Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 2021 Jul 28;14(12):4894–4900. doi: 10.1007/s12274-021-3670-y

Field-effect at electrical contacts to two-dimensional materials

Yao Guo 1,, Yan Sun 1, Alvin Tang 2, Ching-Hua Wang 2, Yanqing Zhao 1, Mengmeng Bai 1, Shuting Xu 1, Zheqi Xu 1, Tao Tang 3, Sheng Wang 4, Chenguang Qiu 4, Kang Xu 5, Xubiao Peng 1, Junfeng Han 1, Eric Pop 2, Yang Chai 5,
PMCID: PMC8316888  PMID: 34336143

Abstract

The inferior electrical contact to two-dimensional (2D) materials is a critical challenge for their application in post-silicon very large-scale integrated circuits. Electrical contacts were generally related to their resistive effect, quantified as contact resistance. With a systematic investigation, this work demonstrates a capacitive metal-insulator-semiconductor (MIS) field-effect at the electrical contacts to 2D materials: The field-effect depletes or accumulates charge carriers, redistributes the voltage potential, and gives rise to abnormal current saturation and nonlinearity. On one hand, the current saturation hinders the devices’ driving ability, which can be eliminated with carefully engineered contact configurations. On the other hand, by introducing the nonlinearity to monolithic analog artificial neural network circuits, the circuits’ perception ability can be significantly enhanced, as evidenced using a coronavirus disease 2019 (COVID-19) critical illness prediction model. This work provides a comprehension of the field-effect at the electrical contacts to 2D materials, which is fundamental to the design, simulation, and fabrication of electronics based on 2D materials. graphic file with name 12274_2021_3670_Fig1_HTML.jpg

Electronic Supplementary Material

Supplementary material (results of the simulation and SEM) is available in the online version of this article at 10.1007/s12274-021-3670-y.

Keywords: field-effect, electrical contact, two-dimensional materials, nonlinearity, in-memory-computing

Electronic Supplementary Material

12274_2021_3670_MOESM1_ESM.pdf (4.4MB, pdf)

Field-effect at electrical contacts to two-dimensional materials

Acknowledgements

We thank Prof. H.-S. Philip Wong from Stanford University and Analysis & Testing Center, Beijing Institute of Technology for the support of this work. We thank Prof. Zhiyong Zhang and Prof. Qing Chen from Peking University for useful discussion. Yao Guo thanks Dr. I-Ting Wang for the valuable suggestions. This work was supported the National Natural Science Foundation of China (No.11804024).

Contributor Information

Yao Guo, Email: yaoguo@bit.edu.cn.

Yang Chai, Email: ychai@polyu.edu.hk.

