Abstract
The effect of catalase on the toxicity of cadmium (Cd) in Cd-resistant Staphylococcus aureus 3719+ and its plasmid-negative Cd-sensitive variant 3719– was studied. Catalase on a solid medium increased the recovery of Gd-stressed S. aureus 3719– cells, and the addition of catalase into a liquid growth medium resulted in a shortened lag phase of growth especially in S. aureus 3719–. The catalase activity of S. aureus 3719+ cell suspensions was greater than the corresponding activity of S. aureus 3719– cell suspensions. Cd did not influence the activity of beef liver catalase or the catalase production of the bacterial cells.
Catalase reduced the toxicity of Cd especially for S. aureus 3719–. The greater catalase production of S. aureus 3719+ might be one factor in its resistance against the toxic effects of Cd. It is suggested that Cd together with hydrogen peroxide may induce oxidative damage to cells if there is not sufficient catalase available to decompose all the hydrogen peroxide formed.
Keywords: cadmium resistance, catalase activity, lag phase, oxidative damage
Sammanfattning
Effekten av katalas på kadmiums (Cd) toxicitet på en Cd-resistent Staphylococcus aureus stam 3719+, och dess plasmid-negativa, Cd-kånsliga variant 3719– undersoktes. Enzymet katalas på ett fast substrat ökade cellantalet av den Gd-belastade S. aureus 3719– stammen. Tillsatsen av katalas till det flytande nöringssubstratet förkortade lagfasen särskilt i S. aureus 3719–. Katalasaktiviteten i S. aureus 3719-f- cellsuspensionerna var större än den motsvarande aktiviteten i S. aureus 3719– cellsuspensionerna. Cd påverkade inte aktiviteten av katalas från nötlever eller katalasproduktionen av bakteriecellerna.
Katalas minskade Cd:s toxicitet på specielt S. aureus 3719–. Den större katalasproduktionen av S. aureus 3719+ kunde vara en av dess resistensfaktorer mot Gd:s toxiska effekt. Det är möjligt, att Cd till-sammans med väteperoxid kunde förorsaka en oxidativ skada på celler om det inte finns tillräckligt med katalas at nedbryta den producerade väteperoxiden.
Full Text
The Full Text of this article is available as a PDF (1.4 MB).
References
- Aebi, H.: Catalase. In H. U. Bergmeyer, ed.: Methods of Enzymatic Analysis, Vol. 2, 2nd Ed., Verlag Chemie, Acad. Press, New York, USA 1974, 673–684.
- Albert, A.: Selective Toxicity – The Physico-Chemical Basis of Therapy. 5th Ed., Chapman and Hall, London, England 1973.
- Amin V. M., Olson N. F. Influence of catalase activity on resistance of coagulase-positive staphylococci to hydrogen peroxide. Appl. Microbiol. 1968;16:267–270. doi: 10.1128/AEM.16.2.267-270.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Babich H., Stotzky G. Effects of cadmium on the biota: influence of environmental factors. Advanc. appl. Microbiol. 1978;23:55–117. doi: 10.1016/S0065-2164(08)70065-0. [DOI] [PubMed] [Google Scholar]
- Baird-Parker A. C., Davenport E. The effect of recovery medium on the isolation of Staphylococcus aureus after heat treatment and after the storage of frozen or dried cells. J. appl. Bact. 1965;28:390–402. doi: 10.1111/j.1365-2672.1965.tb02169.x. [DOI] [PubMed] [Google Scholar]
- Barry V. C., Conalty M. L., Denneny J. M., Winder F. Peroxide formation in bacteriological media. Nature (Lond.) 1956;178:596–597. doi: 10.1038/178596a0. [DOI] [PubMed] [Google Scholar]
- Beers R. F., Jr., Sizer I. W. A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J. biol. Chem. 1952;195:133–140. [PubMed] [Google Scholar]
- Carlsson J., Nyberg G., Wrethén J. Hydrogen peroxide and superoxide radical formation in anaerobic broth media exposed to atmospheric oxygen. Appl. Environ. Microbiol. 1978;36:223–229. doi: 10.1128/AEM.36.2.223-229.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Flowers R. S., Martin S. E., Brewer D. G., Ordal Z. J. Catalase and enumeration of stressed Staphylococcus aureus cells. Appl. Environ. Microbiol. 1977;33:1112–1117. doi: 10.1128/AEM.33.5.1112-1117.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Korkeala H. The distribution of cadmium between cellular subfractions in cadmium-sensitive and cadmium-resistant Staphylococcus aureus. Acta vet. scand. 1979;20:438–446. doi: 10.1186/BF03546605. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Korkeala H., Pekkanen T. J. The effect of pH and potassium phosphate buffer on the toxicity of cadmium for bacteria. Acta vet. scand. 1978;19:93–101. doi: 10.1186/BF03547645. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Maehly, A. C. & B. Chance: The assay of catalases and peroxidases. In D. Glick, ed.: Methods of Biochemical Analysis, Vol. 1, Inter-science Publishers, New York, USA 1961, 357–424. [DOI] [PubMed]
- Martin M. E., Flowers R. S., Ordal Z. J. Catalase: its effect on microbial enumeration. Appl. Environ. Microbiol. 1976;32:731–734. doi: 10.1128/AEM.32.5.731-734.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Proom H., Woiwod A. J., Barnes J. M., Orbell W. G. A growth-inhibitory effect on Shigella dysenteriae which occurs with some batches of nutrient agar and is associated with the production of peroxide. J. gen. Microbiol. 1950;4:270–276. doi: 10.1099/00221287-4-2-270. [DOI] [PubMed] [Google Scholar]
- Wolfe W. C. Spectrophotometric determination of hydroperoxide in diethyl ether. Analyt. Chem. 1962;34:1328–1330. doi: 10.1021/ac60190a040. [DOI] [Google Scholar]
