutic antibodies and antibodies induced by infection and vaccination. medRxiv. 2021 doi: 10.1101/2021.02.11.430787. [DOI] [Google Scholar]
  • 38.Edara V.V., Norwood C., Floyd K., Lai L., Davis-Gardner M.E., Hudson W.H., Mantus G., Nyhoff L.E., Adelman M.W., Fineman R., et al. Reduced binding and neutralization of infection- and vaccine-induced antibodies to the B.1.351 (South African) SARS-CoV-2 variant. bioRxiv. 2021 doi: 10.1101/2021.02.20.432046. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39.Cele S., Gazy I., Jackson L., Hwa S.-H., Tegally H., Lustig G., Giandhari J., Pillay S., Wilkinson E., Naidoo Y., et al. Escape of SARS-CoV-2 501Y.V2 variants from neutralization by convalescent plasma. Nature. 2021;593:142–146. doi: 10.1038/s41586-021-03471-w. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 40.Riou C., Keeton R., Moyo-Gwete T., Hermanus T., Kgagudi P., Baguma R., Tegally H., Doolabh D., Iranzadeh A., Tyers L., et al. Loss of recognition of SARS-CoV-2 B.1.351 variant spike epitopes but overall preservation of T cell immunity. medrXiv. 2021 doi: 10.1101/2021.06.03.21258307. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41.Yadav P.D., Sapkal G., Ella R., Sahay R.R., Nyayanit D.A., Patil D.Y., Deshpande G., Shete A.M., Gupta N., Mohan V.K., et al. Neutralization against B.1.351 and B.1.617.2 with sera of COVID-19 recovered cases and vaccinees of BBV152. medrXiv. 2021 doi: 10.1101/2021.06.05.447177. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42.Wang P., Wang M., Yu J., Cerutti G., Nair M.S., Huang Y., Kwong P.D., Shapiro L., Ho D.D. Increased Resistance of SARS-CoV-2 Variant P.1 to Antibody Neutralization. Cell Host Microbe. 2021;29:747–751. doi: 10.1016/j.chom.2021.04.007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 43.Yadav P., Sapkal G.N., Abraham P., Ella R., Deshpande G., Patil D.Y., Nyayanit D., Gupta N., Sahay R.R., Shete A.M., et al. Neutralization of variant under investigation B.1.617 with sera of BBV152 vaccinees. Clin. Infect. Dis. 2021:ciab411. doi: 10.1093/cid/ciab411. [DOI] [PubMed] [Google Scholar]
  • 44.Tada T., Zhou H., Dcosta B.M., Samanovic M.I., Mulligan M.J., Landau N.R. The Spike Proteins of SARS-CoV-2 B.1.617 and B.1.618 Variants Identified in India Provide Partial Resistance to Vaccine-elicited and Therapeutic Monoclonal Antibodies. medRxiv. 2021 doi: 10.1101/2021.05.14.444076. [DOI] [Google Scholar]
  • 45.Planas D., Veyer D., Baidaliuk A., Staropoli I., Guivel-Benhassine F., Rajah M., Planchais C., Porrot F., Robillard N., Puech J., et al. Reduced sensitivity of infectious SARS-CoV-2 variant B.1.617.2 to monoclonal antibodies and sera from convalescent and vaccinated individuals. medRxiv. 2021 doi: 10.1101/2021.05.26.445838. [DOI] [Google Scholar]
  • 46.Hoffmann M., Hofmann-Winkler H., Krueger N., Kempf A., Nehlmeier I., Graichen L., Sidarovich A., Moldenhauer A.-S., Winkler M.S., Schulz S., et al. SARS-CoV-2 variant B.1.617 is resistant to Bamlanivimab and evades antibodies induced by infection and vaccination. medRxiv. 2021 doi: 10.1101/2021.05.04.442663. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 47.Sapkal G., Yadav P.D., Ella R., Abraham P., Patil D.Y., Gupta N., Panda S., Mohan V.K., Bhargava B. Neutralization of B.1.1.28 P2 variant with sera of natural SARS-CoV-2 infection and recipients of inactivated COVID-19 vaccine Covaxin. J. Travel Med. 2021:taab077. doi: 10.1093/jtm/taab077. