Skip to main content
PLOS Neglected Tropical Diseases logoLink to PLOS Neglected Tropical Diseases
. 2021 Jul 14;15(7):e0009576. doi: 10.1371/journal.pntd.0009576

Health seeking behavior after the 2013–16 Ebola epidemic: Lassa fever as a metric of persistent changes in Kenema District, Sierra Leone

Mikaela R Koch 1,*, Lansana Kanneh 2, Paul H Wise 2, Lianne M Kurina 1, Foday Alhasan 3, Robert F Garry 4,5, John S Schieffelin 6, Jeffrey G Shaffer 7,*, Donald S Grant 3,8,*
Editor: Christopher M Barker9
PMCID: PMC8312964  PMID: 34260615

Abstract

Background

The West African Ebola epidemic of 2013–2016 killed nearly 4,000 Sierra Leoneans and devastated health infrastructure across West Africa. Changes in health seeking behavior (HSB) during the outbreak resulted in dramatic underreporting and substantial declines in hospital presentations to public health facilities, resulting in an estimated tens of thousands of additional maternal, infant, and adult deaths per year. Sierra Leone’s Kenema District, a major Ebola hotspot, is also endemic for Lassa fever (LF), another often-fatal hemorrhagic disease. Here we assess the impact of the West African Ebola epidemic on health seeking behaviors with respect to presentations to the Kenema Government Hospital (KGH) Lassa Ward, which serves as the primary health care referral center for suspected Lassa fever cases in the Eastern Province of Sierra Leone.

Methodology/Principal findings

Presentation frequencies for suspected Lassa fever presenting to KGH or one of its referral centers from 2011–2019 were analyzed to consider the potential impact of the West African Ebola epidemic on presentation patterns. There was a significant decline in suspected LF cases presenting to KGH following the epidemic, and a lower percentage of subjects were admitted to the KGH Lassa Ward following the epidemic. To assess general HSB, a questionnaire was developed and administered to 200 residents from 8 villages in Kenema District. Among 194 completed interviews, 151 (78%) of respondents stated they felt hospitals were safer post-epidemic with no significant differences noted among subjects according to religious background, age, gender, or education. However, 37 (19%) subjects reported decreased attendance at hospitals since the epidemic, which suggests that trust in the healthcare system has not fully rebounded. Cost was identified as a major deterrent to seeking healthcare.

Conclusions/Significance

Analysis of patient demographic data suggests that fewer individuals sought care for Lassa fever and other febrile illnesses in Kenema District after the West African Ebola epidemic. Re-establishing trust in health care services will require efforts beyond rebuilding infrastructure and require concerted efforts to rebuild the trust of local residents who may be wary of seeking healthcare post epidemic.

Author summary

The West African Ebola epidemic of 2013–2016 killed nearly 4,000 Sierra Leoneans and devastated health infrastructure. There is limited information regarding the effects of the epidemic on health seeking behavior. Lassa fever is clinically similar to Ebola and is prevalent in Kenema District, located in the Eastern Province of Sierra Leone. There was a significant decline in the number of individuals seeking care for suspected Lassa fever following the epidemic. Responses to a questionnaire completed by 194 Sierra Leonean residents suggested that confidence in the healthcare system was not fully restored. Cost was identified as a major deterrent to seeking healthcare. Additional community sensitization is needed to convey the need, and importance, of seeking care for Lassa fever.

Introduction

The largest known Ebola epidemic in history began in 2013 ultimately spanning over 30 months and killing over 11,000 people in Guinea, Sierra Leone, Liberia and other countries [1,2]. The epidemic was reportedly fueled and perpetuated by misinformation. Erroneous messaging, rumors, conspiracy theories—including that Ebola virus (EBOV) was a hoax and that consumption of bush meat was sustaining the outbreak—and predictions by government advisors that the outbreak would soon burn out, contributed to the public health disaster [35]. Healthcare facilities, which were plagued by large numbers of heath care worker (HCW) deaths, became known by some as places where people went to die, and thus many individuals stopped seeking care altogether [610]. The long-term effects that a traumatic event, such as the West African Ebola epidemic, pose to trust in the healthcare system are not well-documented in the scientific literature.

While Ebola was directly responsible for thousands of deaths in Sierra Leone (approx. 4000), changes in health seeking behavior (HSB) due to documented fear, misinformation, distrust, and a reduction in medical services, resulted in considerable non-Ebola mortality that continues to this day [1114]. Maternal and child health services were particularly affected [10]. At the height of the epidemic, there was a 31–37% drop in facility-based child deliveries and an 80% decrease in pediatric admissions for malaria in Sierra Leone [15]. Such reduction in healthcare provision was predicted to result in an additional 4,022 maternal deaths per year and 6,700 additional infant deaths per year in the region [10]. Additionally, the number of major surgeries conducted, in the region, during the West African Ebola epidemic decreased by 50% [16,17]. Beyond the barriers present and inherent to the region (limited health service availability, poverty, lack of educational access), the epidemic may have left a lasting impact on the perceptions of, and attitudes towards, the healthcare system [1820]. Health seeking behavior, as assessed in this study, is defined as “a sequence of remedial actions individuals undertake to rectify perceived ill health” [21]. The underlying assumption is that health is influenced by behavior and behavior itself is subject to modification, as influenced by external and internal factors [22]. Proxies used for health seeking behavior in the literature include, healthcare consumption patterns, provider visits, and self-reported care seeking [2326].

In the wake of the Ebola epidemic, there has been significant investment and attention in health systems strengthening for the affected countries of West Africa [27,28]. In April 2015, the Sierra Leone MoHS detailed a strategy to strengthen the health system which included, as its first key areas, establishing safe work settings and increasing the workforce [29]. NGO’s in the area, such as Partners in Health, joined this objective working to improve the infrastructure of local health facilities [27]. In Kenema specifically, a new 48 bed Lassa fever ward was built following the epidemic [30]. While the desire to strengthen the health system is often the ‘dominant narrative’ after an epidemic, whether individuals are availing themselves of these services has not been adequately addressed in this setting [31]. This study sought to comprehend that knowledge gap by 1) assessing HSB of patients with suspected Lassa fever and 2) assessing general HSB of individuals through use of a questionnaire, in the Kenema district of Sierra Leone, a region that was severely impacted by Ebola. Based on the incredible shock to the system (societal, healthcare, governmental, economic etc.) and clear evidence of a dramatic change in health seeking behavior during the epidemic across the nation, the authors hypothesized that there would remain an impact on hospital attendance for Lassa fever observed in the population years after the epidemic concluded.

Lassa fever and Ebola are both hemorrhagic fevers—severe acute viral infections induced by Lassa virus (LASV), an arenavirus, and EBOV, a filovirus, respectively [1,32]. Patients present with similar symptoms, including fever, malaise, vomiting, and bleeding. While many individuals infected with LASV do not present to a health care provider or facility, both prior to, and following the epidemic, those that do are often misdiagnosed as having influenza or malaria given the initial nonspecific symptoms and aggressive local treatment programs for malaria [3235]. LASV is transmitted through contact with Mastomys natalensis, the multimammate mouse, and other rodent reservoirs [36,37]. Human to human transmission of LASV can also occur through contact with bodily fluids, similar to EBOV, although less frequently [3840]. The incubation period of Lassa fever is 6–21 days and symptoms may be mild and subclinical [35,41,42]. Severe cases progress to multi-organ failure and internal hemorrhaging. For those requiring hospitalization, the suspected case fatality rate is variable—between 20% in Nigeria to 70% in Sierra Leone [43,44]. While there are no precise data on the incidence or prevalence of Lassa fever, it has been estimated that there are tens of thousands of deaths each year in West Africa [45]. The case fatality rate among hospitalized Lassa fever (LF) patients has been reported to be 69% [34].

The first goal of this study was to measure potential changes in HSB for suspected Lassa fever. Given the similarity in the diseases, HSB for Lassa fever may serve as a metric for the impact of the West African Ebola epidemic on HSB. The second goal of this study was to evaluate attitudes toward healthcare in a Lassa fever endemic region to identify barriers (e.g cost, time, information, trust etc.) and provide insights into whether there was a persistent effect of the epidemic on communities’ relationship to, and perception of, their healthcare system.

Methods

Ethics statement

Compilation of surveillance data regarding patients presenting to Kenema Government Hospital (KGH) with suspected Lassa fever was approved by the Sierra Leone Ethics and Scientific Research Committee. Informed consent was obtained from suspected Lassa fever subjects presenting to KGH or one of its public health units or non-identifiable presentation frequencies were captured as part of routine hospital surveillance activities. Administration of health seeking behavior (HSB) questionnaires was approved by the Sierra Leone Ethics and Scientific Research Committee and the Institutional Review Board of Stanford University (#45598). All subjects who participated in the HSB questionnaire and/or their legal guardians provided written informed consent. Consent was obtained for each participant in the presence of a witness. Illiterate participants consented with a thumbprint rather than a signature. Given Mende, the most common local language, is written and read by very few, all consents and questionnaires were administered orally in the resident’s preferred local dialect (Krio or Mende). As per the standard outreach team practice, upon entering the village, permission from the village leaders were obtained. All methods were carried out in accordance with relevant guidelines and regulations, including the Declaration of Helsinki.

Lassa fever surveillance database

Surveillance and demographic data on suspected Lassa fever cases have been captured using a suite of case report forms (CRFs) and log books at KGH since 2006. These data were captured from patient referral CRFs, pre-admission evaluation CRFs, patient medical charts (for admitted subjects), and a paper-bound log book maintained at the KGH Lassa Ward. Data for subjects presenting to KGH (regardless of admission status) were verified against pre-admission evaluation CRFs, and data for admitted subjects were verified against patient medical charts. Patient survival outcome was considered with the hierarchical order of validity: 1) Lassa Ward log book; 2) pre-admission evaluation CRF; 3) patient referral CRF; and 4) patient medical chart and nurses notes. Data were managed and linked across data sources using the SAS statistical package (version 9.4, SAS Institute, Cary, NC). The complete data capture and management process for suspected Lassa fever cases at KGH is described in further detail by Shaffer et al. [46].

Database analysis

For this study, the number of annual visits by age, gender, and survival outcome were abstracted from the Lassa fever surveillance database from 2011–2019. During the height of the West African Ebola epidemic (between May 24, 2014 and January 26, 2015), resources were devoted to containing the outbreak, and the data capture processes were adapted for incoming Ebola subjects. During this time, data for Lassa cases was sporadic and unreliable due to limited human resources available for Lassa fever surveillance; therefore, a detailed analysis on Lassa presentations during this time-period is not covered in this work.

HSB questionnaire

The questionnaire used in this study was adapted from a questionnaire on general health seeking behavior employed by Medair and Mercy Corp in Uganda, along with demographic data including age, gender, village of residence, and education [18]. Four specific study pertinent questions were added. The HSB questionnaire was provided in the two major written languages used in the villages, English (S1 Table) or Krio (S2 Table), but given low literacy rates, was delivered orally in Krio or Mende. Questionnaires were numbered and did not contain any personal identifiers. The villages were selected to represent a cross-section of the district based on distance from KGH (ranging from 22–51 km away) and population size (ranging from 600 to 2100 individuals). The outreach team had contacted each village in previous years either for case identification, educational programming directed at Lassa fever awareness, or for participation in Viral Hemorrhagic Fever Consortium (VHFC) research studies. The twenty questions took on average of ten minutes to complete. Overall, 200 participants were interviewed.

