Skip to main content
Frontiers in Oncology logoLink to Frontiers in Oncology
. 2021 Jul 19;11:710337. doi: 10.3389/fonc.2021.710337

miRNome and Functional Network Analysis of PGRMC1 Regulated miRNA Target Genes Identify Pathways and Biological Functions Associated With Triple Negative Breast Cancer

Diego A Pedroza 1, Matthew Ramirez 1, Venkatesh Rajamanickam 2, Ramadevi Subramani 1,3, Victoria Margolis 1, Tugba Gurbuz 3, Adriana Estrada 3, Rajkumar Lakshmanaswamy 1,3,*
PMCID: PMC8327780  PMID: 34350123

Abstract

Background

Increased expression of the progesterone receptor membrane component 1, a heme and progesterone binding protein, is frequently found in triple negative breast cancer tissue. The basis for the expression of PGRMC1 and its regulation on cellular signaling mechanisms remain largely unknown. Therefore, we aim to study microRNAs that target selective genes and mechanisms that are regulated by PGRMC1 in TNBCs.

Methods

To identify altered miRNAs, whole human miRNome profiling was performed following AG-205 treatment and PGRMC1 silencing. Network analysis identified miRNA target genes while KEGG, REACTOME and Gene ontology were used to explore altered signaling pathways, biological processes, and molecular functions.

Results

KEGG term pathway analysis revealed that upregulated miRNAs target specific genes that are involved in signaling pathways that play a major role in carcinogenesis. While multiple downregulated miRNAs are known oncogenes and have been previously demonstrated to be overexpressed in a variety of cancers. Overlapping miRNA target genes associated with KEGG term pathways were identified and overexpression/amplification of these genes was observed in invasive breast carcinoma tissue from TCGA. Further, the top two genes (CCND1 and YWHAZ) which are highly genetically altered are also associated with poorer overall survival.

Conclusions

Thus, our data demonstrates that therapeutic targeting of PGRMC1 in aggressive breast cancers leads to the activation of miRNAs that target overexpressed genes and deactivation of miRNAs that have oncogenic potential.

Keywords: PGRMC1, miRNA, miRNome, TNBC, KEGG, REACTOME, Gene Ontology

Introduction

Breast cancer is the most commonly diagnosed cancer in women in the U.S (1). Treatment for breast cancers are guided by the identification of hormone receptors, Estrogen receptor (ER), Progesterone receptor (PR), and Human Epidermal Growth Factor Receptor 2 (HER2) (2, 3). Based on receptor status, breast cancers are categorized into four major molecular subtypes: Luminal A, Luminal B, HER2-enriched, and triple negative/basal-like (3). Among these triple negative breast cancers (TNBCs) are the most aggressive breast cancers with an overall poorer prognosis compared to other subtypes (4, 5). Because TNBC lack ER, PR and HER2, endocrine and antibody-based therapy are ineffective (68). Therefore, it is important to identify novel molecular drivers that enable TNBC growth and metastasis and target or reprogram these markers to better treat patients with aggressive metastatic cancers.

Recent evidence in multiple cancers (913) including breast cancer (1416) identify microRNAs (miRNAs) as novel gene expression regulators and potential biomarkers (1719). miRNAs are small non-coding RNAs approximately 19 to 25 nucleotides in length; they control gene expression by targeting selective-sequences of mRNAs, inducing translational repression or complete mRNA degradation (20). miRNA expression profiles have the ability to identify molecular breast cancer subtypes (21, 22) and can differentiate between basal and luminal subtypes (23). Their effect on hormone receptor expression, regulation, and activity remains in its infant stage. Ongoing studies however, have a major focus for miRNAs that target genes that are altered in aggressive breast cancers while dysregulation of miRNAs has been directly linked to aggressive basal-like breast cancers (2428). Although one miRNA can target hundreds of genes, treatments that can switch-on specific miRNAs could lead to direct targeted gene suppression of multiple genes that are overexpressed or have oncogenic potential.

PGRMC1 a member of the membrane-associated progesterone receptor (MAPR) family with the ability to initiate non-classical signaling has been described in breast cancers (2933). PGRMC1 overexpression is observed in more aggressive phenotypes and is associated with poor prognosis in patients diagnosed with ER-negative breast cancers (34). In addition, in vitro and in vivo studies demonstrate that PGRMC1 possess the ability to promote the growth and survival of human breast cancer cells and xenografted breast tumors (35, 36). Although PGRMC1 expression has been observed in multiple cancers (3640), it’s signaling mechanism remains unknown.

Sequencing and microarray technology has opened new insights into the genetic and genomic landscape of all breast cancers including TNBC (41, 42). For example, amplification of MYC and loss-of-function mutation of BRCA1 are often described in TNBCs (43, 44). Further, the most frequently mutated or amplified genes in TNBCs include PI3KCA (55%), AKT1 (13%) and CDH1 (13%) (45). These genes can activate downstream cell-cycle regulators that can either activate (cyclin D1) or repress (p53), leading to sustained proliferation and inhibition of apoptosis of breast cancers (46). Our recent work demonstrated that PGRMC1 activates EGFR and PI3K/AKT signaling pathways, leading to increased cell proliferation of TNBC cells (33). While, other studies have demonstrated cell-specific effects between PGRMC1 and AKT signaling (4749). Historically, the PI3K/AKT pathway is one of the most altered signaling mechanisms in human cancers (5053). It plays a key role in controlling cellular processes such as cell proliferation and tumor growth (54, 55). Although directly targeting amplified genes such as PI3KCA and AKT1 has proven to be difficult but promising (56, 57), novel genes that behave in a similar fashion should be identified.

To uncover genes and pathways associated with PGRMC1 in TNBCs we performed human miRNome profiling. We impaired PGRMC1 signaling using a chemical inhibitor and RNA interference. Whole human miRNome profiling identified miRNAs that were both up and down regulated following PGRMC1 impairment. Using an array of online databases and datasets we identified direct miRNA target genes. We proceeded to study these genes by identifying their involvement in the different signaling pathways that were altered following PGRMC1 suppression. More importantly, these genes were differentially expressed in human metastatic tumor samples. From all of the miRNA target genes observed, CyclinD1 (CCND1) and 14-3-3 protein zeta/delta (YWHAZ) had the highest gene expression in human tumors and were involved in various signaling pathways. Patient samples with high expression of either gene were associated with overall poorer survival probability. Increased relative gene expression and copy number variation of CCND1 and YWHAZ was observed in MDA-MB-468 breast cancer cells and silencing PGRMC1 reduced the expression of these genes. Interestingly, multiple miRNAs (miR-224, miR-550a, miR-181a, miR-664a, miR-30b, miR-345, miR-93) that were downregulated upon PGRMC1 impairment are known to be overexpressed in multiple cancers and are described as possible oncogenes. Our results demonstrate that targeting PGRMC1 regulates miRNAs that directly target amplified genes and downregulates oncogenic miRNAs in TNBCs.

Materials and Methods

Cell Culture

MDA-MB-468 cells were obtained from the American Type Culture Collection (Manassas, VA, USA). Cells were cultured in RPMI-1640 media supplemented with 100 units/mL of penicillin, 100 μg/mL of streptomycin (Life Technologies, Grand Island, NY, USA), and 10% fetal bovine serum (FBS). Cells were incubated at 37°C in 5% CO2 and maintained at an atmosphere of 95% air.

Treatment With Small Molecule Inhibitor and Gene Silencing

MDA-MB-468 cells were plated in six-well plates at a density of 5x105 cells/well and allowed to attach overnight. Cells were then either treated with 50 μM AG-205 for 24 h or transfected with PGRMC1 siRNA for 48 h. Using MIrus bio TransIT siQUEST transfection reagent (Mirus Bio) with either a control scrambled-sequence or siRNAs targeting PGRMC1-sequence (Origene). Three different siRNA sequences (A, B and C) and multiple concentrations ranging from 20 to 60 nM were used to effectively silence PGRMC1. To minimize toxicity, the ratio of siRNA to transfection reagent was maintained at 1:1, in accordance with the manufacture’s protocol. siRNA sequences used were as follows:

  • SR323253A-rGrArUrCrArArCrUrUrUrUrArGrUrCrArUrGrArUrGrUrUCT

  • SR323253B-rCrArArUrUrGrArCrUrUrArArCrUrGrCrArUrGrArUrUrUCT

  • SR323253C-rUrCrArArCrUrUrUrUrArGrUrCrArUrGrArUrGrUrUrCrUGT

Quantitative RT-PCR

Total RNA was isolated from MDA-MB-468 breast cancer cells using the TRIzol reagent (Invitrogen, Carlsbad, CA, USA). RNA was then reverse transcribed using the RT2 first strand kit (Qiagen; Cat. No. 330401). qRT-PCR was performed using the StepOnePlus real time PCR system (Applied Biosystems, Foster City, CA, USA). The comparative Ct (2-ΔΔCT) method was used to analyze the results. The primers used for PGRMC1, CCND1, YWHAZ and 18S are as follows:

  • PGRMC1

  • Forward: 5′-CGACGGCGTCCAGGACCC-3′

  • Reverse: 5′-TCTTCCTCATCTGAGTACACAG-3′

  • CCND1

  • Forward: 5′-ATGGAACATCAGCTGCTGT-3′

  • Reverse: 5′-TCAGATGTCCACATCCCGC-3′

  • YWHAZ

  • Forward: 5′-ATGCAACCAACACATCCTATC-3′

  • Reverse: 5′- GCATTATTAGCGTGCTGTCTT-3′

  • 18S

  • Forward: 5′-CCTCGATGCTCTTAGCTGAGT-3′

  • Reverse: 5′-TCCTAGCTGCGGTATCCAG-3′

miRNome Profiling

Global microRNA profiling was generated using the SABiosciences PCR miScript PCR Array Human miRNome (Cat No. MIHS-216Z). Briefly, total RNA was extracted using TRIzol reagent (Life Technologies) from MDA-MB-468 cells treated with 50 μM AG-205 for 24 h or 48 h post siRNA transfection. Human miRNome array was performed following the synthesis of cDNA using miScript II RT kit (SABiosciences). miScript miRNA PCR array was performed using miScript SYBR Green PCR Kit (SABiosciences). All of the differentially expressed miRNAs were well-characterized in the human genome as annotated by miRNet (http://www.mirnet.ca/).