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 48.Yadav P., Mohandas S., Sarkale P., Nyayanit D., Shete A., Sahay R., Potdar V., Baradkar S., Gupta N., Sapkal G., et al. Isolation of SARS-CoV-2 B.1.1.28.2 P2 variant and pathogenicity comparison with D614G variant in hamster model. medrXiv. 2021 doi: 10.1101/2021.05.24.445424. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 49.McCallum M., Bassi J., De Marco A., Chen A., Walls A.C., Di Iulio J., Tortorici M.A., Navarro M.-J., Silacci-Fregni C., Saliba C., et al. SARS-CoV-2 immune evasion by variant B.1.427/B.1.429. biorXiv. 2021 doi: 10.1101/2021.03.31.437925. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 50.Zhou H., Dcosta B.M., Samanovic M.I., Mulligan M.J., Landau N.R., Tada T.B. 1.526 SARS-CoV-2 variants identified in New York City are neutralized by vaccine-elicited and therapeutic monoclonal antibodies. biorXiv. 2021 doi: 10.1101/2021.03.24.436620. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 51.Annavajhala M.K., Mohri H., Zucker J.E., Sheng Z., Wang P., Gomez-Simmonds A., Ho D.D., Uhlemann A.-C. A Novel SARS-CoV-2 Variant of Concern, B.1.526, Identified in New York. medrXiv. 2021 doi: 10.1101/2021.02.23.21252259. [DOI] [Google Scholar]
  • 52.Thomson E.C., Rosen L.E., Shepherd J.G., Spreafico R., da Silva Filipe A., Wojcechowskyj J.A., Davis C., Piccoli L., Pascall D.J., Dillen J., et al. The circulating SARS-CoV-2 spike variant N439K maintains fitness while evading antibody-mediated immunity. Cell. 2021;184:1171–1187. doi: 10.1016/j.cell.2021.01.037. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 53.Tang J., Lee Y., Ravichandran S., Grubbs G., Huang C., Stauft C., Wang T., Golding B., Golding H., Khurana S. Reduced neutralization of SARS-CoV-2 variants by convalescent plasma and hyperimmune intravenous immunoglobulins for treatment of COVID-19. medrXiv. 2021 doi: 10.1101/2021.03.19.436183. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 54.Graham M.S., Sudre C.H., May A., Antonelli M., Murray B., Varsavsky T., Klaser K., Canas L.D.S., Molteni E., Modat M., et al. Changes in symptomatology, reinfection, and transmissibility associated with the SARS-CoV-2 variant B.1.1.7: An ecological study. Lancet Public Health. 2021;6:e335–e345. doi: 10.1016/S2468-2667(21)00055-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 55.Coutinho R.M., Marquitti F.M.D., Ferreira L.S., Borges M.E., Silva R.L.P.d., Canton O., Portella T.P., Lyra S.P., Franco C., Silva A.D., et al. Model-based evaluation of transmissibility and reinfection for the P.1 variant of the SARS-CoV-2. medrXiv. 2021 doi: 10.1011/2021.03.03.21252706. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 56.Harrington D., Kele B., Pereira S., Couto-Parada X., Riddell A., Forbes S., Dobbie H., Cutino-Moguel T. Confirmed Reinfection with SARS-CoV-2 Variant VOC-202012/01. Clin. Infect. Dis. 2021:ciab0. doi: 10.1093/cid/ciab014. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 57.Zucman N., Uhel F., Descamps D., Roux D., Ricard J.D. Severe reinfection with South African SARS-CoV-2 variant 501Y.V2: A case report. Clin. Infect. Dis. 2021:ciab129. doi: 10.1093/cid/ciab129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 58.Naveca F., da Costa C., Nascimento V., Souza V., Corado A., Nascimento F., Costa A., Duarte D., Silva G., Mejía M., et al. SARS-CoV-2 Reinfection by the New Variant of Concern (VOC) P.1 in Amazonas, Brazil. [(accessed on 27 January 2021)]; Available online: https://virological.org/t/sars-cov-2-reinfection-by-the-new-variant-of-concern-voc-p-1-in-amazonas-brazil/596.