References

  • [1].Desai S B, Madhvapathy S R, Sachid A B, Llinas J P, Wang Q X, Ahn G H, Pitner G, Kim M J, Bokor J, Hu C M, et al. MoS2 transistors with 1-nanometer gate lengths. Science. 2016;354:99–102. doi: 10.1126/science.aah4698. [DOI] [PubMed] [Google Scholar]
  • [2].Huyghebaert, C.; Schram, T.; Smets, Q.; Agarwal, T. K.; Verreck, D.; Brems, S.; Phommahaxay, A.; Chiappe, D.; El Kazzi, S.; De La Rosa, C. L. et al. 2D materials: Roadmap to CMOS integration. In Proceedings of the 2018 IEEE International Electron Devices Meeting, San Francisco, 2018, pp 22.1.1–22.1.4.
  • [3].Akinwande D, Huyghebaert C, Wang C H, Serna M I, Goossens S, Li L J, Wong H S P, Koppens F H L. Graphene and two-dimensional materials for silicon technology. Nature. 2019;573:507–518. doi: 10.1038/s41586-019-1573-9. [DOI] [PubMed] [Google Scholar]
  • [4].Chen M L, Sun X D, Liu H, Wang H W, Zhu Q B, Wang S S, Du H F, Dong B J, Zhang J, Sun Y, et al. A FinFET with one atomic layer channel. Nat. Commun. 2020;11:1205. doi: 10.1038/s41467-020-15096-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [5].Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A. Single-layer MoS2 transistors. Nat. Nanotechnol. 2011;6:147–150. doi: 10.1038/nnano.2010.279. [DOI] [PubMed] [Google Scholar]
  • [6].Li L K, Yu Y J, Ye G J, Ge Q Q, Ou X D, Wu H, Feng D L, Chen X H, Zhang Y B. Black phosphorus field-effect transistors. Nat. Nanotechnol. 2014;9:372–377. doi: 10.1038/nnano.2014.35. [DOI] [PubMed] [Google Scholar]
  • [7].Bandurin D A, Tyurnina A V, Yu G L, Mishchenko A, Zólyomi V, Morozov S V, Kumar R K, Gorbachev R V, Kudrynskyi Z R, Pezzini S, et al. High electron mobility, quantum hall effect and anomalous optical response in atomically thin InSe. Nat. Nanotechnol. 2017;12:223–227. doi: 10.1038/nnano.2016.242. [DOI] [PubMed] [Google Scholar]
  • [8].Liu T, Liu S, Tu K H, Schmidt H, Chu L Q, Xiang D, Martin J, Eda G, Ross C A, Garaj S. Crested two-dimensional transistors. Nat. Nanotechnol. 2019;14:223–226. doi: 10.1038/s41565-019-0361-x. [DOI] [PubMed] [Google Scholar]
  • [9].Liu C S, Chen H W, Wang S Y, Liu Q, Jiang Y G, Zhang D W, Liu M, Zhou P. Two-dimensional materials for next-generation computing technologies. Nat. Nanotechnol. 2020;15:545–557. doi: 10.1038/s41565-020-0724-3. [DOI] [PubMed] [Google Scholar]
  • [10].Shi Y Y, Liang X H, Yuan B, Chen V, Li H T, Hui F, Yu Z C W, Yuan F, Pop E, Wong H S P, et al. Electronic synapses made of layered two-dimensional materials. Nat. Electron. 2018;1:458–465. doi: 10.1038/s41928-018-0118-9. [DOI] [Google Scholar]
  • [11].Pan C, Wang C Y, Liang S J, Wang Y, Cao T J, Wang P F, Wang C, Wang S, Cheng B, Gao A Y, et al. Reconfigurable logic and neuromorphic circuits based on electrically tunable two-dimensional homojunctions. Nat. Electron. 2020;3:383–390. doi: 10.1038/s41928-020-0433-9. [DOI] [Google Scholar]
  • [12].Wang M, Cai S H, Pan C, Wang C Y, Lian X J, Zhuo Y, Xu K, Cao T J, Pan X Q, Wang B G, et al. Robust memristors based on layered two-dimensional materials. Nat. Electron. 2018;1:130–136. doi: 10.1038/s41928-018-0021-4. [DOI] [Google Scholar]
  • [13].Hus S M, Ge R J, Chen P A, Liang L B, Donnelly G E, Ko W, Huang F M, Chiang M H, Li A P, Akinwande D. Observation of single-defect memristor in an MoS2 atomic sheet. Nat. Nanotechnol. 2021;16:58–62. doi: 10.1038/s41565-020-00789-w. [DOI] [PubMed] [Google Scholar]