Statistical analysis

Surveillance data included both categorical and continuous responses and were presented as frequencies and percentages, or means and standard deviations, respectively. Data were classified in terms of pre-Ebola (2011–2013); Ebola (2014–2016); and post-Ebola (2017–2019) time periods according to data of clinical presentation to a hospital or public health unit in Sierra Leone. Nonparametric approaches (Fisher’s Exact and Kruskal-Wallis tests) were used to account for departures in diagnostics for their analog parametric approaches (Pearson’s chi square and ordinary one-way analysis of variance). The logistic regression approaches were applied due to the categorical nature of the data captured in the HSB survey. The Type 1 error threshold was set at 5%, and those p-values less than this threshold were considered as statistically significant. Statistical significance focused on differences observed between pre- and post-Ebola time periods (2011–13 and 2017–19, respectively) that were not due to chance alone. Significance tests were performed using the SAS statistical application (version 9.4, Cary, NC).

General HSB questionnaire responses (questions 1, 2, & 4–12) were analyzed to identify potential predictors of responses to the specific study pertinent questions (3 & 13–15). The analysis was performed by running logistic regression models in STATA v. 15.1 (Stata Corp, College Station, Texas). The logistic regression analyses were performed using full main effects (no interaction) models, where outcomes were dichotomized and modeled against subject age, gender, religion, education, and village of residence. For this analysis, age categories, 18–27, 28–36, 37–45, and 45+, were selected to accommodate the age inclusion criteria for the HSB questionnaire. All logistic regression analysis were run with Village 1 as the reference village. Village 1 was selected to be the reference village as it was one of two villages with the most respondents. One of these two villages was arbitrarily chosen as the reference village. When appropriate, responses were contracted to dichotomous measures. All chi-square tests and trends were analyzed using SAS/STAT software version 9.4 (Cary, NC). All statistical tests applied a type I error threshold of 5%.

Results

Persistent decline in suspected Lassa fever cases following the West African Ebola epidemic

In the three-year period (2017–19) following the West African Ebola epidemic, as compared to the three years prior to the epidemic, there was a decline in the numbers of subjects presenting to the Kenema Government Hospital (KGH) Lassa ward with suspected Lassa fever and the numbers of patients admitted to the KGH Lassa ward (Fig 1, S3 Table). The average annual number of suspected cases of Lassa fever presenting to KGH was 698 from 2011 to 2013, the three years before the beginning of the epidemic (Fig 1A). During the epidemic an average of 473 suspected cases presented, although, as noted, data collection was suboptimal during this period. In the three years following the epidemic, an average of 326 suspected cases presented to KGH (Fig 1A). The proportion of cases post-epidemic was statistically significantly lower than the proportion pre-epidemic (p = .049, Table 1).

Fig 1. Annual numbers of subjects presenting and admitted to the Kenema Government hospital Lassa ward with suspected Lassa fever.

Fig 1

Panel A. Subjects presenting with suspected Lassa fever from 2011–19. Panel B; Patients admitted to the Lassa Ward from 2011–19. Grey shading indicates the years 2014–16 during the West African Ebola epidemic.

Table 1. Characteristics of suspected Lassa fever cases before and after the 2013–2016 West African Ebola outbreak, Kenema, Sierra Leone.

Inclusive of gender, age, survival outcome, and average presentations per year.

Characteristic Pre-Ebola1
n = 2,096
Post-Ebola2
n = 918
P value3
Gender, N (%)
    Male 855 (41.28) 429 (46.83) .005
    Female 1216 (58.72) 487 (53.17)
Age at presentation, N (%)
    <5 267 (13.22) 119 (13.05) < .001
    5–19 473 (23.43) 151 (16.56)
    20–34 684 (33.88) 341 (37.39)
    ≥35 595 (29.47) 301 (33.00)
Survival outcome, N (%)4
    Died 191 (43.31) 43 (37.39) .289
    Discharged 250 (56.69) 72 (62.61)
Average presentations per year, mean (STD) 698.67 (156.99) 303.67(42.19) .049

STD = Standard deviation. Differences between overall time period frequencies and characteristic frequencies are due to missing characteristic data.

1Pre-Ebola time period defined as 2011–2013.

2Post-Ebola time period defined as 20172019.

3Fisher’s Exact and Kruskal-Wallis tests used to test for general differences between pre-and post-Ebola time periods for categorical and continuous characteristics, respectively,.

4Survival outcome at hospital discharge or death observed prior to arrival at KGH. Survival outcomes were unknown for subjects not presenting to KGH unless death was observed prior to presentation.

The decline in suspected cases was further reflected in a persistent decline in the numbers of admitted cases (Fig 1B). The average annual number of cases admitted to the KGH Lassa ward was 148 from 2011 to 2013. During the West African Ebola epidemic an average of 128 cases were admitted. In the three years following the epidemic, an average of 38 cases were admitted (Fig 1B).

Decline in suspected Lassa fever cases is not due to any major demographic shifts

The decline in suspected Lassa fever cases presenting to KGH did not appear to be due to a major reduction in presentation by any demographic group (Fig 2). However, there were modest, but perceptible, changes in the demographic make-up of the cases presenting to KGH after the epidemic. From 2011 to 2018, 55–59% of patients evaluated for suspected Lassa fever were women. (Fig 2A). However, in 2019 more males (179) than females (172) presented to KGH. There was a shift in the proportion of female suspected cases from pre-epidemic to post-epidemic of 59% to 55% respectively (p = .005; Table 1).

Fig 2. Sex and age of subjects with suspected Lassa fever presenting to the Kenema Government Hospital.

Fig 2

Panel A: Numbers of female and male subjects presenting with suspected Lassa fever from 2011–19. Panel B: Numbers of subjects presenting with suspected Lassa fever from 2011–19 by age category. Grey shading indicates the years 2014–16 during the West African Ebola epidemic.

Age distributions were based on the 2015 Sierra Leone Census and suspected cases were analyzed in four groups: 0–4, 5–19, 20–34, and 35+. There were no major changes in the proportion of all annual suspected cases of Lassa fever associated with each age group, pre- versus post-epidemic (Fig 2B, Table 1). The 20–34 year old age group was the age group with the largest proportion (34%) of suspected Lassa fever cases in the three year period before the West African Ebola epidemic (2011–13) and also during the three year period (2017–19) following the epidemic (37%, Fig 2B, Table 1). However, there was a reduction in the proportion of children and teenagers (5–19 years old) who presented as suspected Lassa fever cases. The decline in the total number of suspected Lassa fever cases pre-epidemic versus post-epidemic among each age group was significant (p < .001, Table 1).

Fatality rate of suspected cases pre-epidemic compared to post-epidemic

The case fatality rate of suspected cases (CFR; the proportion of deaths to deaths plus discharges) among persons admitted to the KGH Lassa Ward in the three-year period (2017–19) following the West African Ebola epidemic was similar to the CFR in the three-year period prior to the epidemic (2011–2013), 43% and 40% respectively, which was not significantly different (Fig 3, Table 1). There was an increase in CFR among suspected Lassa fever cases during the epidemic (2014–16), which was likely due to patients presenting to the hospital at advanced stages of illness or with Ebola virus (EBOV). Over the time-period studied, the numbers of deaths and discharges amongst cases admitted to the Lassa Ward declined between the pre-Ebola and post-Ebola periods in parallel with the decline in number of admitted cases.

Fig 3. Discharges, deaths and suspected case fatality rates of subjects with suspected Lassa fever admitted to the Kenema Government Hospital.

Fig 3

Panel A: Discharges and deaths of admitted subjects with suspected Lassa fever from 2011–19. Panel B: Case fatality rates of subjects presenting with suspected Lassa fever from 2011–19. Grey shading indicates the years 2014–16 during the West African Ebola epidemic.

Assessment of health seeking behavior questionnaire

The questionnaire was successfully completed for 194 individuals (97%). For six respondents, the full questionnaire was not completed in a timely fashion, and they were excluded from analysis. Of the religions specified by respondents, 89% were Muslim, followed by 11% that were Christian. Of the genders specified by respondents, 66% were female and 34% were male. Of the education levels specified by respondents, 68% received no education, followed by 10% receiving primary education, 20% receiving a secondary education, and 2% receiving a tertiary education (S4 Table). Of female respondents, 16% were currently pregnant, and 87% reported having at least two living children; culturally, given many female respondents had lost children, it was accepted to refer to children that were still alive, whereas medically, any full-term pregnancy may have been relevant Eighty-eight percent of women reported that they go to a government hospital to give birth, and 95% go to a government hospital for postnatal follow up and immunizations (S4 Table).

Analysis of the responses to the questionnaire enabled several features of health seeking behavior (HSB) in Kenema District to be identified (Fig 4, S5 Table). When seeking health care, 91% of respondents reported that they go to a government hospital (Fig 4A). Only 2% reported they used a form of self-treatment or a traditional healer, and 68% of respondents confirmed receiving all their needed services at their health facility (Fig 4B). Moreover, 60% of respondents reported they were likely to seek care within 24 hours of symptoms arising (Fig 4C). According to 87% of respondents, cost was the most common barrier to seeking care at a health facility (Fig 4D). Seventy-two percent of respondents said their attendance at a healthcare facility had increased since the epidemic, and 19% said it had decreased (Fig 4E). Seventy-eight percent of respondents stated that they felt that the system was safer post-Ebola epidemic, 5% reported less safe, and 17% said safety of health facilities had remained the same (Fig 4F).

Fig 4. Features of health seeking behavior by respondents living in Kenema District, Sierra Leone.

Fig 4

Panel A: Type of health facility utilized. Panel B: Did health facility provided all needed services. Panel C: Time lapse until care is sought. Panel D: Main barrier seeking health care. Panel E: Frequency of attendance at a hospital. Panel F: Perceived safety of health facility.

Self-reported satisfaction for health services was higher among males than females ([aOR] = 2.1, [95% CI] = [0.87, 5.10]) (S7 Table). Respondents were likely to say they received all the services they needed at their health facility (S5 Table). There were no other statistically significant differences amongst age groups (with the exception of the 37–45 year age group, but its confidence interval included one); level of education and religious affiliation did not predict answers to either question. There were only three individuals who reported being a survivor of Lassa fever, insufficient for meaningful subgroup analysis.

Symptoms triggering heath seeking behavior

Responses to the questionnaire were used to identify how likely individuals are to initiate HSB for specific symptoms, both for themselves and their communities (Fig 5). The frequency of symptoms was not determined through the questionnaire and could explain varying levels of HSB by symptom. Fever was the most common symptom prompting individuals to seek care for themselves (Fig 5A). When asked ‘which health issues prompt your community to seek care for you’, fever was also the most common response (Fig 5B). Pain was the next most frequent sign that caused individuals to initiate HSB, followed by headache/nausea, vomiting, and diarrhea. Headache/nausea was the second most frequent health issue noted to prompt community sought care, followed by vomiting, pain, and diarrhea. Bleeding was infrequently reported as a symptom triggering heath seeking behavior in either the individual or community.

Fig 5. Reported clinical signs and symptoms initiating health seeking behavior.

Fig 5

Panel A: health issue that would initiate health seeking behavior by the individual. Panel B: health issue that would prompt community to seek care for you.

Variation in health utilization and satisfaction among villages

The eight villages in which the questionnaire was administered varied in a variety of parameters (S6 Table). The villages examined ranged in size from approximately 600 to 3000 individuals. The villages were 22–51 km away from KGH, with a mean distance from KGH of 38 km. More females answered the questionnaire than males except in villages 1 and 3. The median age of respondents was 35. The level of education varied between villages with a range of 52% to 85% of respondents indicating that they had no formal education. There were statistically significant differences in responses to health utilization and satisfaction among villages (Fig 6). When comparing villages to index village 1, respondents in villages 4 and 6 were less likely to say they got all the services they needed at their health facility (Fig 6A). In response to feelings of safety at hospitals post-epidemic, the majority of residents in all villages said they felt as safe or safer at hospitals (Fig 6B); differences between villages were not statistically significant.

Fig 6. Features of health seeking behavior by respondents in different villages.

Fig 6

Odds ratios are based off a reference to Village 1. Panel A: Satisfaction with health services. Panel B: Perceived safety of health facility. Red symbols: p < .001.