Identifying Pathways Altered by PGRMC1 Using KEGG, Gene Ontology and Reactome

Using KEGG and gene ontology terms we analyzed the signaling pathways that were significantly altered following PGRMC1 disruption. The Reactome Analysis Tool (http://reactome.org) (58, 59) was used to visualize the genome-wide hierarchy of enriched pathways in response to PGRMC1. The most significantly enriched pathways are represented as yellow and are maintained in the middle of the circular representation and the less or non-significantly enriched pathways are labeled in grey. A list of all the miRNA target genes was uploaded into the Reactome database and significantly enriched pathway analysis was defined by FDR < 0.05.

Determining PGRMC1-Induced Genetic Alterations Using In Silico Analysis

To study possible genetic alterations such as inframe, missense, truncating mutations as well as gene amplification and deep deletion of the miRNA target genes observed following PGRMC1 disruption. We uploaded the DEG dataset onto the cbioportal (http://www.cbioportal.org/) database and analyzed it in reference to the cancer genome atlas (TCGA). Oncoprint diagrams were used to visualize genetic alterations from invasive breast carcinoma samples (60). Because we impaired PGRMC1 in TNBC cells, using the xena platform (https://xenabrowser.net) database, we studied the altered gene expression in response to PGRMC1 disruption. More specifically we obtained data from the breast cancer cell line Heiser 2012 (54 breast and breast cancer cell lines), breast cancer cell line encyclopedia (68 breast and breast cancer cell lines) as well as TCGA Breast Cancer (BRCA) dataset (n = 1,247 samples).

Assessing PGRMC1 Signaling and Overall Survival in Breast Cancer Patients Using KM Plotter and Interaction of miRNA Target Genes Using Genemania

The cBioportal (http://www.cbioportal.org/) database was used to study overall cumulative survival of patients with high and low expression of the miRNA target genes observed following PGRMC1 impairment. Kaplan-Meier plots were generated from TCGA breast invasive carcinoma samples (n=817). To study the impact of individual genes on overall survival probability, we used the KM plotter (http://kmplot.com/) database and generated Kaplan-Meier plots from ER-negative/HER2-negative breast cancer samples (n=869). Finally, using genemania 3 (http://genemania.org) we explored the interconnection between miRNA target genes involved in the pathways that were significantly altered following PGRMC1 impairment.

Statistical Analysis

All data are expressed as the mean ± SD. The differences between control and experimental groups were compared using Student’s t-test. P < 0.05 was considered to be statistically significant. Statistical analysis was conducted using GraphPad Prism 7 software, version 7.0 (GraphPad Prism Software, San Diego, CA, USA).

Results

Disrupting PGRMC1 Signaling the Human miRNome

To identify miRNAs regulated by PGRMC1, whole human miRNome profiling was performed using a miScript miRNA PCR array (miRNome V16) where a total of 1,084 mature miRNAs including their respective controls were measured. MDA-MB-468 breast cancer cells were treated with 50 µM AG-205. AG-205 is known to disrupt the downstream signaling of PGRMC1 possibly causing it to accumulate in the membrane. Therefore, it was not surprising to observe an increase in PGRMC1 mRNA expression ( Figure 1A ) as earlier studies have shown increased protein expression of PGRMC1 following AG-205 treatment (33, 38). Human miRNome profiling following AG-205 treatment identified alterations in the expression of various miRNAs ( Figure 1B ). The 20 most upregulated and downregulated miRNAs were observed ( Figures 1C, D ). Because AG-205 increased PGRMC1 mRNA expression, we proceeded to silence PGRMC1 to further study its impact on miRNA expression ( Figure 1E ). Following successful PGRMC1 silencing, human miRNome profiling identified alterations to 776 miRNAs ( Figure 1F ). Here again, the 20 most upregulated and downregulated miRNAs, were identified ( Figures 1G, H ). We then identified the target genes for the 20 most altered miRNAs using the miRNet database. Following AG-205 treatment the 20 most upregulated miRNAs targeted 2,898 genes while the 20 most downregulated miRNAs targeted 2,501 genes ( Figure 1I and Supplementary Tables 1, 2 ). Similarly, the top 20 most upregulated miRNAs accounted for 1,788 target genes. While, the 20 most downregulated miRNAs targeted 3,029 genes after PGRMC1 was silenced ( Figure 1J and Supplementary Tables 3, 4 ).

Figure 1.

Figure 1

Human miRNome profiling identified differentially regulated miRNAs following PGRMC1 signal disruption and silencing. (A) Relative mRNA expression of PGRMC1 in MDA-MB-468 breast cancer cells following 50 µM AG-205 after 24 h. (B) Whole human miRNome profiling identified differentially expressed miRNAs following signaling disruption by AG-205 treatment. (C) The top 20 most upregulated miRNAs were identified all which had a log2 (fold change) greater than 3. (D) The 20 most downregulated miRNAs, all which had a log2 (fold change) less than 1. (E) Relative mRNA expression of PGRMC1 in MDA-MB-468 cells following PGRMC1 silencing after 48 h. (F) miRNome profiling identified differentially expressed miRNAs following PGRMC1 silencing. (G) The 20 most upregulated miRNAs with a log2 (fold change) greater than 5. (H) The 20 most downregulated miRNAs were identified all which had a log2 (fold change) less than -5. (I) Interaction network hubs of the top 20 up and downregulated miRNAs and their mRNA target genes following AG-205 treatment. (J) Interaction network hubs of the top 20 up and downregulated miRNAs and their mRNA target genes following PGRMC1 silencing. Four individual networks are demonstrated with miRNAs illustrated in green, miRNA-mRNA interacting nodes in brown and target genes represented in pink. *P < 0.05.

PGRMC1 Signal Disruption Alters miRNAs Involved in Pathways Associated With Cancers

Since our earlier analysis with the top 20 miRNAs altered by PGRMC1 resulted in a large number of target genes, we proceeded to study the network analysis of the top 10 most upregulated and downregulated miRNAs following AG-205 treatment. Network analysis of the top 10 most upregulated miRNAs (hsa-miR-523-3p, hsa-miR-3167, hsa-miR-3176, hsa-miR-570-3p, hsa-miR-410-3p, hsa-miR-646, hsa-miR-1256, hsa-miR-576-3p, hsa-miR-378a-5p and hsa-miR-1224-5p) identified 1,479 target genes ( Figure 2A and Supplementary Table 5 ) while the top 10 most downregulated miRNAs (hsa-miR-3681-5p, hsa-miR-3617-5p, hsa-miR-34a-5p, hsa-miR-101-5p, hsa-miR-224-5p, hsa-miR-550a-3p, hsa-miR-181a-3p, hsa-miR-1914-3p, hsa-miR-664a-3p and hsa-miR-3605-3p) targeted 1,402 genes ( Figure 2B and Supplementary Table 6 ). Studying the top miRNAs made our study more focused on miRNAs that may be more effectively regulated by PGRMC1. To identify miRNA target genes that could have a significant impact, we narrowed down our search by performing KEGG and gene ontology analysis. KEGG terms of the computed 1,479 target genes allowed us to pin-point and identify target genes of PGRMC1 altered miRNAs that are uniquely involved within the top signaling pathways, which interestingly included, p53 signaling pathway, cell cycle and pathways in cancers ( Figure 2C ; Supplementary Figure 1 and Supplementary Table 7 ). Interestingly, the downregulated miRNAs also significantly altered pathways in cancer, cell cycle and p53 signaling pathways ( Figure 2D ; Supplementary Figure 2 and Supplementary Table 8 ). Further, gene functions including kinase binding, single-stranded DNA binding, gene silencing, intrinsic apoptotic signaling pathway, regulated program cell death, enzyme binding, and nucleotide binding were classified using gene ontology based molecular functions and biological processes of both up and downregulated miRNAs ( Figures 2E, F ). The candidate 10 most up and downregulated miRNAs following AG-205 treatment and their respective target genes were listed ( Tables 1 , 2 ).

Figure 2.

Figure 2

Network analysis identifies mRNA target genes involved in altered pathways following AG-205 treatment. (A) The top ten upregulated miRNAs depicted in green, identify target genes highlighted in pink. (B) The top ten downregulated miRNAs are also depicted in green with their respective target genes highlighted in grey. (C) and (D) KEGG pathway analysis identified the top 10 significantly enriched pathways (non-disease related) involved within the miRNA network hub, adjusted p < 0.05. (E, F). GO: term Molecular functions and Biological process involved within the observed miRNAs.

Table 1.

Upregulated miRNAS and target genes in response to AG-205.