  • [14].Chen S C, Mahmoodi M R, Shi Y Y, Mahata C, Yuan B, Liang X H, Wen C, Hui F, Akinwande D, Strukov D B, et al. Wafer-scale integration of two-dimensional materials in high-density memristive crossbar arrays for artificial neural networks. Nat. Electron. 2020;3:638–645. doi: 10.1038/s41928-020-00473-w. [DOI] [Google Scholar]
  • [15].Kong L G, Chen Y, Liu Y. Recent progresses of NMOS and CMOS logic functions based on two-dimensional semiconductors. Nano Res. 2021;14:1768–1783. doi: 10.1007/s12274-020-2958-7. [DOI] [Google Scholar]
  • [16].Zeng S F, Tang Z W, Liu C S, Zhou P. Electronics based on two-dimensional materials: Status and outlook. Nano Res. 2021;14:1752–1767. doi: 10.1007/s12274-020-2945-z. [DOI] [Google Scholar]
  • [17].Pudasaini P R, Oyedele A, Zhang C, Stanford M G, Cross N, Wong A T, Hoffman A N, Xiao K, Duscher G, Mandrus D G, et al. High-performance multilayer WSe2 field-effect transistors with carrier type control. Nano Res. 2018;11:722–730. doi: 10.1007/s12274-017-1681-5. [DOI] [Google Scholar]
  • [18].Allain A, Kang J H, Banerjee K, Kis A. Electrical contacts to two-dimensional semiconductors. Nat. Mater. 2015;14:1195–1205. doi: 10.1038/nmat4452. [DOI] [PubMed] [Google Scholar]
  • [19].Liu H, Si M W, Deng Y X, Neal A T, Du Y C, Najmaei S, Ajayan P M, Lou J, Ye P D. Switching mechanism in single-layer molybdenum disulfide transistors: an insight into current flow across Schottky barriers. ACS Nano. 2014;8:1031–1038. doi: 10.1021/nn405916t. [DOI] [PubMed] [Google Scholar]
  • [20].Guo Y, Han Y X, Li J P, Xiang A, Wei X L, Gao S, Chen Q. Study on the resistance distribution at the contact between molybdenum disulfide and metals. ACS Nano. 2014;8:7771–7779. doi: 10.1021/nn503152r. [DOI] [PubMed] [Google Scholar]
  • [21].Li J, Yang X D, Liu Y, Huang B L, Wu R X, Zhang Z W, Zhao B, Ma H F, Dang W Q, Wei Z, et al. General synthesis of two-dimensional van der Waals heterostructure arrays. Nature. 2020;579:368–374. doi: 10.1038/s41586-020-2098-y. [DOI] [PubMed] [Google Scholar]
  • [22].Xia F N, Perebeinos V, Lin Y M, Wu Y Q, Avouris P. The origins and limits of metal-graphene junction resistance. Nat. Nanotechnol. 2011;6:179–184. doi: 10.1038/nnano.2011.6. [DOI] [PubMed] [Google Scholar]
  • [23].Das S, Chen H Y, Penumatcha A V, Appenzeller J. High performance multilayer MoS2 transistors with Scandium contacts. Nano Lett. 2013;13:100–105. doi: 10.1021/nl303583v. [DOI] [PubMed] [Google Scholar]
  • [24].Zheng X R, Calò A, Albisetti E, Liu X Y, Alharbi A S M, Arefe G, Liu X C, Spieser M, Yoo W J, Taniguchi T, et al. Patterning metal contacts on monolayer MoS2 with vanishing Schottky barriers using thermal nanolithography. Nat. Electron. 2019;2:17–25. doi: 10.1038/s41928-018-0191-0. [DOI] [Google Scholar]
  • [25].English C D, Shine G, Dorgan V E, Saraswat K C, Pop E. Improved contacts to MoS2 transistors by ultra-high vacuum metal deposition. Nano Lett. 2016;16:3824–3830. doi: 10.1021/acs.nanolett.6b01309. [DOI] [PubMed] [Google Scholar]
  • [26].Rai A, Valsaraj A, Movva H C P, Roy A, Ghosh R, Sonde S, Kang S, Chang J, Trivedi T, Dey R, et al. Air stable doping and intrinsic mobility enhancement in monolayer molybdenum disulfide by amorphous Titanium suboxide encapsulation. Nano Lett. 2015;15:4329–4336. doi: 10.1021/acs.nanolett.5b00314. [DOI] [PubMed] [Google Scholar]
