Skip to main content
Acta Veterinaria Scandinavica logoLink to Acta Veterinaria Scandinavica
. 1980 Sep 1;21(3):402–414. doi: 10.1186/BF03546873

Histochemical Distribution of Enzymes in the Small Intestine of Young Milk-Fed Calves

Histokjemisk fordeling av enzymer i tynntarmen hos unge melkefôrede kalver

Thor Landsverk 1,
PMCID: PMC8317738  PMID: 6778094

Abstract

The histochemical distribution of selected enzymes were examined in the small intestine of 5 about 3-week-old normal calves fed on whole cow’s milk. Alkaline phosphatase and β-D-galactosidase (= lactase) in the epithelial brush border, and non-specific esterase in the cytoplasm showed a strong reaction in the villi of the anterior small intestine and a marked decrease in the posterior regions. Aminopeptidase in the brush border of the villi showed a reverse distribution, with the strongest reaction in the posterior small intestine. Adenosine-triphosphate-splitting enzyme in the epithelial brush border, acid phosphatase and succinate dehydrogenase in the cytoplasm of the epithelial cells gave a relatively uniform reaction in the villi throughout the small intestine. A fluoride-resistant acid phosphatase was demonstrated in the brush border of the villi in the anterior small intestine. The distribution of enzymes demonstrated in this study was generally compatible with the known absorptive functions of the various parts of the small intestine.

Keywords: enzyme histochemistry, small intestine, epithelial cells, milk diet, calves

Full Text

The Full Text of this article is available as a PDF (2.7 MB).

Footnotes

This study was supported by grants from the Agricultural Research Council of Norway.