Discussion

Lassa fever (LF) and Ebola share common characteristics in etiology, clinical presentation, and need for strategic medical intervention such as isolation and intensive hospital care of patients with severe disease. The current study used LF as a metric to assess health seeking behavior (HSB) for febrile illnesses in Kenema District Sierra Leone—a region that was severely impacted by the West African Ebola epidemic. Previously, we reported that the annual numbers of suspected cases seen at Kenema Government Hospital (KGH) from 2008–2012 were similar reflecting the expected “steady-state” incidence for a region with endemic LF [43]. The number of patients evaluated in 2013 for potential LF was consistent with this trend.

Following the 2013–16 West African Ebola epidemic, there has been a notable decline in the number of suspected LF patients presenting to KGH. Potential explanations for the observed decline in Lassa evaluations, include: 1) A decrease in disease incidence, 2) A decrease in population, 3) A change in referral patterns to hospitals and 4) A change in HSB for febrile illnesses. The evidence indicates that the incidence of LF may actually be increasing in West Africa [47]. The largest outbreaks of LF in Nigeria have occurred in the past three years [48,49]. From 2017–2018, alone, Nigeria experienced their largest ever recorded LF outbreak, which was longer, and included more severe cases than previously seen [50]. Additionally, LF has been detected with increasing frequency in neighboring countries Togo and Benin [51]. While we cannot rule out a localized decrease in Lassa virus (LASV) infection, the incidence of LF is unlikely to have declined by 50% over this brief time frame. Moreover, the population in Sierra Leone has been growing steadily for years. According to census data, since 2012, the average increase in population annually has been 2.3% in Sierra Leone [52]. Outside of the more than 4000 deaths from Ebola, census estimates have indicated ongoing population growth indicating that a population decline substantial enough to explain the dramatic decline in patients is unlikely.

There were changes in the demographics of the suspected LF cases presenting to KGH, including a decrease in the proportion of females and children, including teenagers. However, these demographic changes were modest and do not readily explain the large overall decrease in suspected LF cases. Since the epidemic, considerable resources have helped rebuild the health-care infrastructure at KGH [53]. A new, state of the art Lassa Ward has been built and the research and clinical teams have been fortified. Factors beyond infrastructure constraints are influencing residents seeking care for febrile illnesses. Such changes in HSB for LF are likely multifactorial with almost one in five respondents still reporting not feeling safer in hospital care and nearly 20% of respondents reporting a decreased attendance at hospitals since the epidemic. Given the documented decline in HSB during the epidemic, individuals who reported feeling similar safety levels at hospitals since the epidemic are still likely a reflection of a decline in HSB as compared to pre-epidemic levels. As such, for the purposes of this study, they are being considered within the category of individuals who are not reporting increased safety in hospital care.

There have been no programmatic or governmental interventions to drive a change of long existing referral patterns to KGH. A program, started by the government in 2010, to provide free medical care to children under 5 and to pregnant or lactating women has continued [54,55], albeit with major challenges for implementation [5660]. KGH has served as the regional center of excellence for Lassa care for decades [61]. No other facility has comparable expertise or infrastructure to handle patients with suspected LF. However, other facilities that are capable of testing for LF have recently been established in Sierra Leone including a new Child/Maternal health hospital operated by Médecins Sans Frontières (MSF)/Doctors Without Borders located outside of Kenema town. The West African Ebola epidemic did impact rural health centers and staff [8,56]. For example, a major health center in Gondama town Bo District, was closed during the epidemic. Prior to the epidemic, Gondama routinely referred suspected Lassa cases to KGH. We did not assess knowledge of LF among rural health care workers (HCW) after the epidemic. Similarly, how the epidemic impacted HCW behavior with regard to LF is unknown. However, a 2017 study assessing community HCW diagnosis in febrile patients in Kenema district found that rapid malaria testing (banned under no touch policies) had been replaced during the epidemic with empiric testing and had not yet returned to pre-epidemic levels [62]. After the epidemic, HCW’s continued to presumptively treat significantly more individuals for malaria than pre-epidemic (p < .001). This change in HCW behavior for febrile illnesses may account for underreporting or decreased recognition of LF patients. Whether the role and or effectiveness of the rural health centers has changed was beyond the scope of this study.

Given the public health threat Ebola and LF pose, case identification, patient isolation, and vector trapping, or avoidance, are all essential interventions to contain outbreaks. Outreach and educational efforts with local communities and regional health outposts are essential to aid in early case detection to identify at-risk individuals with a febrile illness. Educated providers in health outposts need to identify those with more severe cases to allow transport to better equipped facilities that can provide supportive services and isolation to prevent disease spread. LF poses an ongoing public health threat in West Africa which could be exacerbated if an absence of trust in local or regional medical providers impacts HSB.

Changes in HSB are likely contributing to the notable decline in presentations of suspected LF to KGH. Responses to the HSB questionnaire suggest that confidence in the health infrastructure has not fully rebounded after the epidemic. While the majority of respondents reported hospitals as “safer after the epidemic,” and have “increased their attendance at health facilities since the epidemic,” around 20% of respondents did not report increased attendance healthcare facilities. This group of respondents, if extrapolated to the regional population, could account for the identified decline in hospital presentation for suspected LF. A persistent wariness, and perhaps distrust, of existing healthcare facilities for care related to possible hemorrhagic fever may remain.

While questionnaire responses varied by village, the sample sizes were too small to identify which specific differences among villages might explain the overall observation. Based on the analysis completed, there were differences among villages in the proportion of respondents that felt they received all the services they needed at their health facility. However, this difference was not explained by gender, religious affiliation, or level of education. Distance from KGH, while considerable, did not explain the different responses. While gender and age have been reported to impact HSB in a variety of studies, we were unable to identify an association given our limited sample size [6365]. Financial resources of individuals or villages could be a factor, but was not assessed. For each village, neither the incidence of antecedent Lassa illnesses (or death), nor the incidence of Ebola were known. First-hand experience with Ebola or Lassa deaths could influence HSB for febrile illnesses—Ebola survivors are more likely to seek care at a hospital rather than other treatment options [66]. There may be the sentiment that, given the severity of Ebola, LF may be perceived as less severe, associated with a decreased sense of urgency to seek care for symptoms. In conjunction with a potential decrease in concern for the early signs of LF, one can imagine a scenario in which any cost, which is the primary barrier to seeking care reported by 87% of the respondents, would be sufficient to override any inclination to seek medical attention.

We present results from two data sets from two distinct groups of subjects in the Region: one of individuals in the general population and the other of symptomatic patients with suspected LF at KGH. While were unable to draw a direct linkage between the two data sets, we were able to identify some factors that may have facilitated and hindered HSB. Moreover, assessing HSB by an orally administered questionnaire had limitations primarily in sample size and scope. Furthermore, five different individuals delivered the questionnaire and variations in presentation and translation are likely. Bias in self-reporting could further limit the validity of this HSB questionnaire. For example, individuals may report more favorable attitudes towards their local health service for fear that doing otherwise may lead to a decline in service provision. Further understanding the nuances and limitations of the survey can provide additional context; the 78% of respondents reporting ‘safer hospitals’ and 72% reporting greater ‘utilization’ could be a reflection of a willingness to seek care for conditions other than suspected hemorrhagic fever. That is, individuals may show increasing HSB for immunizations, maternal/child health care or even HIV or malaria care and remain reticent to seek care for symptoms that may raise concern over a life-threatening illness that mimics Ebola. While it was not within the scope of this project to study, the demand for some health services may rebound more quickly than others. Additionally, the role of local and regional healthcare systems post- the West African Ebola epidemic were not measured in this study. The local and regional healthcare providers serve as an essential bridge to the referral center and may have suffered unrecognized losses from the epidemic that curtail the number of appropriate patients being referred [67]. The need for further research in these areas is essential to understand the factors contributing to HSB in the region and to target interventions to improve the health of these communities long-term.

The goal of this study, to identify and evaluate the persistent impact of the Ebola epidemic on health seeking behavior for LF through hospital level data, and by survey questionnaire of general health seeking behavior, was met given the limitations of the methodology. The study identified a statistically significant decline in the number of individuals presenting to the hospital, or public health unit, with suspected LF. Although limited by sample size, the questionnaire of 194 individuals identified persistent reluctance to seek care for febrile illness since the Ebola epidemic among one fifth of respondents that could account for the decline noted at KGH.

Identifying cause(s) beyond those self-reported for the decline in presentations at the hospital was beyond the scope of our study. What impact changes in community healthcare workers, transportation access, financial constraint or other potential drivers of HSB, had on this decline were not assessed in this study, but likely play an important role. Further research into these, and potentially other, factors influencing underutilization of healthcare for LF is warranted.

To better achieve the goals of this study, a larger sample size, more villages, and more targeted questions regarding the interaction with public health units, and behavior more clearly linked to suspected LF could have strengthened the conclusions. Additionally, targeting multiple aspects of the care pathway would have been valuable. For example, interviewing or analyzing community health workers, observing any changes in cost, distance, or time to care and other barriers identified by respondents in this paper.

After an epidemic, or similar shock to the healthcare system and fabric of society, it is critical to be aware of the impact such an event has or does not have on morbidity, mortality, and healthcare utilization in communities. This research, and its findings, are critical not only for management during an emergency, but in the years following.

This study confirms that health seeking behavior of individuals with suspected LF has not rebounded after the Ebola epidemic despite the maintenance of a state-of-the-art facility. These findings suggest that to optimize healthcare delivery post epidemic, investments into rebuilding the healthcare system and health of communities need to be multifaceted. Beyond healthcare infrastructure, consideration of other important drivers of health seeking behavior should be considered.

Indirect effects on health and mortality during the Ebola epidemic are well known [1015]. However, factors that may persistently impact outcomes post-epidemic may be more nuanced and less well studied or understood. Monitoring the impact on health seeking behavior (across health indicators) not only during an epidemic but in the years following is important.

Similar to the West African Ebola epidemic, the current coronavirus disease (COVID-19) pandemic is overwhelming healthcare systems, and spreading fear among patients and providers with documentation globally of decreased health seeking behavior for vital health issues such as heart attack, stroke, and deliveries [68]. If, in line with our findings in this paper, HSB decreased during the COVID-19 pandemic and remains below baseline following the pandemic, such information will be vital for appropriate mitigation efforts. Particularly in lower resourced health systems already confronting a sustained impact on health seeking behavior from the West African Ebola epidemic, monitoring how that may be further impacted by COVID-19 will be critical. Optimal health outcomes can only be achieved when individuals seek care appropriately, particularly for infectious diseases that are contagious and often lethal. Improved understanding of the factors that impede HSB is vital to effectively mitigate public health crises as well as help to implement corrective strategies and allow overall health to rebound.

Supporting information

S1 Table. Questionnaire in English.

The original, English, version of the questionnaire used in this study to assess reported health seeking behavior in eight villages in Kenema, Sierra Leone.

(DOCX)

S2 Table. Questionnaire in Krio.

The translated, Krio, version of the questionnaire used in this study to assess reported health seeking behavior in eight villages in Kenema, Sierra Leone.

(DOCX)

S3 Table. Total suspected cases of Lassa fever, by demographic categories, presenting to Kenema Government Hospital from 2012–2019.

Data collected from the Viral Hemorrhagic Fever Consortium database.

(DOCX)

S4 Table. Characteristics of Questionnaire Respondents.

Questionnaire respondent characteristics, including gender, religion and educational status.

(DOCX)

S5 Table. Health Seeking Behavior Questionnaire.

Questionnaire responses for health seeking behavior pertinent questions.

(DOCX)

S6 Table. Questionnaire demographic responses by village of residence.

Demographic responses to the questionnaire broken down by village of residence. Eight villages in Kenema District are included.

(DOCX)

S7 Table. Logistic regression assessing satisfaction with health services in 2018 in Kenema district.

Results from a logistic regression analysis assessing satisfaction with health services in Kenema District.