miRNA ID Accession Target Gene Target ID Experiment Literature PubMed ID
hsa-mir-3167 MIMAT0015042 CALM2 805 PAR-CLIP 23592263
hsa-mir-3167 MIMAT0015042 AURKA 6790 PAR-CLIP 26701625
hsa-mir-3167 MIMAT0015042 VPS4A 27183 PAR-CLIP 22012620
hsa-mir-3167 MIMAT0015042 WASF2 10163 HITS-CLIP 23824327
hsa-mir-3176 MIMAT0015053 ZNF274 10782 HITS-CLIP 23824327|27418678
hsa-mir-3176 MIMAT0015053 CYCS 54205 HITS-CLIP 19536157
hsa-mir-3176 MIMAT0015053 TTC37 9652 HITS-CLIP 23824327
hsa-mir-3176 MIMAT0015053 ANAPC7 51434 HITS-CLIP 23824327
hsa-mir-3176 MIMAT0015053 LSM3 27258 HITS-CLIP//PAR-CLIP 23446348|23824327
hsa-mir-3176 MIMAT0015053 RAB11FIP4 84440 PAR-CLIP 23446348
hsa-mir-3176 MIMAT0015053 ACTB 60 CLASH 23622248
hsa-mir-570-3p MIMAT0003235 HHIP 64399 PAR-CLIP 22100165
hsa-mir-570-3p MIMAT0003235 CALM3 808 PAR-CLIP 23592263
hsa-mir-570-3p MIMAT0003235 PMAIP1 5366 PAR-CLIP 23592263|21572407
hsa-mir-570-3p MIMAT0003235 RAC1 5879 PAR-CLIP 23592263
hsa-mir-570-3p MIMAT0003235 TGFBR2 7048 HITS-CLIP 19536157
hsa-mir-570-3p MIMAT0003235 ETS1 2113 PAR-CLIP 22012620
hsa-mir-570-3p MIMAT0003235 CDKN1A 1026 PAR-CLIP 26701625|27292025
hsa-mir-570-3p MIMAT0003235 TPM3 7170 PAR-CLIP 21572407
hsa-mir-570-3p MIMAT0003235 TNFRSF10B 8795 PAR-CLIP 22012620|21572407
hsa-mir-570-3p MIMAT0003235 GRK5 2869 PAR-CLIP 23592263
hsa-mir-570-3p MIMAT0003235 IGF1R 3480 HITS-CLIP 23313552
hsa-mir-410-3p MIMAT0002171 VEGFA 7422 PAR-CLIP 23446348
hsa-mir-410-3p MIMAT0002171 CRK 1398 PAR-CLIP 21572407
hsa-mir-410-3p MIMAT0002171 CHEK1 1111 HITS-CLIP 23824327
hsa-mir-410-3p MIMAT0002171 HHIP 64399 HITS-CLIP 21572407
hsa-mir-410-3p MIMAT0002171 PPP2R5E 5529 HITS-CLIP//PAR-CLIP 21572407
hsa-mir-410-3p MIMAT0002171 CNOT6 57472 PAR-CLIP 23446348
hsa-mir-410-3p MIMAT0002171 MET 4233 Luciferase reporter assay//qRT-PCR//Western blot 22750473
hsa-mir-410-3p MIMAT0002171 CUL2 8453 HITS-CLIP//PAR-CLIP 23446348|22012620|21572407|20371350|23313552
hsa-mir-410-3p MIMAT0002171 CDK1 983 PAR-CLIP 21572407
hsa-mir-410-3p MIMAT0002171 LDLR 3949 HITS-CLIP//PAR-CLIP 23446348|21572407|20371350
hsa-mir-410-3p MIMAT0002171 MDM2 4193 Luciferase reporter assay//qRT-PCR//Western blot 25136862
hsa-mir-410-3p MIMAT0002171 PRKCD 5580 PAR-CLIP 23446348|21572407
hsa-mir-410-3p MIMAT0002171 BTG3 10950 PAR-CLIP 23446348|22012620|21572407
hsa-mir-410-3p MIMAT0002171 NTRK3 4916 HITS-CLIP//PAR-CLIP 23446348|21572407
hsa-mir-410-3p MIMAT0002171 YWHAZ 7534 HITS-CLIP//PAR-CLIP 23446348|21572407|20371350|23824327|23313552
hsa-mir-410-3p MIMAT0002171 RAB11FIP1 80223 PAR-CLIP 23446348|21572407
hsa-mir-410-3p MIMAT0002171 FZD5 7855 HITS-CLIP//PAR-CLIP 23446348|21572407
hsa-mir-410-3p MIMAT0002171 CCNB1 891 Luciferase reporter assay//qRT-PCR 26125663
hsa-mir-410-3p MIMAT0002171 TFDP1 7027 PAR-CLIP 23446348|21572407|20371350
hsa-mir-410-3p MIMAT0002171 THBS1 7057 PAR-CLIP 23592263
hsa-mir-410-3p MIMAT0002171 TRAF6 7189 PAR-CLIP 22100165
hsa-mir-410-3p MIMAT0002171 ADCY9 115 HITS-CLIP//PAR-CLIP 23446348|21572407|20371350
hsa-mir-410-3p MIMAT0002171 GSK3B 2932 HITS-CLIP//PAR-CLIP 23446348|22012620|21572407|23313552
hsa-mir-410-3p MIMAT0002171 SNAI1 6615 Luciferase reporter assay//qRT-PCR//Western blot 27221455
hsa-mir-410-3p MIMAT0002171 PIK3CG 5294 HITS-CLIP//PAR-CLIP 21572407|23313552
hsa-mir-410-3p MIMAT0002171 TRIP10 9322 HITS-CLIP 23824327
hsa-mir-646 MIMAT0003316 ZMAT3 64393 PAR-CLIP 24398324|22012620|21572407|20371350
hsa-mir-646 MIMAT0003316 CCND1 595 PAR-CLIP 24398324
hsa-mir-646 MIMAT0003316 CHEK1 1111 HITS-CLIP 23313552
hsa-mir-646 MIMAT0003316 CRK 1398 PAR-CLIP 21572407
hsa-mir-646 MIMAT0003316 VEGFA 7422 HITS-CLIP//PAR-CLIP 23592263|24398324|23446348|22012620|21572407|20371350
hsa-mir-646 MIMAT0003316 BTG2 7832 PAR-CLIP 24398324|20371350|26701625
hsa-mir-646 MIMAT0003316 PPP2R5C 5527 PAR-CLIP 21572407|20371350
hsa-mir-646 MIMAT0003316 DDX6 1656 PAR-CLIP 22012620
hsa-mir-646 MIMAT0003316 CSNK2A1 1457 HITS-CLIP 23313552
hsa-mir-646 MIMAT0003316 ORC4 5000 PAR-CLIP 24398324|23446348|21572407|20371350|27292025
hsa-mir-646 MIMAT0003316 PRKAR2A 5576 PAR-CLIP 23592263|23446348|21572407|20371350
hsa-mir-646 MIMAT0003316 RBL1 5933 PAR-CLIP 20371350
hsa-mir-646 MIMAT0003316 BIRC5 332 PAR-CLIP 23446348|21572407|20371350
hsa-mir-646 MIMAT0003316 WEE1 7465 PAR-CLIP 21572407|20371350
hsa-mir-646 MIMAT0003316 CDK6 1021 PAR-CLIP 20371350
hsa-mir-646 MIMAT0003316 STK11 6794 PAR-CLIP 26701625
hsa-mir-646 MIMAT0003316 PRDM4 11108 PAR-CLIP 21572407
hsa-mir-646 MIMAT0003316 PTPRF 5792 HITS-CLIP 19536157
hsa-mir-646 MIMAT0003316 PIK3R1 5295 HITS-CLIP//PAR-CLIP 23446348|21572407|23824327|23313552
hsa-mir-646 MIMAT0003316 CCNE2 9134 PAR-CLIP 23446348|21572407|20371350
hsa-mir-646 MIMAT0003316 MAP3K7 6885 PAR-CLIP 20371350
hsa-mir-646 MIMAT0003316 AKT3 10000 PAR-CLIP 23592263|21572407
hsa-mir-646 MIMAT0003316 CCNE1 898 PAR-CLIP 21572407|20371350
hsa-mir-646 MIMAT0003316 FGF2 2247 PAR-CLIP 23446348
hsa-mir-646 MIMAT0003316 PHKA1 5255 HITS-CLIP//PAR-CLIP 23446348|21572407|20371350
hsa-mir-646 MIMAT0003316 CNOT6L 246175 PAR-CLIP 20371350
hsa-mir-646 MIMAT0003316 CCND2 894 PAR-CLIP 21572407|20371350
hsa-mir-1256 MIMAT0005907 MKNK2 2872 PAR-CLIP 23592263|20371350
hsa-mir-1256 MIMAT0005907 WNT2B 7482 HITS-CLIP 27418678
hsa-mir-1256 MIMAT0005907 CHMP2B 25978 PAR-CLIP 21572407
hsa-mir-1256 MIMAT0005907 STK4 6789 PAR-CLIP 26701625
hsa-mir-1256 MIMAT0005907 WASL 8976 PAR-CLIP 23446348
hsa-mir-1256 MIMAT0005907 PABPC1 26986 PAR-CLIP 21572407|20371350|26701625
hsa-mir-576-3p MIMAT0004796 PMAIP1 5366 PAR-CLIP 23592263
hsa-mir-576-3p MIMAT0004796 PPP2R5E 5529 PAR-CLIP 23592263
hsa-mir-576-3p MIMAT0004796 CCDC6 8030 PAR-CLIP 20371350
hsa-mir-576-3p MIMAT0004796 SESN3 143686 PAR-CLIP 22100165
hsa-mir-576-3p MIMAT0004796 SH2B3 10019 PAR-CLIP 23592263
hsa-mir-576-3p MIMAT0004796 HIF1A 3091 PAR-CLIP 21572407
hsa-mir-576-3p MIMAT0004796 YWHAQ 10971 PAR-CLIP 23446348
hsa-mir-378a-5p MIMAT0000731 CYCS 54205 HITS-CLIP 23824327
hsa-mir-378a-5p MIMAT0000731 CCND2 894 PAR-CLIP 22012620
hsa-mir-378a-5p MIMAT0000731 YWHAB 7529 CLASH 23622248
hsa-mir-378a-5p MIMAT0000731 TPR 7175 CLASH 23622248
hsa-mir-378a-5p MIMAT0000731 ATM 472 HITS-CLIP 23824327
hsa-mir-378a-5p MIMAT0000731 PPP1R3B 79660 HITS-CLIP 23824327
hsa-mir-378a-5p MIMAT0000731 FGF19 9965 HITS-CLIP 23824327
hsa-mir-378a-5p MIMAT0000731 SMURF2 64750 HITS-CLIP 23824327
hsa-mir-378a-5p MIMAT0000731 PYGB 5834 PAR-CLIP 20371350
hsa-mir-378a-5p MIMAT0000731 RNF41 10193 PAR-CLIP 21572407
hsa-mir-378a-5p MIMAT0000731 RPS6 6194 HITS-CLIP 23824327
hsa-mir-378a-5p MIMAT0000731 BRAF 673 CLASH 23622248
hsa-mir-378a-5p MIMAT0000731 ACTN4 81 CLASH 23622248
hsa-mir-378a-5p MIMAT0000731 SUFU 51684 Luciferase reporter assay//qRT-PCR//Western blot 18077375
hsa-mir-378a-5p MIMAT0000731 WNT7B 7477 HITS-CLIP 23824327
hsa-mir-378a-5p MIMAT0000731 CDK4 1019 HITS-CLIP 23824327
hsa-mir-378a-5p MIMAT0000731 XIAP 331 HITS-CLIP 23824327|22927820
hsa-mir-378a-5p MIMAT0000731 BBC3 27113 PAR-CLIP 23592263|24398324
hsa-mir-378a-5p MIMAT0000731 PPARGC1A 10891 CLASH 23622248
hsa-mir-378a-5p MIMAT0000731 DCP2 167227 HITS-CLIP 19536157
hsa-mir-378a-5p MIMAT0000731 F2R 2149 HITS-CLIP 22927820
hsa-mir-378a-5p MIMAT0000731 ZMAT3 64393 PAR-CLIP 22012620
hsa-mir-1224-5p MIMAT0005458 WASF2 10163 CLASH 23622248
hsa-mir-1224-5p MIMAT0005458 ZMAT3 64393 PAR-CLIP 22100165

Table 2.