  • 59.Resende P., Bezerra J., de Vasconcelos R., Arantes I., Appolinario L., Mendonça A., Paixao A., Duarte Rodrigues A., Silva T., Rocha A., et al. Spike E484K mutation in the first SARS-CoV-2 reinfection case confirmed in Brazil. [(accessed on 17 June 2021)];2020 Available online: https://virological.org/t/spike-e484k-mutation-in-the-first-sars-cov-2-reinfection-case-confirmed-in-brazil-2020/584.
  • 60.Nonaka C., Miranda Franco M., Gräf T., Mendes A.V.A., de Aguiar R.S., Giovanetti M., Solano de Freitas Souza B. Genomic Evidence of a Sars-Cov-2 Reinfection Case with E484K Spike Mutation in Brazil. Emerg. Infect. Dis. 2021;27 doi: 10.3201/eid2705.210191. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 61.Wang R., Zhang Q., Ge J., Ren W., Zhang R., Lan J., Ju B., Su B., Yu F., Chen P., et al. Spike mutations in SARS-CoV-2 variants confer resistance to antibody neutralization. biorXiv. 2021 doi: 10.1101/2021.03.09.434497. [DOI] [Google Scholar]
  • 62.Liu H., Wei P., Zhang Q., Chen Z., Aviszus K., Downing W., Peterson S., Reynoso L., Downey G., Frankel S., et al. 501Y.V2 and 501Y.V3 variants of SARS-CoV-2 lose binding to Bamlanivimab in vitro. MAbs. 2021;13:1919285. doi: 10.1080/19420862.2021.1919285. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 63.Widera M., Wilhelm A., Hoehl S., Pallas C., Kohmer N., Wolf T., Rabenau H.F., Corman V.M., Drosten C., Vehreschild M.J. Bamlanivimab does not neutralize two SARS-CoV-2 variants carrying E484K in vitro. medrXiv. 2021 doi: 10.1101/2021.02.24.21252372. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 64.Zhang L., Huynh T., Luan B. In silico Assessment of Antibody Drug Resistance to Bamlanivimab of SARS-CoV-2 Variant B.1.617. medrXiv. 2021 doi: 10.1011/2021.05.12.443826. [DOI] [Google Scholar]
  • 65.Starr T.N., Greaney A.J., Dingens A.S., Bloom J.D. Complete map of SARS-CoV-2 RBD mutations that escape the monoclonal antibody LY-CoV555 and its cocktail with LY-CoV016. Cell Rep. Med. 2021;2:100255. doi: 10.1016/j.xcrm.2021.100255. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 66.Westendorf K., Žentelis S., Foster D., Vaillancourt P., Wiggin M., Lovett E., Hendle J., Pustilnik A., Sauder J.M., Kraft L., et al. LY-CoV1404 potently neutralizes SARS-CoV-2 variants. biorXiv. 2021 doi: 10.1101/2021.04.30.442182. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 67.Lee S.-Y., Ryu D.-K., Choi Y.K., Moore P., Baalen C.A.V., Song R., Tijsma A.S., Gwete-Moyo T., Kim M., Kim Y.-I., et al. Therapeutic effect of CT-P59 against SARS-CoV-2 South African variant. medrXiv. 2021 doi: 10.1101/2021.04.27.441707. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 68.Cathcart A.L., Havenar-Daughton C., Lempp F.A., Ma D., Schmid M., Agostini M.L., Guarino B., Di iulio J., Rosen L., Tucker H., et al. The dual function monoclonal antibodies VIR-7831 and VIR-7832 demonstrate potent in vitro and in vivo activity against SARS-CoV-2. medrXiv. 2021 doi: 10.1101/2021.03.09.434607. [DOI] [Google Scholar]
  • 69.Becker M., Dulovic A., Junker D., Ruetalo N., Kaiser P., Pinilla Y., Heinzel C., Haering J., Traenkle B., Wagner T., et al. Immune response to SARS-CoV-2 variants of concern in vaccinated individuals. Nat. Commun. 2021;12:3109. doi: 10.1038/s41467-021-23473-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 70.Xie X., Liu Y., Liu J., Zhang X., Zou J., Fontes-Garfias C.R., Xia H., Swanson K.A., Cutler M., Cooper D. Neutralization of spike 69/70 deletion, E484K, and N501Y SARS-CoV-2 by BNT162b2 vaccine-elicited sera. Nat. Med. 2021;27:620–621. doi: 10.1038/s41591-021-01270-4. [DOI] [PubMed] [Google Scholar]