(DOCX)

S8 Table. Logistic regression results for perceived hospital safety in 2018 in Kenema district.

Results from a logistic regression analysis assessing perceived hospital safety in 2018 in Kenema District.

(DOCX)

Acknowledgments

We thank the members of the Viral Hemorrhagic Fever Consortium (The Broad Institute, Harvard University, La Jolla Institute of Immunology, the Scripps Research Institute, Tulane University, the University of Texas Medical Branch, Zalgen Labs, the ISTH Lassa Fever Program, and KGH) without which this work could not have been conducted; and the patients with serious febrile illnesses who presented to KGH, as well as their families, without whose cooperation this study would not have been possible. Simbirie C. Jalloh, Allyson M. Haislip, Christopher M. Bishop, Tynette D. Hills, and Douglass Simpson provided program management and logistical support.

Data Availability

All relevant data are within the manuscript and its Supporting Information files.

Funding Statement

Supported by National Institute of Allergy and Infectious Diseases grants/contracts AI104621, AI114855, AI115754, U19AI135995, and U01AI151812 (to LK, FA, JSS., RFG., JGS, and DSG) and by a Stanford University Undergraduate Research Grant (to MRK). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

References

  • 1.Boisen ML, Hartnett JN, Goba A, Vandi MA, Grant DS, Schieffelin JS, et al. Epidemiology and Management of the 2013–16 West African Ebola Outbreak. Annual review of virology. 2016. doi: 10.1146/annurev-virology-110615-040056 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Goba A, Khan SH, Fonnie M, Fullah M, Moigboi A, Kovoma A, et al. An Outbreak of Ebola Virus Disease in the Lassa Fever Zone. J Infect Dis. 2016. doi: 10.1093/infdis/jiw239 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Nuriddin A, Jalloh MF, Meyer E, Bunnell R, Bio FA, Jalloh MB, et al. Trust, fear, stigma and disruptions: community perceptions and experiences during periods of low but ongoing transmission of Ebola virus disease in Sierra Leone, 2015. BMJ global health. 2018;3(2):e000410. doi: 10.1136/bmjgh-2017-000410 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Sabeti P, Salahi L. Outbreak Culture: The Ebola Crisis and the Next Epidemic. Cambridge, Massachusetts: Harvard University Press; 2018. 11/26/2018. 288 p. [Google Scholar]
  • 5.Tiffany A, Dalziel BD, Kagume Njenge H, Johnson G, Nugba Ballah R, James D, et al. Estimating the number of secondary Ebola cases resulting from an unsafe burial and risk factors for transmission during the West Africa Ebola epidemic. PLoS neglected tropical diseases. 2017;11(6):e0005491. doi: 10.1371/journal.pntd.0005491 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Morse B, Grépin KA, Blair RA, Tsai L. Patterns of demand for non-Ebola health services during and after the Ebola outbreak: panel survey evidence from Monrovia, Liberia. BMJ global health. 2016;1(1):e000007. doi: 10.1136/bmjgh-2015-000007 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Bausch DG, Bangura J, Garry RF, Goba A, Grant DS, Jacquerioz FA, et al. A tribute to Sheik Humarr Khan and all the healthcare workers in West Africa who have sacrificed in the fight against Ebola virus disease: Mae we hush. Antiviral Res. 2014;111:33–5. doi: 10.1016/j.antiviral.2014.09.001 [DOI] [PubMed] [Google Scholar]
  • 8.Evans DK, Goldstein M, Popova A. Health-care worker mortality and the legacy of the Ebola epidemic. The Lancet Global health. 2015;3(8):e439–e40. doi: 10.1016/S2214-109X(15)00065-0 [DOI] [PubMed] [Google Scholar]
  • 9.Senga M, Pringle K, Ramsay A, Brett-Major DM, Fowler RA, French I, et al. Factors Underlying Ebola Virus Infection Among Health Workers, Kenema, Sierra Leone, 2014–2015. Clin Infect Dis. 2016;63(4):454–9. doi: 10.1093/cid/ciw327 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Kilmarx PH, Clarke KR, Dietz PM, Hamel MJ, Husain F, McFadden JD, et al. Ebola virus disease in health care workers—Sierra Leone, 2014. MMWR Morb Mortal Wkly Rep. 2014;63(49):1168–71. [PMC free article] [PubMed] [Google Scholar]
  • 11.Brolin Ribacke KJ, Saulnier DD, Eriksson A, von Schreeb J. Effects of the West Africa Ebola Virus Disease on Health-Care Utilization—A Systematic Review. Frontiers in public health. 2016;4:222. doi: 10.3389/fpubh.2016.00222 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Wilhelm JA, Helleringer S. Utilization of non-Ebola health care services during Ebola outbreaks: a systematic review and meta-analysis. Journal of global health. 2019;9(1):010406. doi: 10.7189/jogh.09.010406 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Delamou A, Ayadi AME, Sidibe S, Delvaux T, Camara BS, Sandouno SD, et al. Effect of Ebola virus disease on maternal and child health services in Guinea: a retrospective observational cohort study. The Lancet Global health. 2017;5(4):e448–e57. doi: 10.1016/S2214-109X(17)30078-5 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Sochas L, Channon AA, Nam S. Counting indirect crisis-related deaths in the context of a low-resilience health system: the case of maternal and neonatal health during the Ebola epidemic in Sierra Leone. Health policy and planning. 2017;32(suppl_3):iii32–iii9. doi: 10.1093/heapol/czx108 [DOI] [PubMed] [Google Scholar]
  • 15.Brolin Ribacke KJ, van Duinen AJ, Nordenstedt H, Höijer J, Molnes R, Froseth TW, et al. The Impact of the West Africa Ebola Outbreak on Obstetric Health Care in Sierra Leone. PLoS One. 2016;11(2):e0150080. doi: 10.1371/journal.pone.0150080 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Bolkan HA, Bash-Taqi DA, Samai M, Gerdin M, von Schreeb J. Ebola and indirect effects on health service function in sierra leone. PLoS currents. 2014;6. doi: 10.1371/currents.outbreaks.0307d588df619f9c9447f8ead5b72b2d [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Bundu I, Patel A, Mansaray A, Kamara TB, Hunt LM. Surgery in the time of Ebola: how events impacted on a single surgical institution in Sierra Leone. Journal of the Royal Army Medical Corps. 2016;162(3):212–6. doi: 10.1136/jramc-2015-000582 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Flaherty J. Recovery brings uncertain future. Nursing children and young people. 2015;27(4):15. doi: 10.7748/ncyp.27.4.15.s22 [DOI] [PubMed] [Google Scholar]
  • 19.Shoman H, Karafillakis E, Rawaf S. The link between the West African Ebola outbreak and health systems in Guinea, Liberia and Sierra Leone: a systematic review. Globalization and health. 2017;13(1):1. doi: 10.1186/s12992-016-0224-2 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.McPake B, Dayal P, Herbst CH. Never again? Challenges in transforming the health workforce landscape in post-Ebola West Africa. Human resources for health. 2019;17(1):19. doi: 10.1186/s12960-019-0351-y [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Onyeonoro UU, Ogah OS, Ukegbu AU, Chukwuonye II, Madukwe OO, Moses AO. Urban-Rural Differences in Health-Care-Seeking Pattern of Residents of Abia State, Nigeria, and the Implication in the Control of NCDs. Health services insights. 2016;9:29–36. doi: 10.4137/HSI.S31865 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Conner M. International Encyclopedia of the Social & Behavioral Sciences (Second Edition). 2015:582–7. [Google Scholar]
  • 23.Kuuire VZ, Bisung E, Rishworth A, Dixon J, Luginaah I. Health-seeking behaviour during times of illness: a study among adults in a resource poor setting in Ghana. J Public Health (Oxf). 2016;38(4):e545–e53. [DOI] [PubMed] [Google Scholar]
  • 24.Daniels A, Chapin E, Aspilcueta D, Doocy S. Access to health services and care-seeking behaviors after the 2007 Ica earthquake in Peru. Disaster medicine and public health preparedness. 2009;3(2):97–103. doi: 10.1097/DMP.0b013e3181a20328 [DOI] [PubMed] [Google Scholar]
  • 25.Clewley D, Rhon D, Flynn T, Koppenhaver S, Cook C. Health seeking behavior as a predictor of healthcare utilization in a population of patients with spinal pain. PLoS One. 2018;13(8):e0201348. doi: 10.1371/journal.pone.0201348 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Huang M, Zhang H, Gu Y, Wei J, Gu S, Zhen X, et al. Outpatient health-seeking behavior of residents in Zhejiang and Qinghai Province, China. BMC Public Health. 2019;19(1):967. doi: 10.1186/s12889-019-7305-0 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Cancedda C, Davis SM, Dierberg KL, Lascher J, Kelly JD, Barrie MB, et al. Strengthening Health Systems While Responding to a Health Crisis: Lessons Learned by a Nongovernmental Organization During the Ebola Virus Disease Epidemic in Sierra Leone. J Infect Dis. 2016;214(suppl 3):S153–s63. doi: 10.1093/infdis/jiw345 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Barr A, Garrett L, Marten R, Kadandale S. Health sector fragmentation: three examples from Sierra Leone. Globalization and health. 2019;15(1):8. doi: 10.1186/s12992-018-0447-5 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Fofanah AB. Health Sectory Recovery Plan 2015–2020. Ministry Of Health and Sanitation; 2020. [Google Scholar]
  • 30.Grant DS. Emerging Infectious Disease Ward at Kenema Government Hospital. Current Topics in Microbiology and Immunology. 2021;in preparation. [Google Scholar]
  • 31.O’Hare B. Weak health systems and Ebola. The Lancet Global health. 2015;3(2):e71–2. doi: 10.1016/S2214-109X(14)70369-9 [DOI] [PubMed] [Google Scholar]
  • 32.Hartnett JN, Oottamasathein D, Jones AB, Millett MM, Nelson DS, Muncy IJ, et al. Current and emerging strategies for the diagnosis, prevention and treatment of Lassa fever. Future virology. 2015;10(5):559–84. [Google Scholar]
  • 33.Boisen ML, Hartnett JN, Shaffer JG, Goba A, Momoh M, Sandi JD, et al. Field validation of recombinant antigen immunoassays for diagnosis of Lassa fever. Scientific reports. 2018;8(1):5939. doi: 10.1038/s41598-018-24246-w [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.Boisen ML, Schieffelin JS, Goba A, Oottamasathien D, Jones AB, Shaffer JG, et al. Multiple circulating infections can mimic the early stages of viral hemorrhagic fevers and possible human exposure to filoviruses in Sierra Leone prior to the 2014 outbreak. Viral immunology. 2015;28(1):19–31. doi: 10.1089/vim.2014.0108 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35.Branco LM, Grove JN, Boisen ML, Shaffer JG, Goba A, Fullah M, et al. Emerging trends in Lassa fever: redefining the role of immunoglobulin M and inflammation in diagnosing acute infection. Virology journal. 2011;8:478. doi: 10.1186/1743-422X-8-478 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Lecompte E, Fichet-Calvet E, Daffis S, Koulemou K, Sylla O, Kourouma F, et al. Mastomys natalensis and Lassa fever, West Africa. Emerg Infect Dis. 2006;12(12):1971–4. doi: 10.3201/eid1212.060812 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37.Olayemi A, Cadar D, Magassouba N, Obadare A, Kourouma F, Oyeyiola A, et al. New Hosts of The Lassa Virus. Scientific reports. 2016;6:25280. doi: 10.1038/srep25280 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38.Akhmetzhanov AR, Asai Y, Nishiura H. Quantifying the seasonal drivers of transmission for Lassa fever in Nigeria. Philos Trans R Soc Lond B Biol Sci. 2019;374(1775):20180268. doi: 10.1098/rstb.2018.0268 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39.Wolf T, Ellwanger R, Goetsch U, Wetzstein N, Gottschalk R. Fifty years of Imported Lassa Fever-A Systematic Review of Primary and Secondary cases. Journal of travel medicine. 2020. doi: 10.1093/jtm/taaa035 [DOI] [PubMed] [Google Scholar]
  • 40.Andersen KG, Shapiro BJ, Matranga CB, Sealfon R, Lin AE, Moses LM, et al. Clinical Sequencing Uncovers Origins and Evolution of Lassa Virus. Cell. 2015;162(4):738–50. doi: 10.1016/j.cell.2015.07.020 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41.Branco LM, Boisen ML, Andersen KG, Grove JN, Moses LM, Muncy IJ, et al. Lassa hemorrhagic fever in a late term pregnancy from northern Sierra Leone with a positive maternal outcome: case report. Virol J. 2011;8:404. doi: 10.1186/1743-422X-8-404 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42.Grove JN, Branco LM, Boisen ML, Muncy IJ, Henderson LA, Schieffellin JS, et al. Capacity building permitting comprehensive monitoring of a severe case of Lassa hemorrhagic fever in Sierra Leone with a positive outcome: case report. Virol J. 2011;8:314. doi: 10.1186/1743-422X-8-314 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 43.Shaffer JG, Grant DS, Schieffelin JS, Boisen ML, Goba A, Hartnett JN, et al. Lassa fever in post-conflict sierra leone. PLoS neglected tropical diseases. 2014;8(3):e2748. doi: 10.1371/journal.pntd.0002748 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 44.Shaffer JG, Schieffelin JS, Grant DS, Goba A, Momoh M, Kanneh L, et al. Data set on Lassa fever in post-conflict Sierra Leone. Data in brief. 2019;23:103673. doi: 10.1016/j.dib.2019.01.021 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 45.Smither AR, Bell-Kareem AR. Ecology of Lassa Virus. Curr Top Microbiol Immunol. 2021. doi: 10.1007/82_2020_231 [DOI] [PubMed] [Google Scholar]
  • 46.Shaffer JG, Schieffelin JS, Gbakie M, Alhasan F, Roberts NB, Goba A, et al. A medical records and data capture and management system for Lassa fever in Sierra Leone: Approach, implementation, and challenges. PloS one. 2019;14(3):e0214284. doi: 10.1371/journal.pone.0214284 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 47.Sogoba N, Feldmann H, Safronetz D. Lassa fever in West Africa: evidence for an expanded region of endemicity. Zoonoses and public health. 2012;59 Suppl 2:43–7. doi: 10.1111/j.1863-2378.2012.01469.x [DOI] [PubMed] [Google Scholar]
  • 48.Kafetzopoulou LE, Pullan ST, Lemey P, Suchard MA, Ehichioya DU, Pahlmann M, et al. Metagenomic sequencing at the epicenter of the Nigeria 2018 Lassa fever outbreak. Science. 2019;363(6422):74–7. doi: 10.1126/science.aau9343 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 49.Siddle KJ, Eromon P, Barnes KG, Mehta S, Oguzie JU, Odia I, et al. Genomic Analysis of Lassa Virus during an Increase in Cases in Nigeria in 2018. N Engl J Med. 2018;379(18):1745–53. doi: 10.1056/NEJMoa1804498 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 50.Dan-Nwafor CC, Furuse Y, Ilori EA, Ipadeola O, Akabike KO, Ahumibe A, et al. Measures to control protracted large Lassa fever outbreak in Nigeria, 1 January to 28 April 2019. Euro Surveill. 2019;24(20). doi: 10.2807/1560-7917.ES.2019.24.20.1900272 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 51.ECDC. Lassa fever in Nigeria, Benin, Togo, Germany and USA. European Centre for Diseases Prevention and Control.
  • 52.LEONE SS. Population and Housing Census SUMMARY OF FINAL RESULTS PLANNING A BETTER FUTURE. 2015 [Google Scholar]
  • 53.Bertone MP, Samai M, Edem-Hotah J, Witter S. A window of opportunity for reform in post-conflict settings? The case of Human Resources for Health policies in Sierra Leone, 2002–2012. Conflict and health. 2014;8:11. doi: 10.1186/1752-1505-8-11 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 54.Witter S, Wurie H, Bertone MP. The free health care initiative: how has it affected health workers in Sierra Leone? Health policy and planning. 2016;31(1):1–9. doi: 10.1093/heapol/czv006 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 55.Groen RS, Kamara TB, Nwomeh BC, Daoh KS, Kushner AL. Free health care for under 5 year olds increases access to surgical care in Sierra Leone: an analysis of case load and patient characteristics. World journal of surgery. 2013;37(6):1216–9. doi: 10.1007/s00268-013-1993-x [DOI] [PubMed] [Google Scholar]
  • 56.Yansaneh AI, George AS, Sharkey A, Brieger WR, Moulton LH, Yumkella F, et al. Determinants of Utilization and Community Experiences with Community Health Volunteers for Treatment of Childhood Illnesses in Rural Sierra Leone. Journal of community health. 2016;41(2):376–86. doi: 10.1007/s10900-015-0107-0 [DOI] [PubMed] [Google Scholar]
  • 57.Yansaneh AI, Moulton LH, George AS, Rao SR, Kennedy N, Bangura P, et al. Influence of community health volunteers on care seeking and treatment coverage for common childhood illnesses in the context of free health care in rural Sierra Leone. Trop Med Int Health. 2014;19(12):1466–76. doi: 10.1111/tmi.12383 [DOI] [PubMed] [Google Scholar]
  • 58.Elston JWT, Danis K, Gray N, West K, Lokuge K, Black B, et al. Maternal health after Ebola: unmet needs and barriers to healthcare in rural Sierra Leone. Health policy and planning. 2020;35(1):78–90. doi: 10.1093/heapol/czz102 [DOI] [PubMed] [Google Scholar]
  • 59.Pieterse P, Lodge T. When free healthcare is not free. Corruption and mistrust in Sierra Leone’s primary healthcare system immediately prior to the Ebola outbreak. International health. 2015;7(6):400–4. doi: 10.1093/inthealth/ihv024 [DOI] [PubMed] [Google Scholar]
  • 60.Theuring S, Koroma AP, Harms G. "In the hospital, there will be nobody to pamper me": a qualitative assessment on barriers to facility-based delivery in post-Ebola Sierra Leone. Reproductive health. 2018;15(1):155. doi: 10.1186/s12978-018-0601-9 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 61.Khan SH, Goba A, Chu M, Roth C, Healing T, Marx A, et al. New opportunities for field research on the pathogenesis and treatment of Lassa fever. Antiviral research. 2008;78(1):103–15. doi: 10.1016/j.antiviral.2007.11.003 [DOI] [PubMed] [Google Scholar]
  • 62.Vandi MA, van Griensven J, Chan AK, Kargbo B, Kandeh JN, Alpha KS, et al. Ebola and community health worker services in Kenema District, Sierra Leone: please mind the gap! Public health action. 2017;7(Suppl 1):S55–s61. doi: 10.5588/pha.16.0082 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 63.Das M, Angeli F, Krumeich A, van Schayck OCP. The gendered experience with respect to health-seeking behaviour in an urban slum of Kolkata, India. International journal for equity in health. 2018;17(1):24. doi: 10.1186/s12939-018-0738-8 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 64.Deeks A, Lombard C, Michelmore J, Teede H. The effects of gender and age on health related behaviors. BMC Public Health. 2009;9:213. doi: 10.1186/1471-2458-9-213 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 65.Sazlina SG, Sooryanarayana R, Ho BK, Omar MA, Krishnapillai AD, Mohd Tohit N, et al. Cardiovascular disease risk factors among older people: Data from the National Health and Morbidity Survey 2015. PLoS One. 2020;15(10):e0240826. doi: 10.1371/journal.pone.0240826 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 66.James PB, Wardle J, Steel A, Adams J. Ebola survivors’ healthcare-seeking experiences and preferences of conventional, complementary and traditional medicine use: A qualitative exploratory study in Sierra Leone. Complementary therapies in clinical practice. 2020;39:101127. doi: 10.1016/j.ctcp.2020.101127 [DOI] [PubMed] [Google Scholar]
  • 67.Wurie HR, Samai M, Witter S. Retention of health workers in rural Sierra Leone: findings from life histories. Human resources for health. 2016;14:3. doi: 10.1186/s12960-016-0099-6 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 68.Ayebare R, Waitt P, Okello S, Kayiira M, Atim Ajok M, Nakatudde I, et al. Leveraging investments in Ebola preparedness for COVID-19 in Sub-Saharan Africa. AAS open research. 2020;3:3. doi: 10.12688/aasopenres.13052.1 [DOI] [PMC free article] [PubMed] [Google Scholar]
PLoS Negl Trop Dis. doi: 10.1371/journal.pntd.0009576.r001