Downregulated miRNAS and target genes in response to AG-205.

miRNA ID Accession  Target Gene Target ID Experiment Literature PubMed ID
hsa-mir-181a-3p MIMAT0000270 ARHGDIA 396 PAR-CLIP 26701625
mir-3605-3p None
hsa-mir-664a-3p MIMAT0005949 TPR 7175 PAR-CLIP 22012620
hsa-mir-664a-3p MIMAT0005949 CTBP1 1487 PAR-CLIP 24398324|21572407|26701625|27292025
hsa-mir-664a-3p MIMAT0005949 MAPK8 5599 PAR-CLIP 24398324
hsa-mir-664a-3p MIMAT0005949 WNT7A 7476 PAR-CLIP 22012620
hsa-mir-664a-3p MIMAT0005949 WEE2 494551 HITS-CLIP 23824327
hsa-mir-664a-3p MIMAT0005949 CALM1 801 PAR-CLIP 21572407
hsa-mir-664a-3p MIMAT0005949 RPS6KA5 9252 PAR-CLIP 21572407
hsa-mir-1914-3p MIMAT0007890 YWHAE 7531 PAR-CLIP 23592263
hsa-mir-1914-3p MIMAT0007890 PLCG1 5335 CLASH 23622248
hsa-mir-1914-3p MIMAT0007890 E2F3 1871 PAR-CLIP 23592263
hsa-mir-1914-3p MIMAT0007890 STAT5B 6777 PAR-CLIP 22291592
hsa-mir-1914-3p MIMAT0007890 TAB2 23118 PAR-CLIP 23592263
hsa-mir-1914-3p MIMAT0007890 NRG4 145957 PAR-CLIP 23592263
hsa-mir-1914-3p MIMAT0007890 CALM3 808 PAR-CLIP 23446348|26701625
hsa-mir-3617-5p MIMAT0017997 CDKN1A 1026 PAR-CLIP 26701625
hsa-mir-3617-5p MIMAT0017997 CDKN2B 1030 HITS-CLIP 23313552
hsa-mir-3617-5p MIMAT0017997 MAPK10 5602 HITS-CLIP 23824327|27418678
hsa-mir-3617-5p MIMAT0017997 MDM2 4193 PAR-CLIP 21572407|26701625
hsa-mir-3617-5p MIMAT0017997 CDK1 983 PAR-CLIP 21572407
hsa-mir-3617-5p MIMAT0017997 PMAIP1 5366 PAR-CLIP 27292025
hsa-mir-3617-5p MIMAT0017997 CALM3 808 PAR-CLIP 21572407|20371350|26701625
hsa-mir-224-5p MIMAT0000281 CCND1 595 PAR-CLIP 26701625
hsa-mir-224-5p MIMAT0000281 BCL2 596 Microarray//qRT-PCR//Western blot 22989374
hsa-mir-224-5p MIMAT0000281 CASP3 836 Luciferase reporter assay//Western blot 26307684
hsa-mir-224-5p MIMAT0000281 IGF1R 3480 PAR-CLIP 20371350
hsa-mir-224-5p MIMAT0000281 SMAD4 4089 Luciferase reporter assay//qRT-PCR//Western blot 20118412|23922662|25804630
hsa-mir-224-5p MIMAT0000281 PDGFRB 5159 Microarray//Northern blot 16331254
hsa-mir-224-5p MIMAT0000281 CDC42 998 Luciferase reporter assay//Microarray//qRT-PCR//Western blot 20023705|24817781|22989374
hsa-mir-224-5p MIMAT0000281 MTOR 2475 /Luciferase reporter assay//qRT-PCR//Western blot 27315344
hsa-mir-224-5p MIMAT0000281 GSK3B 2932 Luciferase reporter assay 25588771
hsa-mir-224-5p MIMAT0000281 HSP90AA1 3320 PAR-CLIP 23446348|20371350|26701625
hsa-mir-224-5p MIMAT0000281 MAP2K2 5605 HITS-CLIP 23824327
hsa-mir-224-5p MIMAT0000281 RAC1 5879 Luciferase reporter assay 27222381
hsa-mir-224-5p MIMAT0000281 TPR 7175 PAR-CLIP 22012620
hsa-mir-224-5p MIMAT0000281 GSK3B 2932 Luciferase reporter assay 25588771
hsa-mir-224-5p MIMAT0000281 SERPINE1 5054 PAR-CLIP 22012620
hsa-mir-224-5p MIMAT0000281 CASP7 840 Luciferase reporter assay//qRT-PCR//Western blot 26307684
hsa-mir-224-5p MIMAT0000281 KRAS 3845 qRT-PCR//Western blot 23667495
hsa-mir-224-5p MIMAT0000281 CDH1 999 /qRT-PCR//Western blot 22989374|25804630
hsa-mir-224-5p MIMAT0000281 YES1 7525 PAR-CLIP 22012620
hsa-mir-224-5p MIMAT0000281 PAK2 5062 Microarray//qRT-PCR//Western blot 22989374
hsa-mir-224-5p MIMAT0000281 PAK2 5062 Microarray//qRT-PCR//Western blot 22989374
hsa-mir-550a-3p MIMAT0003257 MAPK3 5595 /Luciferase reporter assay//qRT-PCR//Western blot 27462780
hsa-mir-550a-3p MIMAT0003257 HSP90AA1 3320 PAR-CLIP 21572407
hsa-mir-550a-3p MIMAT0003257 MDM2 4193 PAR-CLIP 20371350
hsa-mir-550a-3p MIMAT0003257 MAPK1 5594 /Luciferase reporter assay//qRT-PCR//Western blot 27462780
hsa-mir-550a-3p MIMAT0003257 TPM3 7170 PAR-CLIP 26701625
hsa-mir-550a-3p MIMAT0003257 TRAF1 7185 HITS-CLIP 19536157
hsa-mir-550a-3p MIMAT0003257 YWHAE 7531 PAR-CLIP 23592263
hsa-mir-101-5p MIMAT0004513 FOS 2353 Luciferase reporter assay//qRT-PCR//Western blot 27485165
hsa-mir-101-5p MIMAT0004513 VEGFA 7422 Luciferase reporter assay//qRT-PCR//Western blot 26870229
hsa-mir-101-5p MIMAT0004513 RAC1 5879 Luciferase reporter assay//qRT-PCR//Western blot 26697839
hsa-mir-101-5p MIMAT0004513 STK4 6789 PAR-CLIP 26701625
hsa-mir-101-5p MIMAT0004513 ATM 472 Luciferase reporter assay//qRT-PCR 20617180
hsa-mir-101-5p MIMAT0004513 PRKDC 5591 Luciferase reporter assay//qRT-PCR 20617180
hsa-mir-101-5p MIMAT0004513 PMAIP1 5366 PAR-CLIP 23446348|22012620|21572407|20371350
hsa-mir-3681-5p MIMAT0018108 FZD6 8323 HITS-CLIP//PAR-CLIP 24398324|21572407|23313552
hsa-mir-3681-5p MIMAT0018108 GRAP2 9402 HITS-CLIP 19536157
hsa-mir-3681-5p MIMAT0018108 MALT1 10892 PAR-CLIP 23592263
hsa-mir-34a-5p MIMAT0000255 AKT1 207 Flow//qRT-PCR//Western blot 27073535
hsa-mir-34a-5p MIMAT0000255 BIRC2 329 PCR array 28097098
hsa-mir-34a-5p MIMAT0000255 BIRC3 330 Microarray//Northern blot 17540599
hsa-mir-34a-5p MIMAT0000255 XIAP 331 PCR array 28097098
hsa-mir-34a-5p MIMAT0000255 BIRC5 332 /PCR array//qRT-PCR//Western blot 23264087|24068565|25436980|26318298|28097098
hsa-mir-34a-5p MIMAT0000255 FASLG 356 PCR array 28097098
hsa-mir-34a-5p MIMAT0000255 AR 367 qRT-PCR//Western blot 23145211
hsa-mir-34a-5p MIMAT0000255 BAX 581 Luciferase reporter assay//Western blot 27610823
hsa-mir-34a-5p MIMAT0000255 CCND1 595 /Reporter assay//Sequencing//Western blot 18406353|19461653|20309880|20371350|27220728
hsa-mir-34a-5p MIMAT0000255 BCL2 596 /qRT-PCR//QRTPCR//Reporter assay//Western blot 26802970|27939626|26406332|25910896
hsa-mir-34a-5p MIMAT0000255 BCL2L1 598 PCR array 28097098
hsa-mir-34a-5p MIMAT0000255 CASP3 836 PCR array 28097098
hsa-mir-34a-5p MIMAT0000255 CASP8 841 PCR array 28097098
hsa-mir-34a-5p MIMAT0000255 CASP9 842 PCR array 28097098
hsa-mir-34a-5p MIMAT0000255 CDK4 1019 Luciferase reporter assay//Microarray//qRT-PCR//Western blot 21240262|21128241|24504520
hsa-mir-34a-5p MIMAT0000255 CDK6 1021 /PAR-CLIP//qRT-PCR//Reporter assay//Western blot 19773441|21240262|23035210|23592263
hsa-mir-34a-5p MIMAT0000255 CDKN1B 1027 PAR-CLIP 23446348
hsa-mir-34a-5p MIMAT0000255 CDKN2A 1029 Western blot 21128241
hsa-mir-34a-5p MIMAT0000255 CSF1R 1436 Luciferase reporter assay//qRT-PCR 24198819
hsa-mir-34a-5p MIMAT0000255 CTNNB1 1499 Proteomics 21566225
hsa-mir-34a-5p MIMAT0000255 DAPK1 1612 PCR array 28097098
hsa-mir-34a-5p MIMAT0000255 E2F1 1869 /Luciferase reporter assay//qRT-PCR//Western blot 17875987|21128241|27704360|28293146
hsa-mir-34a-5p MIMAT0000255 E2F3 1871 //Microarray//PAR-CLIP//qRT-PCR//Western blot 23954321|23298779|26802970|28389657|25675046
hsa-mir-34a-5p MIMAT0000255 ERBB2 2064 Luciferase reporter assay//Western blot 27813227
hsa-mir-34a-5p MIMAT0000255 FOS 2353 ChIP//mRNA decay//qRT-PCR//Western blot 27513856
hsa-mir-34a-5p MIMAT0000255 GRB2 2885 Sequencing 20371350
hsa-mir-34a-5p MIMAT0000255 HDAC1 3065 /qRT-PCR//Reporter assay//Western blot 21566225|23836017|26035691|28123637
hsa-mir-34a-5p MIMAT0000255 IGF1R 3480 CLASH 23622248
hsa-mir-34a-5p MIMAT0000255 ITGA6 3655 Proteomics 21566225
hsa-mir-34a-5p MIMAT0000255 KIT 3815 Luciferase reporter assay//Western blot 24009080|27056900
hsa-mir-34a-5p MIMAT0000255 SMAD4 4089 //PAR-CLIP//qRT-PCR//Western blot 20371350|28348487|26077733
hsa-mir-34a-5p MIMAT0000255 MET 4233 /Northern blot//qRT-PCR//Western blot 24983493|26313360|26238271|27513895|28250026
hsa-mir-34a-5p MIMAT0000255 MYC 4609 /Reporter assay//Sequencing//TRAP//Western blot 21297663|22159222|20371350|24510096|25572695
hsa-mir-34a-5p MIMAT0000255 NFKB1 4790 PCR array 28097098
hsa-mir-34a-5p MIMAT0000255 PDGFRA 5156 //Microarray//qRT-PCR//Western blot 22479456|23805317|24837198|27302634
hsa-mir-34a-5p MIMAT0000255 PDGFRB 5159 /Luciferase reporter assay//qRT-PCR//Western blot 23805317|24837198|26324236
hsa-mir-34a-5p MIMAT0000255 PIK3CG 5294 Flow//qRT-PCR//Western blot 27073535
hsa-mir-34a-5p MIMAT0000255 PLCG1 5335 Proteomics 21566225
hsa-mir-34a-5p MIMAT0000255 MAPK3 5595 CLASH 23622248
hsa-mir-34a-5p MIMAT0000255 MAP2K1 5604 Luciferase reporter assay//Northern blot//qRT-PCR//Western blot 20299489
hsa-mir-34a-5p MIMAT0000255 RALB 5899 Proteomics 21566225
hsa-mir-34a-5p MIMAT0000255 SPI1 6688 Luciferase reporter assay//Reporter assay 20598588
hsa-mir-34a-5p MIMAT0000255 STAT1 6772 Proteomics 21566225
hsa-mir-34a-5p MIMAT0000255 TCF7 6932 /Luciferase reporter assay//qRT-PCR//Western blot 25436980
hsa-mir-34a-5p MIMAT0000255 TGFBR2 7048 PAR-CLIP 22012620
hsa-mir-34a-5p MIMAT0000255 TP53 7157 /Northern blot//qRT-PCR//QRTPCR//Western blot 23292869|26406332|26403328|26177460
hsa-mir-34a-5p MIMAT0000255 TRAF2 7186 PCR array 28097098
hsa-mir-34a-5p MIMAT0000255 TRAF3 7187 PCR array 28097098
hsa-mir-34a-5p MIMAT0000255 VEGFA 7422 ELISA//Luciferase reporter assay 18320040
hsa-mir-34a-5p MIMAT0000255 WNT1 7471 //Luciferase reporter assay//Microarray//qRT-PCR//Western blot 19336450|19398721|28199987
hsa-mir-34a-5p MIMAT0000255 CCNE2 9134 Luciferase reporter assay//Microarray//PAR-CLIP//Western blot 19461653|17914404|23446348
hsa-mir-34a-5p MIMAT0000255 LEF1 51176 /Microarray//Proteomics//qRT-PCR//Reporter assay//Western blot 21566225|25587085|28098757
hsa-mir-34a-5p MIMAT0000255 CYCS 54205 PCR array 28097098
hsa-mir-224-5p MIMAT0000281 KRAS 3845 qRT-PCR//Western blot 23667495
hsa-mir-34a-5p MIMAT0000255 CCND3 896 Western blot 18406353
hsa-mir-34a-5p MIMAT0000255 CDC20 991 CLASH//Proteomics 21566225|23622248
hsa-mir-34a-5p MIMAT0000255 CDC25A 993 Western blot 18406353
hsa-mir-34a-5p MIMAT0000255 CDC25C 995 Microarray 19461653
hsa-mir-34a-5p MIMAT0000255 CDK4 1019 Luciferase reporter assay//Microarray//qRT-PCR//Western blot 19461653|17914404|21240262|21128241|24504520
hsa-mir-34a-5p MIMAT0000255 CDK6 1021 Microarray//PAR-CLIP//qRT-PCR//Reporter assay//Western blot 17914404|19773441|21240262|23035210|23592263
hsa-mir-34a-5p MIMAT0000255 CDKN1B 1027 PAR-CLIP 23446348
hsa-mir-34a-5p MIMAT0000255 CDKN2A 1029 Western blot 21128241
hsa-mir-34a-5p MIMAT0000255 CDKN2C 1031 qRT-PCR//Reporter assay 21128241
hsa-mir-34a-5p MIMAT0000255 GADD45A 1647 PCR array 28097098
hsa-mir-34a-5p MIMAT0000255 E2F1 1869 /Luciferase reporter assay//qRT-PCR//Western blot 17875987|21128241|27704360|28293146
hsa-mir-34a-5p MIMAT0000255 E2F3 1871 /Luciferase reporter assay//Microarray//PAR-CLIP//qRT-PCR//Western blot 23954321|23298779|26802970|28389657|25675046
hsa-mir-34a-5p MIMAT0000255 E2F5 1875 Microarray 19461653
hsa-mir-34a-5p MIMAT0000255 SFN 2810 Proteomics 21566225
hsa-mir-34a-5p MIMAT0000255 HDAC1 3065 /Proteomics//qRT-PCR//Reporter assay//Western blot 21566225|23836017|26035691|28123637
hsa-mir-34a-5p MIMAT0000255 SMAD4 4089 /Luciferase reporter assay//PAR-CLIP//qRT-PCR//Western blot 20371350|28348487|26077733
hsa-mir-34a-5p MIMAT0000255 MCM2 4171 Proteomics 21566225
hsa-mir-34a-5p MIMAT0000255 MCM3 4172 Proteomics 21566225
hsa-mir-34a-5p MIMAT0000255 MCM4 4173 Proteomics 21566225
hsa-mir-34a-5p MIMAT0000255 MCM5 4174 Proteomics 21566225
hsa-mir-34a-5p MIMAT0000255 MCM6 4175 Proteomics 21566225
hsa-mir-34a-5p MIMAT0000255 MCM7 4176 Proteomics 21566225
hsa-mir-34a-5p MIMAT0000255 CDC23 8697 Proteomics 21566225
hsa-mir-34a-5p MIMAT0000255 CCNE2 9134 Luciferase reporter assay//Microarray//PAR-CLIP//Western blot 19461653|17914404|23446348
hsa-mir-34a-5p MIMAT0000255 STAG2 10735 Proteomics 21566225
hsa-mir-34a-5p MIMAT0000255 FZR1 51343 PAR-CLIP 26701625
hsa-mir-34a-5p MIMAT0000255 ANAPC5 51433 CLASH 23622248
hsa-mir-34a-5p MIMAT0000255 CASP8 841 PCR array 28097098
hsa-mir-34a-5p MIMAT0000255 CASP9 842 PCR array 28097098
hsa-mir-34a-5p MIMAT0000255 TNFRSF10B 8795 PCR array 28097098
hsa-mir-34a-5p MIMAT0000255 CYCS 54205 PCR array 28097098
hsa-mir-34a-5p MIMAT0000255 AKT1 207 Flow//qRT-PCR//Western blot 27073535
hsa-mir-34a-5p MIMAT0000255 BIRC2 329 PCR array 28097098
hsa-mir-34a-5p MIMAT0000255 BIRC3 330 Microarray//Northern blot 17540599
hsa-mir-34a-5p MIMAT0000255 XIAP 331 PCR array 28097098
hsa-mir-34a-5p MIMAT0000255 FASLG 356 PCR array 28097098