  • 71.Tada T., Dcosta B.M., Samanovic-Golden M., Herati R.S., Cornelius A., Mulligan M.J., Landau N.R. Neutralization of viruses with European, South African, and United States SARS-CoV-2 variant spike proteins by convalescent sera and BNT162b2 mRNA vaccine-elicited antibodies. biorXiv. 2021 doi: 10.1101/2021.02.05.430003. [DOI] [Google Scholar]
  • 72.Kuzmina A., Khalaila Y., Voloshin O., Keren-Naus A., Bohehm L., Raviv Y., Shemer-Avni Y., Rosenberg E., Taube R. SARS CoV-2 escape variants exhibit differential infectivity and neutralization sensitivity to convalescent or post-vaccination sera. Cell Host Microbe. 2021;29:522–528. doi: 10.1016/j.chom.2021.03.008. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 73.Gonzalez C., Saade C., Bal A., Valette M., Saker K., Lina B., Josset L., Trabaud M.-A., Thiery G., Botelho-Nevers E., et al. Live virus neutralization testing in convalescent and vaccinated subjects against 19A, 20B, 20I/501Y.V1 and 20H/501.V2 isolates of SARS-CoV-2. medrXiv. 2021 doi: 10.1101/2021.05.11.21256578. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 74.Liu J., Bodnar B.H., Wang X., Wang P., Meng F., Khan A.I., Saribas A.S., Padhiar N.H., McCluskey E., Shah S., et al. Correlation of vaccine-elicited antibody levels and neutralizing activities against SARS-CoV-2 and its variants. biorXiv. 2021 doi: 10.1101/2021.05.31.445871. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 75.Garcia-Beltran W.F., Lam E.C., Denis K.S., Nitido A.D., Garcia Z.H., Hauser B.M., Feldman J., Pavlovic M.N., Gregory D.J., Poznansky M.C., et al. Multiple SARS-CoV-2 variants escape neutralization by vaccine-induced humoral immunity. Cell. 2021;184:2372–2383. doi: 10.1016/j.cell.2021.03.013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 76.Mohsen M., Bachmann M.F., Vogel M., Augusto G.S., Liu X., Chang X. BNT162b2 mRNA COVID-19 vaccine induces antibodies of broader cross-reactivity than natural infection but recognition of mutant viruses is up to 10-fold reduced. Allergy. 2021 doi: 10.1111/all.14893. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 77.Stankov M., Cossmann A., Bonifacius A., Jablonka A., Morillas Ramos G., Goedecke N., Zychlinsky Scharff A., Happle C., Boeck A.-L., Tran A.T., et al. Humoral and cellular immune responses against SARS-CoV-2 variants and human coronaviruses after single BNT162b2 vaccination. medrXiv. 2021 doi: 10.1101/2021.04.16.21255412. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 78.Strengert M., Becker M., Ramos G.M., Dulovic A., Gruber J., Juengling J., Lürken K., Beigel A., Wrenger E., Lonnemann G., et al. Cellular and humoral immunogenicity of a SARS-CoV-2 mRNA vaccine in patients on hemodialysis. medrXiv. 2021 doi: 10.1101/2021.05.26.21257860. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 79.Abu-Raddad L.J., Chemaitelly H., Butt A.A. Effectiveness of the BNT162b2 Covid-19 Vaccine against the B.1.1.7 and B.1.351 Variants. N. Engl. J. Med. 2021 doi: 10.1056/NEJMc2104974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 80.Xie X., Zou J., Fontes-Garfias C.R., Xia H., Swanson K.A., Cutler M., Cooper D., Menachery V.D., Weaver S.D., Dormitzer P.R., et al. Neutralization of N501Y mutant SARS-CoV-2 by BNT162b2 vaccine-elicited sera. biorXiv. 2021 doi: 10.1101/2021.01.07.425740. [DOI] [PubMed] [Google Scholar]