References

  1. Abel J H. Electron microscopic demonstration of adenosine triphosphate phosphohydrolase activity in herring gull salt glands. J. Histochem. Gytochem. 1969;17:570–584. doi: 10.1177/17.9.570. [DOI] [PubMed] [Google Scholar]
  2. Abel J H, Phillips R W, Lewis L D. Intestinal mucosae enzymatic and histochemical changes during infectious diarrhea in calves. Amer. J. dig. Dis. 1972;17:423–429. doi: 10.1007/BF02231294. [DOI] [PubMed] [Google Scholar]
  3. Andrews E J. Histochemical distribution of selected enzymes in small intestine of maturing hamsters (Mesocricetus auratus) Amer. J. vet. Res. 1973;34:827–831. [PubMed] [Google Scholar]
  4. Barka T. Electron histochemical localization of acid phosphatase activity in the small intestine of mouse. J. Histochem. Gytochem. 1964;12:229–238. doi: 10.1177/12.4.229. [DOI] [PubMed] [Google Scholar]
  5. Benz G W, Ernst J V. Alkaline phosphatase activities in intestinal mucosa from calves infected with Gooperia punctata and Eimeria bovis. Amer. J. vet. Res. 1976;37:895–900. [PubMed] [Google Scholar]
  6. Berg G G, Chapman B. The sodium and potassium activated ATPase of intestinal epithelium. I. Location of enzymatic activity in the cell. J. cell. comp. Physiol. 1965;65:361–372. doi: 10.1002/jcp.1030650309. [DOI] [PubMed] [Google Scholar]
  7. Burt, R. C., B. R. Meredith & R. C. Grauer: Histochemical study of a fluoride resistant acid phosphatase reaction in the mouse duodenum. J. Histochem. Gytochem. 1957, 5, 135–139. [DOI] [PubMed]
  8. Crane, R. K.: A concept of the digestive-absorptive surface of the small intestine. In G. F. Code: Handbook of Physiology, Alimentary Canal. Amer. Physiol. Soc, Washington DC. Sect. 6, Vol. V, 1968, 2535–2542.
  9. Eichholz A. Fractions of the brush border. Fed. Proc. 1969;28:30–34. [PubMed] [Google Scholar]
  10. Dawson I, Pryse-Davies J. The distribution of certain enzyme systems in the normal human gastrointestinal tract. Gastroenterology. 1963;44:745–760. doi: 10.1016/S0016-5085(63)80084-0. [DOI] [PubMed] [Google Scholar]
  11. Fowler E H, Rohousky M W. Enzyme histochemical activity in small intestine of the germfree cat. Amer. J. vet. Res. 1970;31:1423–1428. [PubMed] [Google Scholar]
  12. Fric P, Lojda Z. Enzymes of the human jejunal mucosa. Acta gastroent. belg. 1964;27:526–530. [PubMed] [Google Scholar]
  13. Goldfischer S, Essner E, Novikoff A B. The localization of phosphatase activities at the level of ultrastructure. J. Histochem. Gytochem, 1964;12:72–95. doi: 10.1177/12.2.72. [DOI] [PubMed] [Google Scholar]
  14. Gossrau R. Zur Verteilung der Sterocilienenzyme im Nebenhodengang von Ratten. (Distribution of enzymes in the stereocilia of the ductus epididymis of rats). Histochemistry. 1978;57:145–159. doi: 10.1007/BF00496678. [DOI] [PubMed] [Google Scholar]
  15. Hornich, M., E. Salajka, L. Ulmann & Z. Sarmanová: Enteric Escherichia coli infection in piglets. Enzyme histochemical activity in the small intestine of healthy and diarrhoeic piglets. Acta vet. (Brno) 1974, 43, 335–346.
  16. Hugon J, Borgers M. Ultrastructural localization of alkaline phosphatase activity in the absorbing cells of the duodenum of mouse. J. Histochem. Gytochem. 1966;14:629–640. doi: 10.1177/14.9.629. [DOI] [PubMed] [Google Scholar]
  17. Hugon, J. & M. Borgers: Fine structural localization of acid and alkaline phosphatase activities in the absorbing cells of the duodenum of rodents, Histochemie 1968, 12, 42–66. [DOI] [PubMed]
  18. Hübscher, G., B. Clark & M. E. Webb: Structural and enzymic aspects of fat metabolism in the small-intestinal mucosa. Biochem. J. 1962, 84, 23 P–24 P.
  19. Jacobsen N O, Leth Jørgensen P. A quantitative biochemical and histochemical study of the lead method for localization of adenosine triphosphate-hydrolyzinig enzymes, J. Histochem. Gytochem. 1969;17:443–453. doi: 10.1177/17.7.443. [DOI] [PubMed] [Google Scholar]
  20. Johnson F R, Kugler J H. The distribution of alkaline phosphatase in the mucosal cells of the small intestine of the rat, cat and dog. J. Anat. (Lond.) 1953;87:247–255. [PMC free article] [PubMed] [Google Scholar]
  21. Landsverk T. The gastrointestinal mucosa in young milk-fed calves. A scanning electron and light microscopic investigation. Acta vet. scand. 1979;20:572–582. doi: 10.1186/BF03546585. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Linscheer W G, Malagelada J R, Fishman W H. Diminished oleic acid absorption by L-phenylalanine inhibition of an intestinal phosphohydrolase. Nature New Biol. 1971;231:116–117. doi: 10.1038/newbio231116a0. [DOI] [PubMed] [Google Scholar]
  23. Lojda Z, Kraml J. Indigogenic methods for glycosidase. III. An improved method with 4-Cl-5-Rr-3-indolyl-β-D-fucoside and its application in studies of enzymes in the intestine, kidney and other tissues. Histochemie. 1971;25:195–207. doi: 10.1007/BF00305938. [DOI] [PubMed] [Google Scholar]
  24. Lojda, Z., R. Gossrau & T. H. Schiebler: Enzym-histochemische Methoden. (Enzyme histochemical methods). Springer-Verlag, Berlin, Heidelberg, New York 1976.
  25. Moog, F. & H. S. Glazier: Phosphate absorption and alkaline phosphatase activity in the small intestine of the adult mouse and of the chick embryo and hatched chick. Comp. Biochem. Physiol. 1972, 42 A, 321–336. [DOI] [PubMed]
  26. Morton R K. The phosphotransferase activity of phosphatases. 2. Studies with purified alkaline phosphomonoesterases and some substrate-specific phosphatases. Biochem. J. 1958;70:139–150. doi: 10.1042/bj0700139. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Moses H L, Rosenthal A S, Beaver D L, Schuffman S S. Lead ion and phosphatase histochemistry. II. Effect of adenosine triphosphate hydrolysis by lead ion on the histochemical localization of adenosine triphosphatase activity. J. Histochem. Cyto-chem. 1966;14:702–710. doi: 10.1177/14.10.702. [DOI] [PubMed] [Google Scholar]
  28. Mylrea, P. J.: Digestion of milk in young calves. II. The absorption of nutrients from the small intestine. Res. vet. Sci. 1966, 7, 394–416. [PubMed]
  29. Nordstrom C, Dahlquist A, Josefsson L. Quantitative determination of enzymes in different parts of the villi and crypts of rat small intestine. Comparison of alkaline phosphatase, disaccharidases and dipeptidases, J. Histochem. Gytochem. 1968;15:713–721. doi: 10.1177/15.12.713. [DOI] [PubMed] [Google Scholar]
  30. Ono K. Ultrastructural localization of acid phosphatase activity in the small intestinal absorptive cells of adult rats. Histochemistry. 1979;62:113–124. doi: 10.1007/BF00493313. [DOI] [PubMed] [Google Scholar]
  31. Pearse, A. G. E.: Histochemistry. Theoretical and Applied. J. & A. Churchill, Ltd., London 1968, I.
  32. Pearse, A. G. E.: Histochemistry. Theoretical and Applied. Churchill Livingstone, Edinburgh and London 1972, II.
  33. Roodyn D B. The classification and partial tabulation of enzyme studies on subcellular fractions isolated by differential centrifuging. Int. Rev. Cytol. 1965;18:99–190. doi: 10.1016/S0074-7696(08)60553-7. [DOI] [PubMed] [Google Scholar]
  34. Rosenthal A S, Moses H L, Beaver D L, Schuffman S S. Lead ion and phosphatase histochemistry. I. Non enzymatic hydrolysis of nucleoside phosphates by lead ion. J. Histochem. Gytochem. 1966;14:698–701. doi: 10.1177/14.10.698. [DOI] [PubMed] [Google Scholar]
  35. Russo J, Wells P. Ultrastructural localizations of adenosine triphosphatase activity in resting mammary gland. J. Histochem. Cytochem. 1977;25:135–148. doi: 10.1177/25.2.138706. [DOI] [PubMed] [Google Scholar]
  36. Saloniemi, H. & T. Rahko: On the enzyme histochemistry in the ileum of the pig. Nord. Vet.-Med. 1972, 24, 151–155. [PubMed]
  37. Toofonian F, Kidder D E, Hill F. W. G. The postnatal development of intestinal disaccharidases in the calf. Res. vet. Sci. 1974;16:382–392. doi: 10.1016/S0034-5288(18)33739-1. [DOI] [PubMed] [Google Scholar]
  38. Wachslein M, Meisel E. Histochemistry of hepatic phosphatases at a physiologic pH. With special reference to the demonstration of bile canaliculi. Amer. J. clin. Path. 1957;27:13–23. doi: 10.1093/ajcp/27.1.13. [DOI] [PubMed] [Google Scholar]

Articles from Acta Veterinaria Scandinavica are provided here courtesy of BMC

RESOURCES