miRNAs Regulated Signaling Pathways Identified Following PGRMC1 Silencing

Network analysis following PGRMC1 silencing identified 1,015 genes as targets of the 10 most upregulated miRNAs (hsa-miR-617, hsa-miR-3138, hsa-miR-3150b-3p, hsa-miR-101-5p, hsa-miR-483-5p, hsa-miR-1267, hsa-miR-221-5p, hsa-miR-3201, hsa-miR-1273d and hsa-miR-642b-3p) ( Figure 3A and Supplementary Table 9 ). While, 2,010 genes were identified to be direct targets of the top 10 most downregulated miRNAs (hsa-miR-135a-5p, hsa-miR-3200-5p, hsa-miR-139-5p, hsa-miR-224-5p, hsa-miR-30b-3p, hsa-miR-181a-3p, hsa-miR-345-5p, hsa-miR-93-3p, hsa-miR-4291 and hsa-miR-128-3p) ( Figure 3B and Supplementary Table 10 ). KEGG analysis of the upregulated ( Figure 3C ; Supplementary Figure 4 and Supplementary Table 11 ) and downregulated ( Figure 3D ; Supplementary Figure 5 and Supplementary Table 12 ) miRNAs following PGRMC1 silencing identified enrichment to similar KEGG terms observed in the AG-205 treatment group, such as p53 signaling pathway, cell cycle and pathways in cancers. Gene ontology terms, identified important molecular functions and biological processes including protein kinase binding, transcription factor binding, MAPK kinase activity, inactivation of MAPK activity, intrinsic apoptotic signaling pathway, purine nucleotide binding, adenyl nucleotide binding, protein phosphorylation, and regulation of phosphorylation ( Figures 3E, F ). The candidate 10 most up and downregulated miRNAs following PGRMC1 silencing and their respective target genes were listed ( Tables 3 , 4 ).

Figure 3.

Figure 3

PGRMC1 silencing alters pathways that are have miRNA target genes involved. Silencing PGRMC1 upregulates different miRNAs (from AG-205 treatment) that target similar miRNA target genes which are also upregulated in metastatic breast cancer samples. (A) Target genes highlighted in pink of the top ten most upregulated miRNAs highlighter in green. (B) The top ten most downregulated miRNAs highlighted in green and their direct targets highlighted in grey. (C) and (D) The top 10 most significantly enriched pathways (non-disease related) were identified by KEGG analysis, adjusted p < 0.05. (E, F) miRNA target genes show involvement in GO: terms Molecular functions and Biological process.

Table 3.