  • 81.Collier D., Meng B., Ferreira I., Datir R., Temperton N.J., Elmer A., Graves B., Kingston N., McCoy L., Smith K., et al. Impact of SARS-CoV-2 B.1.1.7 Spike variant on neutralisation potency of sera from individuals vaccinated with Pfizer vaccine BNT162b2. medrXiv. 2021 doi: 10.1101/2021.01.19.21249840. [DOI] [Google Scholar]
  • 82.Muik A., Wallisch A.-K., Saenger B., Swanson K.A., Muehl J., Chen W., Cai H., Sarkar R., Tuereci O., Dormitzer P.R., et al. Neutralization of SARS-CoV-2 lineage B.1.1.7 pseudovirus by BNT162b2 vaccine-elicited human sera. Science. 2021;371:1152–1153. doi: 10.1126/science.abg6105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 83.Lumley S.F., Rodger G., Constantinides B., Sanderson N., Chau K.K., Street T.L., O’Donnell D., Howarth A., Hatch S.B., Marsden B.D., et al. An observational cohort study on the incidence of SARS-CoV-2 infection and B.1.1.7 variant infection in healthcare workers by antibody and vaccination status. medrXiv. 2021 doi: 10.1101/2021.03.09.21253218. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 84.Lopez Bernal J., Andrews N., Gower C., Gallagher E., Simmons R., Thelwall S., Tessier E., Groves N., Dabrera G., Myers R., et al. Effectiveness of COVID-19 vaccines against the B.1.617.2 variant. medRxiv. 2021 doi: 10.1101/2021.05.22.21257658. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 85.Dejnirattisai W., Zhou D., Supasa P., Liu C., Mentzer A.J., Ginn H., Zhao Y., Duyvesteyn H.M.E., Tuekprakhon A., Nutalai R., et al. Antibody evasion by the Brazilian P.1 strain of SARS-CoV-2. medrXiv. 2021 doi: 10.1101/2021.03.12.435194. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 86.Ferreira I., Datir R., Papa G., Kemp S., Meng B., Rakshit P., Singh S., Pandey R., Ponnusamy K., Radhakrishnan V.S., et al. SARS-CoV-2 B.1.617 emergence and sensitivity to vaccine-elicited antibodies. medrXiv. 2021 doi: 10.1101/2021.05.08.443253. [DOI] [Google Scholar]
  • 87.Edara V.-V., Lai L., Sahoo M., Floyd K., Sibai M., Solis D., Flowers M.W., Hussaini L., Ciric C.R., Bechnack S., et al. Infection and vaccine-induced neutralizing antibody responses to the SARS-CoV-2 B.1.617.1 variant. biorXiv. 2021 doi: 10.1101/2021.05.09.443299. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 88.Shi P.-Y., Liu J., Liu Y., Xia H., Zou J., Weaver S., Swanson K., Cai H., Cutler M., Cooper D., et al. Neutralization of SARS-CoV-2 variants B.1.617.1 and B.1.525 by BNT162b2-elicited sera. Res. Sq. 2021 doi: 10.21203/rs.3.rs-540721/v1. [DOI] [PubMed] [Google Scholar]
  • 89.Wu K., Werner A.P., Moliva J.I., Koch M., Choi A., Narayanan E., Stewart-Jones G.B.E., Colpitts T., Bennett H., Boyoglu-Barnum S., et al. Serum Neutralizing Activity Elicited by mRNA-1273 Vaccine. N. Engl. J. Med. 2021;384:1468–1470. doi: 10.1056/NEJMc2102179. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 90.Corbett K.S., Werner A., O’Connell S., Gagne M., Lai L., Moliva J.I., Flynn B., Choi A., Koch M., Foulds K.E., et al. Evaluation of mRNA-1273 against SARS-CoV-2 B.1.351 Infection in Nonhuman Primates. biorXiv. 2021 doi: 10.1101/2021.05.21.445189. [DOI] [Google Scholar]