Decision Letter 0

Ayato Takada

24 Dec 2020

Dear Dr. Shaffer,

Thank you very much for submitting your manuscript "Health seeking behavior after the 2013-16 Ebola epidemic: Lassa fever as a metric of persistent changes in Kenema District, Sierra Leone" for consideration at PLOS Neglected Tropical Diseases. As with all papers reviewed by the journal, your manuscript was reviewed by members of the editorial board and by several independent reviewers. In light of the reviews (below this email), we would like to invite the resubmission of a significantly-revised version that takes into account the reviewers' comments.

  

We cannot make any decision about publication until we have seen the revised manuscript and your response to the reviewers' comments. Your revised manuscript is also likely to be sent to reviewers for further evaluation.

When you are ready to resubmit, please upload the following:

[1] A letter containing a detailed list of your responses to the review comments and a description of the changes you have made in the manuscript. Please note while forming your response, if your article is accepted, you may have the opportunity to make the peer review history publicly available. The record will include editor decision letters (with reviews) and your responses to reviewer comments. If eligible, we will contact you to opt in or out.

[2] Two versions of the revised manuscript: one with either highlights or tracked changes denoting where the text has been changed; the other a clean version (uploaded as the manuscript file).

Important additional instructions are given below your reviewer comments.

Please prepare and submit your revised manuscript within 60 days. If you anticipate any delay, please let us know the expected resubmission date by replying to this email. Please note that revised manuscripts received after the 60-day due date may require evaluation and peer review similar to newly submitted manuscripts.

Thank you again for your submission. We hope that our editorial process has been constructive so far, and we welcome your feedback at any time. Please don't hesitate to contact us if you have any questions or comments.

Sincerely,

Ayato Takada, Ph.D.

Deputy Editor

PLOS Neglected Tropical Diseases

Ayato Takada

Deputy Editor

PLOS Neglected Tropical Diseases

***********************

Reviewer's Responses to Questions

Key Review Criteria Required for Acceptance?

As you describe the new analyses required for acceptance, please consider the following:

Methods

-Are the objectives of the study clearly articulated with a clear testable hypothesis stated?

-Is the study design appropriate to address the stated objectives?

-Is the population clearly described and appropriate for the hypothesis being tested?

-Is the sample size sufficient to ensure adequate power to address the hypothesis being tested?

-Were correct statistical analysis used to support conclusions?

-Are there concerns about ethical or regulatory requirements being met?

Reviewer #1: The methodology is well written and explains well the details of data collection. While the total sample population size is not huge for a study such as this, the inclusion multiple villages populations increases the strength of this paper. I have no concerns regarding the ethical or regulatory requirements being met.

Reviewer #2: Yes, study objectives were clearly stated, with appropriate design and analysis to support conclusion. Sample size was low but limitation clearly acknowledged. Ethical requirement needed for the study was adequate.

Reviewer #3: • Line 188 – “rates was,” – I believe the comma should be placed after “rates” instead of “was”.

• Line 194 – “VHFC” – This abbreviation is used here without the full term having appeared in the text. Please include this prior to the abbreviation.