Upregulated miRNAS and target genes in response to silencing PGRMC1.

miRNA ID Accession Target Gene Target ID Experiment Literature PubMed ID
hsa-mir-617 MIMAT0003286 PABPC1 26986 HITS-CLIP 19536157
hsa-mir-3138 MIMAT0015006 PPP2R5E 5529 PAR-CLIP 23592263
hsa-mir-3138 MIMAT0015006 PPP2R1A 5518 PAR-CLIP 26701625
hsa-mir-3138 MIMAT0015006 CDC25A 993 PAR-CLIP 23592263
hsa-mir-3138 MIMAT0015006 CDK6 1021 PAR-CLIP 26701625
hsa-mir-3138 MIMAT0015006 FZD6 8323 HITS-CLIP//PAR-CLIP 24398324|21572407|23313552
hsa-mir-3138 MIMAT0015006 PIAS4 51588 PAR-CLIP 26701625
hsa-mir-3150b-3p MIMAT0018194 CBL 867 PAR-CLIP 26701625
hsa-mir-3150b-3p MIMAT0018194 BBC3 27113 PAR-CLIP 23592263
hsa-mir-3150b-3p MIMAT0018194 WNT7B 7477 PAR-CLIP 23592263|26701625
hsa-mir-3150b-3p MIMAT0018194 RBM8A 9939 PAR-CLIP 23592263|23446348|22012620|20371350|26701625|27292025
hsa-mir-3150b-3p MIMAT0018194 YWHAZ 7534 PAR-CLIP 26701625
hsa-mir-3150b-3p MIMAT0018194 SUGT1 10910 PAR-CLIP 23592263|20371350
hsa-mir-3150b-3p MIMAT0018194 RALBP1 10928 PAR-CLIP 26701625
hsa-mir-3150b-3p MIMAT0018194 CBLB 868 HITS-CLIP 19536157
hsa-mir-3150b-3p MIMAT0018194 PABPC1L2B 645974 PAR-CLIP 23592263
hsa-mir-3150b-3p MIMAT0018194 FZD7 8324 PAR-CLIP 26701625
hsa-mir-3150b-3p MIMAT0018194 IKBKG 8517 PAR-CLIP 24398324
hsa-mir-3150b-3p MIMAT0018194 PLK1 5347 PAR-CLIP 26701625
hsa-mir-3150b-3p MIMAT0018194 PABPC1L2A 340529 PAR-CLIP 23592263
hsa-mir-3150b-3p MIMAT0018194 BCL2L1 598 PAR-CLIP 23592263|26701625
hsa-mir-3150b-3p MIMAT0018194 CDK2 1017 PAR-CLIP 23446348|20371350|26701625
hsa-mir-3150b-3p MIMAT0018194 MAPK1 5594 PAR-CLIP 23592263
hsa-mir-3150b-3p MIMAT0018194 PABPN1 8106 PAR-CLIP 26701625
hsa-mir-3150b-3p MIMAT0018194 CACNA1B 774 HITS-CLIP 23824327|27418678
hsa-mir-3150b-3p MIMAT0018194 CDKN1A 1026 PAR-CLIP 23592263
hsa-mir-101-5p MIMAT0004513 STMN1 3925 Immunofluorescence//Luciferase reporter assay//qRT-PCR//Western blot 25607713
hsa-mir-101-5p MIMAT0004513 STK4 6789 PAR-CLIP 26701625
hsa-mir-101-5p MIMAT0004513 DUSP3 1845 PAR-CLIP 21572407
hsa-mir-101-5p MIMAT0004513 VEGFA 7422 Luciferase reporter assay//qRT-PCR//Western blot 26870229
hsa-mir-101-5p MIMAT0004513 ATM 472 Luciferase reporter assay//qRT-PCR 20617180
hsa-mir-101-5p MIMAT0004513 FOS 2353 Luciferase reporter assay//qRT-PCR//Western blot 27485165
hsa-mir-101-5p MIMAT0004513 RAC1 5879 Luciferase reporter assay//qRT-PCR//Western blot 26697839
hsa-mir-101-5p MIMAT0004513 PMAIP1 5366 PAR-CLIP 23446348|22012620|21572407|20371350
hsa-mir-101-5p MIMAT0004513 PRKDC 5591 Luciferase reporter assay//qRT-PCR 20617180
hsa-mir-101-5p MIMAT0004513 PABPN1 8106 PAR-CLIP 23592263
hsa-mir-483-5p MIMAT0004761 CACNG8 59283 HITS-CLIP 23313552
hsa-mir-483-5p MIMAT0004761 RHOA 387 Luciferase reporter assay//Microarray//PAR-CLIP//qRT-PCR//Western blot 26148871|26701625
hsa-mir-483-5p MIMAT0004761 NCBP2 22916 HITS-CLIP 21572407
hsa-mir-483-5p MIMAT0004761 PDGFRA 5156 HITS-CLIP//PAR-CLIP 23446348|23313552
hsa-mir-483-5p MIMAT0004761 VHL 7428 HITS-CLIP 23824327
hsa-mir-483-5p MIMAT0004761 TRAF1 7185 PAR-CLIP 21572407
hsa-mir-483-5p MIMAT0004761 IL21R 50615 PAR-CLIP 20371350
hsa-mir-483-5p MIMAT0004761 MAPKAPK2 9261 PAR-CLIP 26701625
hsa-mir-483-5p MIMAT0004761 MAP4K2 5871 HITS-CLIP 23313552
hsa-mir-483-5p MIMAT0004761 MAPK3 5595 Luciferase reporter assay//Microarray//qRT-PCR//Western blot 22465663|25622783
hsa-mir-483-5p MIMAT0004761 IFNAR1 3454 HITS-CLIP 23824327|23313552
hsa-mir-483-5p MIMAT0004761 SRF 6722 Luciferase reporter assay//qRT-PCR//Western blot 21893058
hsa-mir-1267 MIMAT0005921 IL2RA 3559 HITS-CLIP 23824327
hsa-mir-1267 MIMAT0005921 MAPK14 1432 HITS-CLIP 23824327
hsa-mir-1267 MIMAT0005921 CRK 1398 HITS-CLIP 23824327
hsa-mir-1267 MIMAT0005921 CDK4 1019 HITS-CLIP 23824327
hsa-mir-1267 MIMAT0005921 SMAD2 4087 PAR-CLIP 27292025
hsa-mir-1267 MIMAT0005921 RPS6KA5 9252 HITS-CLIP 23824327
hsa-mir-1267 MIMAT0005921 CUL2 8453 HITS-CLIP//PAR-CLIP 21572407
hsa-mir-1267 MIMAT0005921 WEE1 7465 HITS-CLIP 27418678
hsa-mir-1267 MIMAT0005921 NFKBIB 4793 HITS-CLIP 27418678
hsa-mir-1267 MIMAT0005921 CDKN1B 1027 PAR-CLIP 23446348
hsa-mir-221-5p MIMAT0004568 CDKN1B 1027 Chromatin immunoprecipitation//Co-immunoprecipitation//qRT-PCR//Western blot 26153983
hsa-mir-221-5p MIMAT0004568 ABL1 25 PAR-CLIP 26701625
hsa-mir-221-5p MIMAT0004568 CDKN1C 1028 Chromatin immunoprecipitation//Co-immunoprecipitation//qRT-PCR//Western blot 26153983
hsa-mir-221-5p MIMAT0004568 ITGB1 3688 PAR-CLIP 20371350
hsa-mir-221-5p MIMAT0004568 GRB2 2885 PAR-CLIP 26701625
hsa-mir-221-5p MIMAT0004568 CARD8 22900 HITS-CLIP 23313552
hsa-mir-221-5p MIMAT0004568 STAT2 6773 PAR-CLIP 20371350
hsa-mir-221-5p MIMAT0004568 FZD2 2535 HITS-CLIP 23824327
hsa-mir-221-5p MIMAT0004568 IL6R 3570 Luciferase reporter assay//qRT-PCR//Western blot 26645045
hsa-mir-3201 MIMAT0015086 LAMC1 3915 PAR-CLIP 23446348|22012620|20371350|26701625|27292025
hsa-mir-3201 MIMAT0015086 SPRED1 161742 PAR-CLIP 23592263
hsa-mir-3201 MIMAT0015086 TNFRSF10B 8795 HITS-CLIP 23313552
hsa-mir-3201 MIMAT0015086 PTEN 5728 PAR-CLIP 23592263
hsa-mir-3201 MIMAT0015086 EGLN1 54583 PAR-CLIP 21572407
hsa-mir-3201 MIMAT0015086 DUSP10 11221 HITS-CLIP 23824327
hsa-mir-3201 MIMAT0015086 CDC25B 994 PAR-CLIP 23592263
hsa-mir-1273d MIMAT0015090 CBL 867 HITS-CLIP 23824327
hsa-mir-1273d MIMAT0015090 VAV2 7410 PAR-CLIP 26701625
hsa-mir-1273d MIMAT0015090 CD4 920 PAR-CLIP 23592263
hsa-mir-1273d MIMAT0015090 SERPINE1 5054 PAR-CLIP 22012620
hsa-mir-642b-3p MIMAT0018444 CACNA1B 774 HITS-CLIP 23824327
hsa-mir-642b-3p MIMAT0018444 CDC25B 994 PAR-CLIP 23592263
hsa-mir-642b-3p MIMAT0018444 SYK 6850 HITS-CLIP 24906430|19536157
hsa-mir-642b-3p MIMAT0018444 MAP3K5 4217 PAR-CLIP 21572407|27292025
hsa-mir-642b-3p MIMAT0018444 NRAS 4893 PAR-CLIP 21572407
hsa-mir-642b-3p MIMAT0018444 CDKN1A 1026 PAR-CLIP 26701625

Table 4.