  • 91.Edara V.V., Hudson W.H., Xie X., Ahmed R., Suthar M.S. Neutralizing Antibodies Against SARS-CoV-2 Variants After Infection and Vaccination. JAMA. 2021;325:1896–1898. doi: 10.1001/jama.2021.4388. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 92.Shen X., Tang H., McDana C., Wagh K., Fischer W., Theiler J., Yoon H., Li D., Haynes B.F., Sanders K.O., et al. SARS-CoV-2 variant B.1.1.7 is susceptible to neutralizing antibodies elicited by ancestral Spike vaccines. Cell Host Microbe. 2021;29:529–539. doi: 10.1016/j.chom.2021.03.002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 93.Madhi S.A., Baillie V., Cutland C.L., Voysey M., Koen A.L., Fairlie L., Padayachee S.D., Dheda K., Barnabas S.L., Bhorat Q.E., et al. Efficacy of the ChAdOx1 nCoV-19 Covid-19 Vaccine against the B.1.351 Variant. N. Engl. J. Med. 2021 doi: 10.1056/NEJMoa2102214. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 94.Fischer R., van Doremalen N., Adney D., Yinda C.K., Port J.R., Holbrook M.G., Schulz J.E., Williamson B.N., Thomas T., Barbian K., et al. ChAdOx1 nCoV-19 (AZD1222) protects against SARS-CoV-2 B.1.351 and B.1.1.7. biorXiv. 2021 doi: 10.1101/2021.03.11.435000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 95.Yadav P., Sapkal G.N., Abraham P., Deshpande G., Nyayanit D.A., Patil D.Y., Gupta N., Sahay R.R., Shete A.M., Kumar S., et al. Neutralization potential of Covishield vaccinated individuals against B.1.617.1. Clin. Infect. Dis. 2021:ciab483. doi: 10.1093/cid/ciab483. [DOI] [PubMed] [Google Scholar]
  • 96.Ikegame S., Siddiquey M.N.A., Hung C.-T., Haas G., Brambilla L., Oguntunyo K.Y., Kowdle S., Vilardo A.E., Edelstein A., Perandones C., et al. Qualitatively distinct modes of Sputnik V vaccine-neutralization escape by SARS-CoV-2 Spike variants. medrXiv. 2021 doi: 10.1101/2021.03.31.21254660. [DOI] [Google Scholar]
  • 97.Shinde V., Bhikha S., Hossain Z., Archary M., Bhorat Q., Fairlie L., Lalloo U., Masilela M.S.L., Moodley D., Hanley S., et al. Efficacy of NVX-CoV2373 Covid-19 Vaccine against the B.1.351 Variant. N. Engl. J. Med. 2021;384:1899–1909. doi: 10.1056/NEJMoa2103055. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 98.Sapkal G.N., Yadav P., Ella R., Deshpande G.R., Sahay R.R., Gupta N., Mohan V.K., Abraham P., Panda S., Bhargava B. Neutralization of UK-variant VUI-202012/01 with COVAXIN vaccinated human serum. medrXiv. 2021 doi: 10.1101/2021.01.26.426986. [DOI] [Google Scholar]
  • 99.Chen Y., Shen H., Huang R., Tong X., Wu C. Serum neutralising activity against SARS-CoV-2 variants elicited by CoronaVac. Lancet Infect. Dis. 2021 doi: 10.1016/S1473-3099(21)00287-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 100.Moore P., Moyo T., Hermanus T., Kgagudi P., Ayres F., Makhado Z., Sadoff J., Le Gars M., van Roey G., Crowther C., et al. Neutralizing antibodies elicited by the Ad26.COV2.S COVID-19 vaccine show reduced activity against 501Y.V2 (B.1.351), despite protection against severe disease by this variant. biorXiv. 2021 doi: 10.1101/2021.06.09.447722. [DOI] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Data Availability Statement

The data presented in this study are openly available in PubMed.


Articles from Viruses are provided here courtesy of Multidisciplinary Digital Publishing Institute (MDPI)

RESOURCES