  • [27].McClellan, C. J.; Yalon, E.; Smithe, K. K. H.; Suryavanshi, S. V.; Pop, E. Effective n-type doping of monolayer MoS2 by AlOx. In Proceedings of the 2017 75th Annual Device Research Conference, South Bend, 2017, pp 1–2.
  • [28].Yang L M, Majumdar K, Liu H, Du Y C, Wu H, Hatzistergos M, Hung P Y, Tieckelmann R, Tsai W, Hobbs C, et al. Chloride molecular doping technique on 2D materials: WS2 and MoS2. Nano Lett. 2014;14:6275–6280. doi: 10.1021/nl502603d. [DOI] [PubMed] [Google Scholar]
  • [29].Dong, L.; Wang, X. W.; Zhang, J. Y.; Li, X. F.; Lou, X. B.; Conrad, N.; Wu, H.; Gordon, R. G.; Ye, P. D. III-V CMOS devices and circuits with high-quality atomic-layer-epitaxial La2O3/GaAs interface. In Proceedings of 2014 Symposium on VLSI Technology (VLSI-Technology): Digest of Technical Papers, Honolulu, 2014, pp 1–2.
  • [30].Kappera R, Voiry D, Yalcin S E, Branch B, Gupta G, Mohite A D, Chhowalla M. Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. Nat. Mater. 2014;13:1128–1134. doi: 10.1038/nmat4080. [DOI] [PubMed] [Google Scholar]
  • [31].Song S, Sim Y, Kim S Y, Kim J H, Oh I, Na W, Lee D H, Wang J, Yan S L, Liu Y N, et al. Wafer-scale production of patterned transition metal ditelluride layers for two-dimensional metal-semiconductor contacts at the Schottky-Mott limit. Nat. Electron. 2020;3:207–215. doi: 10.1038/s41928-020-0396-x. [DOI] [Google Scholar]
  • [32].Wang Y, Kim J C, Wu R J, Martinez J, Song X J, Yang J, Zhao F, Mkhoyan A, Jeong H Y, Chhowalla M. Van der Waals contacts between three-dimensional metals and two-dimensional semiconductors. Nature. 2019;568:70–74. doi: 10.1038/s41586-019-1052-3. [DOI] [PubMed] [Google Scholar]
  • [33].Liu Y, Guo J, Zhu E B, Liao L, Lee S J, Ding M N, Shakir I, Gambin V, Huang Y, Duan X F. Approaching the Schottky-Mott limit in van der Waals metal-semiconductor junctions. Nature. 2018;557:696–700. doi: 10.1038/s41586-018-0129-8. [DOI] [PubMed] [Google Scholar]
  • [34].Li X F, Yang L M, Si M W, Li S C, Huang M Q, Ye P D, Wu Y Q. Performance potential and limit of MoS2 transistors. Adv. Mater. 2015;27:1547–1552. doi: 10.1002/adma.201405068. [DOI] [PubMed] [Google Scholar]
  • [35].Fiori G, Szafranek B N, Iannaccone G, Neumaier D. Velocity saturation in few-layer MoS2 transistor. Appl. Phys. Lett. 2013;103:233509. doi: 10.1063/1.4840175. [DOI] [Google Scholar]
  • [36].Liu W, Kang J H, Sarkar D, Khatami Y, Jena D, Banerjee K. Role of metal contacts in designing high-performance monolayer n-type WSe2 field effect transistors. Nano Lett. 2013;13:1983–1990. doi: 10.1021/nl304777e. [DOI] [PubMed] [Google Scholar]
  • [37].Smithe K K H, English C D, Suryavanshi S V, Pop E. High-field transport and velocity saturation in synthetic monolayer MoS2. Nano Lett. 2018;18:4516–4522. doi: 10.1021/acs.nanolett.8b01692. [DOI] [PubMed] [Google Scholar]
  • [38].Du H, Kim T, Shin S, Kim D, Kim H, Sung J H, Lee M J, Seo D H, Lee S W, Jo M H, et al. Schottky barrier contrasts in single and bi-layer graphene contacts for MoS2 field-effect transistors. Appl. Phys. Lett. 2015;107:233106. doi: 10.1063/1.4937266. [DOI] [Google Scholar]
  • [39].Zhang Z, Yao K, Liu Y, Jin C, Liang X, Chen Q, Peng L M. Quantitative analysis of current-voltage characteristics of semiconducting nanowires: Decoupling of contact effects. Adv. Funct. Mater. 2007;17:2478–2489. doi: 10.1002/adfm.200600475. [DOI] [Google Scholar]