Downregulated miRNAS and target genes in response to silencing PGRMC1.

miRNA ID Accession  Target Gene Target ID Experiment Literature PubMed ID
hsa-mir-139-5p MIMAT0000250 BCL2 596 Luciferase reporter assay//qRT-PCR//Western blot 27244080
hsa-mir-139-5p MIMAT0000250 FOS 2353 qRT-PCR//Western blot 23001723|27668889
hsa-mir-139-5p MIMAT0000250 HRAS 3265 Luciferase reporter assay 24158791
hsa-mir-139-5p MIMAT0000250 HSP90AA1 3320 PAR-CLIP 21572407
hsa-mir-139-5p MIMAT0000250 IGF1R 3480 Luciferase reporter assay//qRT-PCR//Western blot 22580051|24942287|26097570
hsa-mir-139-5p MIMAT0000250 JUN 3725 /Luciferase reporter assay//qRT-PCR//Western blot 25499265
hsa-mir-139-5p MIMAT0000250 MET 4233 /Luciferase reporter assay//qRT-PCR//Western blot 26497851
hsa-mir-139-5p MIMAT0000250 NFKB1 4790 Luciferase reporter assay 24158791
hsa-mir-139-5p MIMAT0000250 PIK3CA 5290 Luciferase reporter assay 24158791
hsa-mir-139-5p MIMAT0000250 WNT1 7471 Luciferase reporter assay//Western blot 25529604
hsa-mir-139-5p MIMAT0000250 IGF1R 3480 Luciferase reporter assay//qRT-PCR//Western blot 22580051|24942287|26097570
hsa-mir-139-5p MIMAT0000250 MET 4233 Luciferase reporter assay//qRT-PCR//Western blot 26497851
hsa-mir-139-5p MIMAT0000250 BCL2 596 Luciferase reporter assay//qRT-PCR//Western blot 27244080
hsa-mir-139-5p MIMAT0000250 HRAS 3265 Luciferase reporter assay 24158791
hsa-mir-139-5p MIMAT0000250 IGF1R 3480 Luciferase reporter assay//qRT-PCR//Western blot 22580051|24942287|26097570
hsa-mir-139-5p MIMAT0000250 JUN 3725 Luciferase reporter assay//qRT-PCR//Western blot 25499265
hsa-mir-139-5p MIMAT0000250 MET 4233 Luciferase reporter assay//qRT-PCR//Western blot 26497851
hsa-mir-139-5p MIMAT0000250 PIK3CA 5290 Luciferase reporter assay 24158791
hsa-mir-139-5p MIMAT0000250 RAP1B 5908 PAR-CLIP//qRT-PCR//Western blot 24942287|23592263
hsa-mir-139-5p MIMAT0000250 ROCK2 9475 Luciferase reporter assay//qRT-PCR//Western blot 24942287
hsa-mir-224-5p MIMAT0000281 BCL2 596 Microarray//qRT-PCR//Western blot 22989374
hsa-mir-224-5p MIMAT0000281 HSP90AA1 3320 PAR-CLIP 23446348|20371350|26701625
hsa-mir-224-5p MIMAT0000281 IGF1R 3480 PAR-CLIP 20371350
hsa-mir-224-5p MIMAT0000281 CCND1 595 PAR-CLIP 26701625
hsa-mir-224-5p MIMAT0000281 CASP3 836 Luciferase reporter assay//Western blot 26307684
hsa-mir-224-5p MIMAT0000281 CDC42 998 /Microarray//qRT-PCR//Western blot 20023705|24817781|22989374
hsa-mir-224-5p MIMAT0000281 MTOR 2475 Luciferase reporter assay//qRT-PCR//Western blot 27315344
hsa-mir-224-5p MIMAT0000281 GSK3B 2932 Luciferase reporter assay 25588771
hsa-mir-224-5p MIMAT0000281 KRAS 3845 qRT-PCR//Western blot 23667495
hsa-mir-224-5p MIMAT0000281 SMAD4 4089 Luciferase reporter assay//qRT-PCR//Western blot 20118412|23922662|25804630
hsa-mir-224-5p MIMAT0000281 PDGFRB 5159 Microarray//Northern blot 16331254
hsa-mir-224-5p MIMAT0000281 MAP2K2 5605 HITS-CLIP 23824327
hsa-mir-224-5p MIMAT0000281 RAC1 5879 Luciferase reporter assay 27222381
hsa-mir-224-5p MIMAT0000281 TPR 7175 PAR-CLIP 22012620
hsa-mir-224-5p MIMAT0000281 CDH1 999 Luciferase reporter assay//qRT-PCR//Western blot 22989374|25804630
hsa-mir-224-5p MIMAT0000281 YES1 7525 PAR-CLIP 22012620
hsa-mir-224-5p MIMAT0000281 PAK2 5062 Microarray//qRT-PCR//Western blot 22989374
hsa-mir-139-5p MIMAT0000250 HRAS 3265 Luciferase reporter assay 24158791
hsa-mir-139-5p MIMAT0000250 JUN 3725 Luciferase reporter assay//qRT-PCR//Western blot 25499265
hsa-mir-139-5p MIMAT0000250 NFKB1 4790 Luciferase reporter assay 24158791
hsa-mir-139-5p MIMAT0000250 PIK3CA 5290 Luciferase reporter assay 24158791
hsa-mir-139-5p MIMAT0000250 RAP1B 5908 PAR-CLIP//qRT-PCR//Western blot 24942287|23592263
hsa-mir-139-5p MIMAT0000250 ABL2 27 PAR-CLIP 23446348|21572407|20371350
hsa-mir-139-5p MIMAT0000250 HRAS 3265 Luciferase reporter assay 24158791
hsa-mir-139-5p MIMAT0000250 ROCK2 9475 Luciferase reporter assay//qRT-PCR//Western blot 24942287
hsa-mir-135a-5p MIMAT0000428 BCL2 596 Luciferase reporter assay//qRT-PCR 25230140
hsa-mir-135a-5p MIMAT0000428 BIRC5 332 PAR-CLIP 23446348|21572407|20371350
hsa-mir-135a-5p MIMAT0000428 E2F1 1869 Microarray//qRT-PCR//Western blot 27683111
hsa-mir-135a-5p MIMAT0000428 FOXO1 2308 Luciferase reporter assay//qRT-PCR//Western blot 25888950|26261511|27486383
hsa-mir-135a-5p MIMAT0000428 MYC 4609 PAR-CLIP//Western blot 21572407|20371350|26701625
hsa-mir-135a-5p MIMAT0000428 PTK2 5747 Luciferase reporter assay//qRT-PCR//Western blot 28415713
hsa-mir-135a-5p MIMAT0000428 TRAF6 7189 PAR-CLIP 26701625
hsa-mir-135a-5p MIMAT0000428 DAPK2 23604 Microarray//qRT-PCR//Western blot 27683111
hsa-mir-135a-5p MIMAT0000428 PIAS4 51588 HITS-CLIP 23824327
hsa-mir-135a-5p MIMAT0000428 EGFR 1956 Luciferase reporter assay//Western blot 27524492
hsa-mir-135a-5p MIMAT0000428 SRC 6714 Immunoblot//Microarray 26364608
hsa-mir-135a-5p MIMAT0000428 ROCK2 9475 Luciferase reporter assay//qRT-PCR//Western blot 25065599
hsa-mir-135a-5p MIMAT0000428 ROCK1 6093 Luciferase reporter assay//qRT-PCR//Western blot 24465504|25065599
hsa-mir-135a-5p MIMAT0000428 TRAF6 7189 PAR-CLIP 26701625
hsa-mir-135a-5p MIMAT0000428 IRS2 8660 Luciferase reporter assay 23579070
hsa-mir-135a-5p MIMAT0000428 PTK2 5747 Luciferase reporter assay//qRT-PCR//Western blot 28415713
hsa-mir-135a-5p MIMAT0000428 APC 324 Luciferase reporter assay//qRT-PCR 18632633
hsa-mir-135a-5p MIMAT0000428 PIP5K1A 8394 PAR-CLIP 22100165
hsa-mir-135a-5p MIMAT0000428 NR3C2 4306 Luciferase reporter assay//qRT-PCR 19944075
hsa-mir-3200-5p MIMAT0017392 PAX8 7849 PAR-CLIP 23446348
hsa-mir-3200-5p MIMAT0017392 TGFBR2 7048 HITS-CLIP 19536157
hsa-mir-3200-5p MIMAT0017392 IGF1R 3480 PAR-CLIP 24398324|21572407
hsa-mir-3200-5p MIMAT0017392 CCND2 894 PAR-CLIP 22012620
hsa-mir-3200-5p MIMAT0017392 ENAH 55740 PAR-CLIP 21572407
hsa-mir-3200-5p MIMAT0017392 PFN2 5217 PAR-CLIP 23446348|21572407|20371350
hsa-mir-128-3p MIMAT0000424 CASP3 836 Sequencing 20371350
hsa-mir-128-3p MIMAT0000424 MTOR 2475 Luciferase reporter assay//Microarray//qRT-PCR 27893811
hsa-mir-128-3p MIMAT0000424 BAX 581 Luciferase reporter assay//qRT-PCR//Western blot 23526655
hsa-mir-128-3p MIMAT0000424 RUNX1 861 HITS-CLIP 23313552
hsa-mir-128-3p MIMAT0000424 E2F3 1871 Luciferase reporter assay 18810376|19013014
hsa-mir-128-3p MIMAT0000424 EGFR 1956 Western blot 22853714
hsa-mir-128-3p MIMAT0000424 IGF1 3479 Luciferase reporter assay//Microarray//qRT-PCR 27893811
hsa-mir-128-3p MIMAT0000424 JAK1 3716 Microarray 17612493
hsa-mir-128-3p MIMAT0000424 SMAD2 4087 Luciferase reporter assay 27087048
hsa-mir-128-3p MIMAT0000424 PIK3R1 5295 Luciferase reporter assay//Microarray//qRT-PCR 27893811
hsa-mir-128-3p MIMAT0000424 MAP2K1 5604 Sequencing 20371350
hsa-mir-128-3p MIMAT0000424 PTEN 5728 Luciferase reporter assay//qRT-PCR//Western blot 24132591|25250855
hsa-mir-128-3p MIMAT0000424 PTGS2 5743 Microarray 17612493