• Lines 202-204 – “Fisher’s Exact and Kruskal-Wallis tests were used to compare categorical and continuous characteristics, respectively, between pre-and post-Ebola time periods. Significance tests were performed using the SAS statistical application.” – It would aid the reader in interpreting the results if the authors could provide more details of the significance tests performed. For example, the meaning of a statistically significant p-value in the specific context of the two tests used.

• Lines 206-207 – “HSB responses were analyzed to identify potential predictors of responses to the Lassa pertinent questions” – Does this statement mean HSB responses were analysed to determine predictors for the specific responses to the Lassa fever related questions? Please reword to improve clarity of meaning.

• Line 207 – “The analysis was performed by running logistic regression models in STATA” – Could you please provide more specific details of your logistic regression models, including the selection process of variables used in the final model?

--------------------

Results

-Does the analysis presented match the analysis plan?

-Are the results clearly and completely presented?

-Are the figures (Tables, Images) of sufficient quality for clarity?

Reviewer #1: In general, the results are clearly written and easy to follow, although I do feel as if several of the figures could be displayed in different ways. For example, given that all the panels of Figure 4 could be represented as pie charts to more clearly represented the proportions (although this is just the reviewer’s preference, they are fine as they are!).

Reviewer #2: Yes, analysis presented correspond with plan and results and figures were clearly presented.

Reviewer #3: • Line 214 – “In the three-year period (2017-19) following the West African Ebola outbreak, there was a decline…” – Please revise this wording because it currently implies a decline over the period of 2017-2019, rather than compared to the previous 6 years. Fig1A shows a slight increase from 2017 to 2019.

• Line 222 – “(p = .034, Table 1)” – The p-value here is inconsistent with the value in Table 1 (0.049). Please review and remove any inconsistencies.

• Line 259 – “However, in 2019 more males than females presented to KGH.” – It would be more informative to the reader if the value difference between female and male presentations was provided here.

• Line 261 – “(p = .029; Table 1)” – The p-value here is inconsistent with the value in Table 1 (0.005). Please review and remove any inconsistencies.

• Lines 275-276 – “The decline in suspected cases remained statistically significant across all age groups (Fig 2).” – Please consider revising this sentence to improve clarity of meaning. For example, it should be made explicit if this is comparing the three years pre-Ebola to the three years post-Ebola. Furthermore, Figure 2 does not present any data regarding the statistical significance of the change in number of suspected cases per age group, therefore I suggest the authors either remove this claim of statistical significance or substantiate it via other evidence presented in the paper.

• Lines 276-277 and lines 282-283 – “There were no major changes in the proportion of suspected Lassa fever cases in most age groups pre- vs post- epidemic” and “The differences pre-epidemic and post-epidemic in the age group proportions among suspected Lassa fever cases was significant” – These two claims are contradictory to each other. Please revise the text to remove this inconsistency and more clearly state the results in the table.

• Line 273 – Figure 2B – The legend for age groups shows the category of 4-19 years, but the text specifies the age range of 5-19 years. Please revise this as appropriate.

• Lines 277-278 – “The 20-24 year old age group was the largest proportion…” – I believe this should be the “20-34” year old age group. Furthermore, I would recommend rewording slightly to say that “The 20-34-year-old age group was the age group with the largest proportion…”

• Line 280 – “(35%, Fig 2B, Table 1)” – The proportion for 20-34 in Table 1 is recorded as 37%. Please review and correct as appropriate to remove any inconsistency.

• Lines 280-281 – “…there was a reduction in the number of children and teenagers…” – Please consider rewording this sentence to make it explicit that it is the reduction in the proportion of suspected cases being referred to and not simply the raw number.

• Line 286 – “The suspected case fatality rate…” – It may improve the readability of this sentence to rephrase this as “The case fatality rate of suspected cases…”. Additionally, subsequent uses of “suspected CFR” should be similarly reworded or simply be replaced with “CFR”.

• Lines 287-289 – “the West African Ebola epidemic” and “the Ebola outbreak” – Please consider rewording to be consistent in term use. Throughout the text, the latter of these appears to be more frequently used.

• Lines 292-294 – “Over the time-period studied, the numbers of deaths and discharges amongst cases admitted to the Lassa Ward consistently declined in parallel to the numbers of overall suspected cases.” – It is unclear what is meant by “consistently declined in parallel”, when the numbers presented in Figure 3A are based on the same numbers as Figure 1B. Is this stating that the three-year-average of both discharges and deaths has fallen between the pre-Ebola period and the post-Ebola period in the same way that the three-year average fell between these two periods for number of admitted cases? Please reword this sentence to improve clarity of meaning.

• Line 307 – Figure 3B – This figure appears to be incomplete. It only shows a single line with red markers for values, but it is described as the fatality rate “by age category”. Please revise such that this figure shows the data for all age categories.

• Lines 311-312 – “Of those completing the questionnaire, 89% were Muslim, 66% were female, and 69% had no education.” – Please consider revising this summary of results such that each category of results is provided in its own context, e.g. Of the religions specified by the respondents, 89% were Muslim, followed by…

• Line 313 – “The majority of women reported having two living children.” – Please include the percentage value for this majority. Furthermore, the term “living children” is ambiguous. Please consider rewording to be more precise.

• Lines 313-315 – “88% of women…” – Please spell out the percent value here as sentences should not start with a number value.

• Lines 317-318 – “When seeking health care, 89% of respondents reported that they go to a government hospital” – This value is reported as 90% in S5 Table. Please review and correct the inconsistency as appropriate.

• Lines 318-319 – “Only 4% reported they used a form of self-treatment or a traditional healer” – The values in S5 Table for self-treatment (0%) and traditional healer (1.0%) do not add up to 4%. Please review and correct the inconsistency as appropriate.

• Lines 319-320 – “68% of respondents confirmed receiving all their needed services at their health facility” – While shown in Figure 4B, this information is not presented in S5 Table. Please ensure that all survey answers are presented in the corresponding tables in the supplementary text.

• Lines 320-321 – “individuals reported they were likely to seek care 24 hours after symptoms arose…” – According to the survey questions listed in the supplementary text, this should be “within 24 hours”.

• Lines 321-322 – “As noted by 87% of respondents, cost was the most common barrier preventing subjects from seeking care at a health facility” – Please consider an alternative expression to “As noted by”, such as “According to”. Furthermore, please consider replacing “subjects” with “respondents” to increase consistency.

• Lines 322-324 – “72% of respondents said their attendance at a healthcare facility had increased since the epidemic, and 19% said it had decreased” - While shown in Figure 4E, this information is not presented in S5 Table. Please ensure that all survey answers are presented in the corresponding tables in the supplementary text.

• Lines 324-325 – “78% of respondents stated… …remained the same” - While shown in Figure 4F, this information is not presented in S5 Table. Please ensure that all survey answers are presented in the corresponding tables in the supplementary text.

• Lines 339-340 – “There were no significant differences in responses to health utilization or perceived safety of hospitals between men and women, or distance from KGH (S7 Table, S8 Table).” – S7 Table’s label suggests it describes satisfaction with health services rather than utilization. Please revise to correct this inconsistency. Furthermore, these two tables only present OR and 95% CI. Please consider including the p-value to these tables to better substantiate claims of statistical significance.

• Lines 340-341 – “With the exception of a group without a recorded age (group 5) respondents were likely to say they received all the services they needed at their health facility (S8 Table).” – This is the first use of a “group” in the text and serves no meaningful purpose. If this term is deemed necessary, please define it in the Methods section of the manuscript. Furthermore, S8 Table only lists four categories for age. Please review and revise as appropriate.

• Providing the p-values specific to these statements in the main text will also add to the reader’s understanding of the results.

• Lines 348-355 – “Symptoms triggering heath seeking behavior” – The interpretation of these results is over-simplifying the frequency of symptoms because it only demonstrates whether the occurrence of symptoms leads to HSB, but does not quantify the frequency of each symptom. For example, the low frequency recorded for bleeding may be more attributable to the survey participants simply not having experienced those symptoms rather than them not seeking health care for that specific symptom. Without quantitative data on frequency of symptoms, it is not possible to fully describe which symptoms are most and least likely to lead to HSB. Therefore, care should be taken to not overstate the meaning of the recorded responses. This lack of quantitative data should be discussed as one of the limitations of the study.

• Lines 365-377 – “Variation in health utilization and satisfaction among villages” – It is not clear why Village 1 was chosen as a reference village for this village level analysis. This should be clearly described in the Methods section.

• Lines 374 – “…respondents in villages 3 and 6…” – based on Figure 6A I believe this should be villages 4 and 6. Please review and revise as appropriate.

--------------------

Conclusions

-Are the conclusions supported by the data presented?

-Are the limitations of analysis clearly described?

-Do the authors discuss how these data can be helpful to advance our understanding of the topic under study?

-Is public health relevance addressed?

Reviewer #1: The discussion is well written, discusses the wider relevance of the data presented in the results, and brings in valid discussion points as to the relevance of the work carried out.

Reviewer #2: The conclusion of the study was supported by the data presented and analysis made.

Reviewer #3: • Line 397 – “There is no evidence that the incidence of Lassa fever is decreasing in West Africa” – Please provide a reference immediately following this statement.

• Line 399 – “…in Togo and Benin [12]” – Please check that this is the correct reference and replace if necessary.

• Line 413 – “one in five respondents still reporting not feeling safer in hospital care” – The group of respondents who specified “same” for their feeling of safety should not be included as possible cause for decline in HSB for Lassa fever. Please revise this statement to only include those who answered “less”. Please also considering revising the statement on lines 450-451 similarly.

• Lines 450-453 – “…around 20% of respondents… …non_lassa visits.” – The connection being drawn between a lack of increase in trust in healthcare facilities and a 20% decline in presentation for suspected Lassa fever at KGH is unclear. Please revise and elaborate on this discussion and further describe how the authors drew this connection from the analysis.

• Line 451 – “Given that individuals do not present more than once with Lassa fever” – Please provide a reference for this claim.

• Lines 465 – “One can imagine… …of Lassa fever.” – Please revise this statement to increase clarity of meaning, in particular the meaning of “override a decreased concern”.

--------------------

Editorial and Data Presentation Modifications?

Use this section for editorial suggestions as well as relatively minor modifications of existing data that would enhance clarity. If the only modifications needed are minor and/or editorial, you may wish to recommend “Minor Revision” or “Accept”.

Reviewer #1: None

Reviewer #2: (No Response)

Reviewer #3: General

• Throughout the paper, where percentage values are presented, I would recommend providing at least 2 decimal places of precision. Please ensure this is consistently applied to all data in both the main manuscript and the supplementary text.

• Abbreviated terms should be explicitly stated in full for their first use in each major section, i.e. Introduction, Methods, Results, Discussion. For example, HCW is defined as health care workers in the Introduction, but not in the Discussion section.

• A number of minor spelling and grammar mistakes exist through the paper, please proofread the entire manuscript to correct these.

• The Methods section does not provide sufficient details describing why the authors adopted the statistical approaches used in this study. Furthermore, the hypotheses being tested in this study are not made clear, which makes it difficult to accurately interpret the results.

• The Results section contains incomplete figures, incorrect references to values in tables, and unclear descriptions of some of the results recorded.

• The Discussion section presents a wide variety of topics related to HSB, however, there is very limited discussion specific to the findings of this study. Furthermore, there is no discussion of the results of the logistic regression analyses performed in the study. The discussion also comments that the individual village sample sizes were too small for inter-village comparison, however these comparisons are still presented in the results with no further elaboration in the Discussion section.

• S1 and S2 Tables – In both languages for the questionnaire, there is a note next to question 2 to skip to question 8 if the interviewee is male, which would skip over questions relating to Lassa fever history, education, and religion, but the numbers presented in S3 Table suggest that these questions were answered by both male and female participants. Could you please review the questionnaires included in the supplementary text to ensure they accurately represent the actual questionnaire performed based on the results presented.