  • [40].Gupta S, Rortais F, Ohshima R, Ando Y, Endo T, Miyata Y, Shiraishi M. Monolayer MoS2 field effect transistor with low schottky barrier height with ferromagnetic metal contacts. Sci. Rep. 2019;9:17032. doi: 10.1038/s41598-019-53367-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [41].Cheng, Q.; Ahmad, W.; Liu, G. H.; Wang, K. Y. Structural evolution of amorphous thin films of titanium dioxide. In Proceedings of the 2011 11th IEEE International Conference on Nanotechnology, Portland, 2011, pp 1598–1601.
  • [42].Du Y C, Yang L M, Zhang J Y, Liu H, Majumdar K, Kirsch P D, Ye P D. MoS2 field-effect transistors with graphene/metal heterocontacts. IEEE Electron Device Lett. 2014;35:599–601. doi: 10.1109/LED.2014.2313340. [DOI] [Google Scholar]
  • [43].Sebastian A, Gallo M L, Khaddam-Aljameh R, Eleftheriou E. Memory devices and applications for in-memory computing. Nat. Nanotechnol. 2020;15:529–544. doi: 10.1038/s41565-020-0655-z. [DOI] [PubMed] [Google Scholar]
  • [44].Ielmini D, Pedretti G. Device and circuit architectures for in-memory computing. Adv. Intell. Syst. 2020;2:2000040. doi: 10.1002/aisy.202000040. [DOI] [Google Scholar]
  • [45].Ielmini D, Wong H S P. In-memory computing with resistive switching devices. Nat. Electron. 2018;1:333–343. doi: 10.1038/s41928-018-0092-2. [DOI] [Google Scholar]
  • [46].Lee S H, Zhu X J, Lu W D. Nanoscale resistive switching devices for memory and computing applications. Nano Res. 2020;13:1228–1243. doi: 10.1007/s12274-020-2616-0. [DOI] [Google Scholar]
  • [47].Hornik K. Approximation capabilities of multilayer feedforward networks. Neural Netw. 1991;4:251–257. doi: 10.1016/0893-6080(91)90009-T. [DOI] [Google Scholar]
  • [48].Leshno M, Lin V Y, Pinkus A, Schocken S. Multilayer feedforward networks with a nonpolynomial activation function can approximate any function. Neural Netw. 1993;6:861–867. doi: 10.1016/S0893-6080(05)80131-5. [DOI] [Google Scholar]
  • [49].Cybenko G. Approximation by superpositions of a sigmoidal function. Math. Control Signals Syst. 1989;2:303–314. doi: 10.1007/BF02551274. [DOI] [Google Scholar]
  • [50].Pei J, Deng L, Song S, Zhao M G, Zhang Y H, Wu S, Wang G R, Zou Z, Wu Z Z, He W, et al. Towards artificial general intelligence with hybrid Tianjic chip architecture. Nature. 2019;572:106–111. doi: 10.1038/s41586-019-1424-8. [DOI] [PubMed] [Google Scholar]
  • [51].Yan, B. N.; Yang, Q.; Chen, W. H.; Chang, K. T.; Su, J. W.; Hsu, C. H.; Li, S. H.; Lee, H. Y.; Sheu, S. S.; Ho, M. S. et al. RRAM-based spiking nonvolatile computing-in-memory processing engine with precision-configurable in situ nonlinear activation. In Proceedings of the 2019 Symposium on VLSI Technology, Kyoto, Japan, 2019, pp T86–T87.
  • [52].Liang W H, Yao J H, Chen A L, Lv Q Q, Zanin M, Liu J, Wong S, Li Y M, Lu J T, Liang H R, et al. Early triage of critically ill COVID-19 patients using deep learning. Nat. Commun. 2020;11:3543. doi: 10.1038/s41467-020-17280-8. [DOI] [PMC free article] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

12274_2021_3670_MOESM1_ESM.pdf (4.4MB, pdf)

Field-effect at electrical contacts to two-dimensional materials


Articles from Nano Research are provided here courtesy of Nature Publishing Group

RESOURCES