• S4 Table lists the numbers of respondents per question, but some of these are inconsistent. For example, level of education is listed as being answered by 160 participants in the note at the bottom of the table, but the numbers within the table sum to 191. Furthermore, the main text on lines 311-312 references the percentage value for no education of all who completed the questionnaire rather than of the 191 who answered this question, without any mention of the different questions of the survey being answered by varying numbers of participants.

• S7 and S8 tables list the age categories 28-36, 37-45, 45+, and missing, whereas the main text uses the categories <5, 5-19, 20-34, and 35+, but there is no explanation for this difference in categorisation of ages. Please review this different categorization and provide an explanation in the main text when the age categories from these tables are first referenced.

Abstract

• Line 39 – It is stated that “dramatic underreporting and substantial declines in hospital presentations”, but the scale of this change is not clear. It would assist in understanding the magnitude of the change in hospital presentations if some metric were used to compare pre- and post-Ebola outbreak.

Author Summary

• Line 76 – “a questionnaire given to nearly 200 area residents” – The term “area residents” is ambiguous. Please consider alternate wording. Furthermore, the abstract states that 200 surveys were given but 194 (nearly 200) were completed. Please consider revising wording to more accurately describe the numbers presented.

Introduction

• Line 96 – “While Ebola was directly killing thousands” – The expression “directly killing thousands” could be better reworded as “directly responsible for the deaths of thousands”. Additionally, it may be helpful to provide more specific figures in this sentence (perhaps contained in the references), as the term “thousands” is used twice in the sentence, which does not provide a clear sense of relative scale.

• Line 96 – “…changes in health seeking behavior (HSB) due to…” – Given that HSB is a key topic of this paper, it would be beneficial to the reader for the authors to provide their own definition of HSB. Furthermore, the Introduction later states that a goal of the study was to quantify HSB, therefore it would be beneficial to provide examples of how HSB can be quantified along with this definition of HSB.

• Line 98 – “At the height of the epidemic, there was a 31- 37% drop in facility-based deliveries” – The references show that this sentence is referring to child delivery but manuscript text should be more explicit. Furthermore, it is not made clear how this directly relates to the previous statement regarding additional deaths due to changes in HSB. It may be beneficial to the reader to add some additional context such as what impact the changes in HSB have had on maternal health. Additionally, the geographical scope of this figure is unclear. Is the drop in deliveries that of Sierra Leone or a region therewithin?

• Lines 103-104 – “the attitudes, beliefs and perceptions of the healthcare system” – Please consider revising the word ordering of this text to improve readability.

• Lines 104-105 – “In the wake of the Ebola epidemic, there has been significant investment and attention in health systems strengthening for the affected countries of West Africa” – It would be beneficial to the reader if some specific examples of how the health system has been strengthened were provided, particularly relating to Sierra Leone.

• Lines 107-108 – “HSB of patients with suspected Lassa fever” – The abstract did not specify that the recipients of the survey were patients with suspected Lassa fever; it only states that residents from 8 villages were surveyed. Please consider rewording to increase consistency throughout the manuscript.

• Lines 113-114 – “While many individuals infected with LASV do not present to a health care provider or facility” – It is not clear if this is referring to the situation prior to or during/after the Ebola outbreak. The geographical scope of the statement is also unclear (i.e. Sierra Leone or Western Africa). Please reword to make this more explicit.

• Line 117 – “the Mastomys natalensis” – Please consider removing the “the” from this species reference.

• Line 121 – “hemorrhage” – I think this should be “hemorrhaging”.

• Line 124 – Please confirm that reference #9 is the correct reference for this statement. Furthermore, the style of reference numbering has changed from parentheses to square brackets here and in the following line. Please revise for consistency.

• Line 124 – The abbreviation “LF” is used here for the first time. It should be first used immediately following the first use of the full expression “Lassa fever”.

• Lines 127 – “quantify HSB for suspected Lassa fever” – Please revise this text to clarify the intended meaning. Furthermore, the abstract suggests that study’s aim was to assess the impact of the Ebola outbreak on HSB, suggesting that the goal here should in fact be to quantify the change in HSB due to the Ebola outbreak. Please review and revise as necessary.

• Lines 128-129 – “an impact on HSB due to the Ebola epidemic” – This may be easier to read when worded as “the impact of the Ebola epidemic on HSB”.

• Lines 129-130 – “Lassa endemic” – Please consider rewording to “Lassa fever endemic”.

• Line 130 – “identify barriers” – Please consider rewording and/or providing examples to make meaning of “barriers” clearer.

--------------------

Summary and General Comments

Use this section to provide overall comments, discuss strengths/weaknesses of the study, novelty, significance, general execution and scholarship. You may also include additional comments for the author, including concerns about dual publication, research ethics, or publication ethics. If requesting major revision, please articulate the new experiments that are needed.

Reviewer #1: There is a lot of useful information in this manuscript, and the data will be useful in planning for both standard year-to-year LASV epidemiology and diagnostics studies, as well as help shape future public health strategies in the region. The report is well written and clearly addresses a gap in the data available from this region, especially regarding the trust in HCW and the health care infrastructure following the 2013-2016 EBOV epidemic. The main recommendations are edits to the tables and figures. Please see specific comments below.

General Comments:

Statistical strength of the data is mentioned numerous times in the manuscript, with references to the relevant figures. However, there is no visual representation of statistics on the figures which would help the reader quickly understand the differences between data groups. If the authors could find a way to add representations of significance to the figures I think this would improve the manuscripts readability.

Specific Comments:

I think it would be useful for the reader to have a map of the area sampled, so the reader could have an understanding of where villages 1-7 are located both in relation to Kenema and in relation to Sierra Leone as a whole.

Table 1: I’m unclear as to what line the p values are referring to? There seems to be one value per characteristic ,although each characteristic has multiple criteria?

Lime 374: Should be villages 4 and 6?

Reviewer #2: (No Response)

Reviewer #3: • The concept of this paper is novel and presents a subject of high importance to Ebola affected countries such as Sierra Leone.

• There is only limited literature currently available on HSB in West Africa, and especially Kenema, Sierra Leone, therefore the concept of this paper is quite novel, which will hopefully assist in the development of targeted interventions that lead to improved HSB amongst residents, not only in Kenema, but across Sierra Leone.

• The paper makes it clear that presentations for Lassa Fever at KGH have declined post-Ebola outbreak compared to pre-Ebola outbreak, however, the connection between change in HSB and this decline in presentations is not made clear by the analysis presented, therefore the evidence and analysis provided do not sufficiently assess the impact of the Ebola outbreak on HSB with respect to presentations to KGH.

• The discussion does not fully evaluate how well the goals of the study have been achieved and provide detailed suggestions of how to better achieve the goals which were not fully addressed by the study.

• The paper does not provide sufficient discussion of how this study’s findings can be used to develop targeted public health strategies, particularly in Kenema.

Other comments from Reviewer #2.

Line 390: “series” is not clear and should be reworded.

Lines 490-494: These sentences should be revised for more clarity.

--------------------

PLOS authors have the option to publish the peer review history of their article (what does this mean?). If published, this will include your full peer review and any attached files.

If you choose “no”, your identity will remain anonymous but your review may still be made public.

Do you want your identity to be public for this peer review? For information about this choice, including consent withdrawal, please see our Privacy Policy.

Reviewer #1: No

Reviewer #2: No

Reviewer #3: No

Figure Files:

While revising your submission, please upload your figure files to the Preflight Analysis and Conversion Engine (PACE) digital diagnostic tool, https://pacev2.apexcovantage.com. PACE helps ensure that figures meet PLOS requirements. To use PACE, you must first register as a user. Then, login and navigate to the UPLOAD tab, where you will find detailed instructions on how to use the tool. If you encounter any issues or have any questions when using PACE, please email us at figures@plos.org.

Data Requirements:

Please note that, as a condition of publication, PLOS' data policy requires that you make available all data used to draw the conclusions outlined in your manuscript. Data must be deposited in an appropriate repository, included within the body of the manuscript, or uploaded as supporting information. This includes all numerical values that were used to generate graphs, histograms etc.. For an example see here: http://www.plosbiology.org/article/info%3Adoi%2F10.1371%2Fjournal.pbio.1001908#s5.

Reproducibility:

To enhance the reproducibility of your results, PLOS recommends that you deposit laboratory protocols in protocols.io, where a protocol can be assigned its own identifier (DOI) such that it can be cited independently in the future. For instructions see https://journals.plos.org/plosntds/s/submission-guidelines#loc-methods

PLoS Negl Trop Dis. doi: 10.1371/journal.pntd.0009576.r003

Decision Letter 1

Ayato Takada, Christopher M Barker

10 May 2021

Dear Dr. Shaffer,

Thank you very much for submitting your manuscript "Health seeking behavior after the 2013-16 Ebola epidemic: Lassa fever as a metric of persistent changes in Kenema District, Sierra Leone" for consideration at PLOS Neglected Tropical Diseases. Your manuscript was re-reviewed by members of the editorial board and by the same reviewers. The reviewers appreciated the attention to an important topic. Based on the reviews, we are likely to accept this manuscript for publication, providing that you modify the manuscript according to the review recommendations.

Please prepare and submit your revised manuscript within 30 days. If you anticipate any delay, please let us know the expected resubmission date by replying to this email.

When you are ready to resubmit, please upload the following:

[1] A letter containing a detailed list of your responses to all review comments, and a description of the changes you have made in the manuscript.

Please note while forming your response, if your article is accepted, you may have the opportunity to make the peer review history publicly available. The record will include editor decision letters (with reviews) and your responses to reviewer comments. If eligible, we will contact you to opt in or out

[2] Two versions of the revised manuscript: one with either highlights or tracked changes denoting where the text has been changed; the other a clean version (uploaded as the manuscript file).

Important additional instructions are given below your reviewer comments.

Thank you again for your submission to our journal. We hope that our editorial process has been constructive so far, and we welcome your feedback at any time. Please don't hesitate to contact us if you have any questions or comments.

Sincerely,

Christopher M. Barker

Associate Editor

PLOS Neglected Tropical Diseases

Ayato Takada

Deputy Editor

PLOS Neglected Tropical Diseases

***********************

Reviewer's Responses to Questions

Key Review Criteria Required for Acceptance?

As you describe the new analyses required for acceptance, please consider the following:

Methods

-Are the objectives of the study clearly articulated with a clear testable hypothesis stated?

-Is the study design appropriate to address the stated objectives?

-Is the population clearly described and appropriate for the hypothesis being tested?

-Is the sample size sufficient to ensure adequate power to address the hypothesis being tested?

-Were correct statistical analysis used to support conclusions?

-Are there concerns about ethical or regulatory requirements being met?

Reviewer #1: (No Response)

Reviewer #3: No comments for this section.

--------------------

Results

-Does the analysis presented match the analysis plan?

-Are the results clearly and completely presented?

-Are the figures (Tables, Images) of sufficient quality for clarity?

Reviewer #1: (No Response)

Reviewer #3: • Lines 337-338 – “Moreover, individuals reported they were likely to seek care within 24 hours of symptoms arising (60%; Fig 4C).” – I recommend rewording such that the percentage is stated within the sentence to be consistent with the surrounding text. Furthermore, I recommend replacing “individuals” with “respondents”, i.e 60% of respondents.

• Lines 339-341 – “72% of respondents…” and “78% of respondents…” – Please replace numerical figures with spelled out numbers when at the start of a sentence.

• Lines 350-351 – “Self-reported satisfaction for health services was significantly higher among males than females ( [aOR] =2.1, [95% CI] = [0.87, 5.10]) (S7 Table, S8 Table).” – I recommend that the authors remove the expression “significantly” because the p-value for this result in S7 table is not statistically significant. Furthermore, this statement does not discuss perceived safety and therefore no reference to S8 Table is required.

• Lines 351-352 – “Respondents were likely to say they received all the services they needed at their health facility (S8 Table).” – The results described by this sentence are not contained in S8 Table. Please revise the text and/or reference as necessary.

• Lines 352-354 – “There were no other statistically significant differences amongst age groups; level of education and religious affiliation did not predict answers to either question.” – S8 Table shows a p-value of less than 0.05 for the age group 37-45. Please revise the text accordingly to reflect the presence of this statistically significant variable.

• Lines 355-357 – “For this analysis, age categories, 18-27, 28-36, 37-45, and 45+, were selected to accommodate the age inclusion criteria for the HSB questionnaire.” – This information would be more appropriately included in the Methods section.

--------------------

Conclusions

-Are the conclusions supported by the data presented?

-Are the limitations of analysis clearly described?

-Do the authors discuss how these data can be helpful to advance our understanding of the topic under study?

-Is public health relevance addressed?

Reviewer #1: (No Response)

Reviewer #3: • Lines 409-410 – “Nigeria experienced their largest ever recorded LF outbreak” – Lassa fever is used in its abbreviated form here for the first time in the Discussion section with no prior definition. Furthermore, it is used in its full form several times prior to this sentence within the Discussion section. Please define after the first use and use the abbreviated version for subsequent uses.

• Line 426 – “one in five respondents” – I suggest adding “almost” to this statement because the actual figure is 22% according to S5 Table.

• Lines 449-450 – “Instead, HCW’s empirically treated statistically significantly more individuals for malaria post- vs. pre- epidemic.” – The meaning of this is not clear. If this is presenting a comparison to the previous sentence’s statement then please more explicitly describe this connection. Furthermore, it would be more meaningful to provide the numeric value of this statistical significance.

• Lines 468-469 – “…around 20% of respondents did not report increased trust in healthcare facilities. This group of 20%...” – I think it would be more accurate to directly refer to the survey answer of decreased attendance at Kenema hospital after the 2014 Ebola epidemic rather than the interpreted meaning of “increased trust in healthcare facilities”. While this connection may be possible, the survey did not directly ask respondents about their trust in healthcare facilities. Furthermore, I would recommend replacing “This group of 20%” with “This group of respondents” because the group is not exactly 20%.

• Lines 479-481 – “While others have reported differences in health seeking behavior among genders and age groups, our limited sample size was unable to identify an association.” – Please be more explicit as to what is meant by “others”. If this is referring to other studies then please provide supporting references.

• Line 481 – “Economic strength could be a factor, but was not assessed.” – It is unclear what is meant by “economic strength”. Please revise this sentence to better explain this factor.

• Lines 492-496 – “A limitation of these results is that two data sets for different groups of subjects were used: one for asymptomatic individuals, and the other for symptomatic suspected Lassa fever cases. HSB cannot truly be measured until an individual experience’s symptoms. As such, we were unable to draw a direct linkage between the two datasets and the authors relied primarily on the surveillance data to draw conclusions.” – The intended meaning of this paragraph is difficult to understand. I think that the fact that the study used data from two different sources is not a limitation in itself. While a direct linkage between the decline in LF presentations at KGH and changes in HSB could not be sufficiently assessed, this study was able to explore and identify some factors that led to initiation of HSB and factors that acted as barriers to HSB. Please revise this paragraph.

• Line 550 – “Indirect effects on health and mortality during an epidemic are well known.” – Please add supporting references for these well known effects.

--------------------

Editorial and Data Presentation Modifications?

Use this section for editorial suggestions as well as relatively minor modifications of existing data that would enhance clarity. If the only modifications needed are minor and/or editorial, you may wish to recommend “Minor Revision” or “Accept”.

Reviewer #1: (No Response)

Reviewer #3: Introduction:

• Lines 112-114 – “Commonly used proxies for health seeking behavior have been healthcare consumption patterns, provider visits, and self-reported care seeking.” – Please provide a reference to support this statement.

• Lines 123-125 – “This study sought to comprehend that knowledge gap by 1) assessing HSB of patients with suspected Lassa fever and 2) assessing general HSB of asymptomatic individuals through use of a questionnaire, in the Kenema district of Sierra Leone, a region that was severely impacted by Ebola.” – From my understanding after reading the entire manuscript, the HSB questionnaire was administered to 200 Sierra Leoneans across 8 villages in the Kenema district; however, the manuscript does not describe any specific selection of asymptomatic individuals for the survey. There may in fact have been asymptomatic individuals amongst those who participated the HSB survey; however, I would suggest removing the term “asymptomatic” from this sentence to avoid confusion.

--------------------

Summary and General Comments

Use this section to provide overall comments, discuss strengths/weaknesses of the study, novelty, significance, general execution and scholarship. You may also include additional comments for the author, including concerns about dual publication, research ethics, or publication ethics. If requesting major revision, please articulate the new experiments that are needed.

Reviewer #1: All questions and comments addressed. Manuscript is now much stronger.

Reviewer #3: Thank you for responding to all of the comments raised in my initial review.

Compared to the original draft, the authors have made significant improvements to the quality and presentation of their manuscript. The concept of this paper is novel and interesting. However, there are still a number of finer points requiring further elaboration and clarification.

--------------------

PLOS authors have the option to publish the peer review history of their article (what does this mean?). If published, this will include your full peer review and any attached files.

If you choose “no”, your identity will remain anonymous but your review may still be made public.

Do you want your identity to be public for this peer review? For information about this choice, including consent withdrawal, please see our Privacy Policy.

Reviewer #1: No

Reviewer #3: No

Figure Files:

While revising your submission, please upload your figure files to the Preflight Analysis and Conversion Engine (PACE) digital diagnostic tool, https://pacev2.apexcovantage.com. PACE helps ensure that figures meet PLOS requirements. To use PACE, you must first register as a user. Then, login and navigate to the UPLOAD tab, where you will find detailed instructions on how to use the tool. If you encounter any issues or have any questions when using PACE, please email us at figures@plos.org.

Data Requirements:

Please note that, as a condition of publication, PLOS' data policy requires that you make available all data used to draw the conclusions outlined in your manuscript. Data must be deposited in an appropriate repository, included within the body of the manuscript, or uploaded as supporting information. This includes all numerical values that were used to generate graphs, histograms etc.. For an example see here: http://www.plosbiology.org/article/info%3Adoi%2F10.1371%2Fjournal.pbio.1001908#s5.

Reproducibility:

To enhance the reproducibility of your results, we recommend that you deposit your laboratory protocols in protocols.io, where a protocol can be assigned its own identifier (DOI) such that it can be cited independently in the future. Additionally, PLOS ONE offers an option to publish peer-reviewed clinical study protocols. Read more information on sharing protocols at https://plos.org/protocols?utm_medium=editorial-email&utm_source=authorletters&utm_campaign=protocols

References

Please review your reference list to ensure that it is complete and correct. If you have cited papers that have been retracted, please include the rationale for doing so in the manuscript text, or remove these references and replace them with relevant current references. Any changes to the reference list should be mentioned in the rebuttal letter that accompanies your revised manuscript. If you need to cite a retracted article, indicate the article's retracted status in the References list and also include a citation and full reference for the retraction notice.

PLoS Negl Trop Dis. doi: 10.1371/journal.pntd.0009576.r005

Decision Letter 2

Ayato Takada

19 Jun 2021

Dear Dr. Shaffer,

We are pleased to inform you that your manuscript 'Health seeking behavior after the 2013-16 Ebola epidemic: Lassa fever as a metric of persistent changes in Kenema District, Sierra Leone' has been provisionally accepted for publication in PLOS Neglected Tropical Diseases.

Before your manuscript can be formally accepted you will need to complete some formatting changes, which you will receive in a follow up email. A member of our team will be in touch with a set of requests.

Please note that your manuscript will not be scheduled for publication until you have made the required changes, so a swift response is appreciated.

IMPORTANT: The editorial review process is now complete. PLOS will only permit corrections to spelling, formatting or significant scientific errors from this point onwards. Requests for major changes, or any which affect the scientific understanding of your work, will cause delays to the publication date of your manuscript.

Should you, your institution's press office or the journal office choose to press release your paper, you will automatically be opted out of early publication. We ask that you notify us now if you or your institution is planning to press release the article. All press must be co-ordinated with PLOS.

Thank you again for supporting Open Access publishing; we are looking forward to publishing your work in PLOS Neglected Tropical Diseases.

Best regards,

Ayato Takada, Ph.D.

Deputy Editor

PLOS Neglected Tropical Diseases

Ayato Takada

Deputy Editor

PLOS Neglected Tropical Diseases

***********************************************************

PLoS Negl Trop Dis. doi: 10.1371/journal.pntd.0009576.r006

Acceptance letter

Ayato Takada

7 Jul 2021

Dear Dr. Shaffer,

We are delighted to inform you that your manuscript, "Health seeking behavior after the 2013-16 Ebola epidemic: Lassa fever as a metric of persistent changes in Kenema District, Sierra Leone," has been formally accepted for publication in PLOS Neglected Tropical Diseases.

We have now passed your article onto the PLOS Production Department who will complete the rest of the publication process. All authors will receive a confirmation email upon publication.

The corresponding author will soon be receiving a typeset proof for review, to ensure errors have not been introduced during production. Please review the PDF proof of your manuscript carefully, as this is the last chance to correct any scientific or type-setting errors. Please note that major changes, or those which affect the scientific understanding of the work, will likely cause delays to the publication date of your manuscript. Note: Proofs for Front Matter articles (Editorial, Viewpoint, Symposium, Review, etc...) are generated on a different schedule and may not be made available as quickly.

Soon after your final files are uploaded, the early version of your manuscript will be published online unless you opted out of this process. The date of the early version will be your article's publication date. The final article will be published to the same URL, and all versions of the paper will be accessible to readers.

Thank you again for supporting open-access publishing; we are looking forward to publishing your work in PLOS Neglected Tropical Diseases.

Best regards,

Shaden Kamhawi

co-Editor-in-Chief

PLOS Neglected Tropical Diseases

Paul Brindley

co-Editor-in-Chief

PLOS Neglected Tropical Diseases

Associated Data

    This section collects any data citations, data availability statements, or supplementary materials included in this article.

    Supplementary Materials

    S1 Table. Questionnaire in English.

    The original, English, version of the questionnaire used in this study to assess reported health seeking behavior in eight villages in Kenema, Sierra Leone.

    (DOCX)

    S2 Table. Questionnaire in Krio.

    The translated, Krio, version of the questionnaire used in this study to assess reported health seeking behavior in eight villages in Kenema, Sierra Leone.

    (DOCX)

    S3 Table. Total suspected cases of Lassa fever, by demographic categories, presenting to Kenema Government Hospital from 2012–2019.

    Data collected from the Viral Hemorrhagic Fever Consortium database.

    (DOCX)

    S4 Table. Characteristics of Questionnaire Respondents.

    Questionnaire respondent characteristics, including gender, religion and educational status.

    (DOCX)

    S5 Table. Health Seeking Behavior Questionnaire.

    Questionnaire responses for health seeking behavior pertinent questions.

    (DOCX)

    S6 Table. Questionnaire demographic responses by village of residence.

    Demographic responses to the questionnaire broken down by village of residence. Eight villages in Kenema District are included.

    (DOCX)

    S7 Table. Logistic regression assessing satisfaction with health services in 2018 in Kenema district.

    Results from a logistic regression analysis assessing satisfaction with health services in Kenema District.

    (DOCX)

    S8 Table. Logistic regression results for perceived hospital safety in 2018 in Kenema district.

    Results from a logistic regression analysis assessing perceived hospital safety in 2018 in Kenema District.

    (DOCX)

    Attachment

    Submitted filename: PTND_D_20_01152_ResponseToReviewers_Koch.docx

    Attachment

    Submitted filename: PTND-D-20-01152_R3_ResponseToReviewers.docx

    Data Availability Statement

    All relevant data are within the manuscript and its Supporting Information files.


    Articles from PLoS Neglected Tropical Diseases are provided here courtesy of PLOS

    RESOURCES