hsa-mir-128-3p MIMAT0000424 RET 5979 Flow//Luciferase reporter assay 23022987
hsa-mir-128-3p MIMAT0000424 RXRA 6256 Microarray//qRT-PCR//Western blot 23990020
hsa-mir-128-3p MIMAT0000424 SOS1 6654 HITS-CLIP 23313552
hsa-mir-128-3p MIMAT0000424 TGFBR1 7046 Luciferase reporter assay//PAR-CLIP//Western blot 20054641|23622248|23592263
hsa-mir-128-3p MIMAT0000424 HSP90B1 7184 CLASH 23622248
hsa-mir-128-3p MIMAT0000424 VEGFC 7424 Microarray//qRT-PCR//Western blot 17612493|25001183|26460960
hsa-mir-128-3p MIMAT0000424 CCDC6 8030 Microarray 17612493
hsa-mir-128-3p MIMAT0000424 FZD9 8326 PAR-CLIP 23446348|21572407|20371350
hsa-mir-128-3p MIMAT0000424 FADD 8772 Luciferase reporter assay//qRT-PCR//Western blot 24316133
hsa-mir-128-3p MIMAT0000424 WNT3A 89780 Microarray 17612493
hsa-mir-128-3p MIMAT0000424 EGFR 1956 Western blot 22853714
hsa-mir-128-3p MIMAT0000424 SMAD2 4087 Luciferase reporter assay 27087048
hsa-mir-128-3p MIMAT0000424 TGFBR1 7046 Luciferase reporter assay//PAR-CLIP//Western blot 20054641|23622248|23592263
hsa-mir-128-3p MIMAT0000424 FYN 2534 Microarray 17612493
hsa-mir-128-3p MIMAT0000424 SNAI2 6591 Flow//qRT-PCR//Western blot 23019226
hsa-mir-128-3p MIMAT0000424 SNAI1 6615 Luciferase reporter assay//qRT-PCR//Western blot 28424413
hsa-mir-128-3p MIMAT0000424 WASL 8976 PAR-CLIP 23592263
hsa-mir-128-3p MIMAT0000424 NECTIN4 81607 Luciferase reporter assay//Western blot 27507538
hsa-mir-128-3p MIMAT0000424 EGFR 1956 Western blot 22853714
hsa-mir-128-3p MIMAT0000424 IGF1 3479 Luciferase reporter assay//Microarray//qRT-PCR 27893811
hsa-mir-128-3p MIMAT0000424 PIK3R1 5295 Luciferase reporter assay//Microarray//qRT-PCR 27893811
hsa-mir-128-3p MIMAT0000424 MAP2K1 5604 Sequencing 20371350
hsa-mir-128-3p MIMAT0000424 PTEN 5728 Luciferase reporter assay//qRT-PCR//Western blot 24132591|25250855
hsa-mir-128-3p MIMAT0000424 SOS1 6654 HITS-CLIP 23313552
hsa-mir-128-3p MIMAT0000424 VEGFC 7424 /Microarray//qRT-PCR//Western blot 17612493|25001183|26460960
hsa-mir-128-3p MIMAT0000424 FYN 2534 Microarray 17612493
hsa-mir-128-3p MIMAT0000424 RAP1B 5908 PAR-CLIP 23592263
hsa-mir-128-3p MIMAT0000424 ARHGAP5 394 Microarray 17612493
hsa-mir-128-3p MIMAT0000424 ILK 3611 PAR-CLIP 23592263
hsa-mir-128-3p MIMAT0000424 PDPK1 5170 Microarray 17612493
hsa-mir-128-3p MIMAT0000424 RELN 5649 Luciferase reporter assay//qRT-PCR//Western blot 19713529
hsa-mir-128-3p MIMAT0000424 BAX 581 Luciferase reporter assay//qRT-PCR//Western blot 23526655
hsa-mir-128-3p MIMAT0000424 PIK3R1 5295 Luciferase reporter assay//Microarray//qRT-PCR 27893811
hsa-mir-128-3p MIMAT0000424 MAP2K1 5604 Sequencing 20371350
hsa-mir-128-3p MIMAT0000424 SOS1 6654 HITS-CLIP 23313552
hsa-mir-128-3p MIMAT0000424 RAP1B 5908 PAR-CLIP 23592263
hsa-mir-128-3p MIMAT0000424 MAPK14 1432 Immunoblot//Luciferase reporter assay//qRT-PCR 23109423
hsa-mir-128-3p MIMAT0000424 NTRK3 4916 Luciferase reporter assay 19370765|21143953
hsa-mir-128-3p MIMAT0000424 PDK1 5163 Luciferase reporter assay//qRT-PCR//Western blot 26949090
hsa-mir-128-3p MIMAT0000424 YWHAZ 7534 HITS-CLIP 23824327
hsa-mir-128-3p MIMAT0000424 RPS6KA5 9252 Sequencing 20371350
hsa-mir-128-3p MIMAT0000424 BEX3 27018 PAR-CLIP 23592263|24398324
hsa-mir-128-3p MIMAT0000424 MTOR 2475 Luciferase reporter assay//Microarray//qRT-PCR 27893811
hsa-mir-128-3p MIMAT0000424 EGFR 1956 Western blot 22853714
hsa-mir-128-3p MIMAT0000424 PIK3R1 5295 Luciferase reporter assay//Microarray//qRT-PCR 27893811
hsa-mir-128-3p MIMAT0000424 MAP2K1 5604 Sequencing 20371350
hsa-mir-128-3p MIMAT0000424 SOS1 6654 HITS-CLIP 23313552
hsa-mir-128-3p MIMAT0000424 NCK2 8440 Microarray 17612493
hsa-mir-128-3p MIMAT0000424 EGFR 1956 Western blot 22853714
hsa-mir-128-3p MIMAT0000424 PIK3R1 5295 Microarray//qRT-PCR 27893811
hsa-mir-128-3p MIMAT0000424 MAP2K1 5604 Sequencing 20371350
hsa-mir-128-3p MIMAT0000424 SOS1 6654 HITS-CLIP 23313552
hsa-mir-128-3p MIMAT0000424 WASL 8976 PAR-CLIP 23592263
hsa-mir-128-3p MIMAT0000424 GNG12 55970 PAR-CLIP 24398324|21572407|20371350
hsa-mir-128-3p MIMAT0000424 IGF1 3479 Luciferase reporter assay//Microarray//qRT-PCR 27893811
hsa-mir-128-3p MIMAT0000424 PIK3R1 5295 Luciferase reporter assay//Microarray//qRT-PCR 27893811
hsa-mir-128-3p MIMAT0000424 PDPK1 5170 Microarray 17612493
hsa-mir-128-3p MIMAT0000424 FXYD2 486 Microarray 17612493
hsa-mir-93-3p MIMAT0004509 CDC42 998 CLASH 23622248
hsa-mir-93-3p MIMAT0004509 MAP2K1 5604 CLASH 23622248
hsa-mir-93-3p MIMAT0004509 HSP90AB1 3326 CLASH 23622248
hsa-mir-93-3p MIMAT0004509 LAMA4 3910 CLASH 23622248
hsa-mir-93-3p MIMAT0004509 STAT5B 6777 CLASH 23622248
hsa-mir-93-3p MIMAT0004509 NCOA4 8031 CLASH 23622248
hsa-mir-93-3p MIMAT0004509 CUL2 8453 CLASH 23622248
hsa-mir-93-3p MIMAT0004509 SUFU 51684 CLASH 23622248
hsa-mir-93-3p MIMAT0004509 CYCS 54205 CLASH 23622248
hsa-mir-93-3p MIMAT0004509 FYN 2534 CLASH 23622248
hsa-mir-93-3p MIMAT0004509 ACTB 60 CLASH 23622248
hsa-mir-93-3p MIMAT0004509 ACTN1 87 CLASH 23622248
hsa-mir-93-3p MIMAT0004509 FER 2241 HITS-CLIP 23824327
hsa-mir-93-3p MIMAT0004509 PARD3 56288 CLASH 23622248
hsa-mir-93-3p MIMAT0004509 PPP1R12A 4659 CLASH 23622248
hsa-mir-93-3p MIMAT0004509 IRAK1 3654 CLASH 23622248
hsa-mir-93-3p MIMAT0004509 EIF4EBP1 1978 PAR-CLIP 20371350
hsa-mir-93-3p MIMAT0004509 TIAM1 7074 CLASH 23622248
hsa-mir-93-3p MIMAT0004509 ENAH 55740 CLASH 23622248
hsa-mir-93-3p MIMAT0004509 ATP1A1 476 CLASH 23622248
hsa-mir-93-3p MIMAT0004509 NEDD4L 23327 Luciferase reporter assay//qRT-PCR//Western blot 26581907
hsa-mir-30b-3p MIMAT0004589 IGF1 3479 HITS-CLIP 23824327
hsa-mir-30b-3p MIMAT0004589 CDKN1A 1026 PAR-CLIP 26701625
hsa-mir-30b-3p MIMAT0004589 XIAP 331 HITS-CLIP//PAR-CLIP 23446348|23824327
hsa-mir-30b-3p MIMAT0004589 BCL2L1 598 PAR-CLIP 26701625
hsa-mir-30b-3p MIMAT0004589 CRKL 1399 HITS-CLIP 23824327
hsa-mir-30b-3p MIMAT0004589 ITGA3 3675 HITS-CLIP 23706177|23313552
hsa-mir-30b-3p MIMAT0004589 MDM2 4193 PAR-CLIP 27292025
hsa-mir-30b-3p MIMAT0004589 PDGFRA 5156 HITS-CLIP//PAR-CLIP 23446348|23313552
hsa-mir-30b-3p MIMAT0004589 RARA 5914 PAR-CLIP 23592263
hsa-mir-30b-3p MIMAT0004589 STK4 6789 HITS-CLIP 23824327
hsa-mir-30b-3p MIMAT0004589 WNT7B 7477 PAR-CLIP 23592263
hsa-mir-30b-3p MIMAT0004589 YES1 7525 PAR-CLIP 27292025
hsa-mir-30b-3p MIMAT0004589 CTNND1 1500 PAR-CLIP 23592263|26701625
hsa-mir-30b-3p MIMAT0004589 COL5A1 1289 PAR-CLIP 23592263
hsa-mir-30b-3p MIMAT0004589 ITGB3 3690 HITS-CLIP 23824327
hsa-mir-30b-3p MIMAT0004589 TLN1 7094 HITS-CLIP 23824327
hsa-mir-30b-3p MIMAT0004589 YWHAZ 7534 PAR-CLIP 26701625
hsa-mir-30b-3p MIMAT0004589 YWHAB 7529 PAR-CLIP 27292025
hsa-mir-30b-3p MIMAT0004589 IRAK3 11213 HITS-CLIP//PAR-CLIP 21572407|20371350|23824327
hsa-mir-30b-3p MIMAT0004589 MSN 4478 PAR-CLIP 23592263
hsa-mir-30b-3p MIMAT0004589 MYH9 4627 HITS-CLIP//PAR-CLIP 23824327|23313552|26701625
hsa-mir-30b-3p MIMAT0004589 ARPC3 10094 PAR-CLIP 20371350
hsa-mir-30b-3p MIMAT0004589 ABI2 10152 HITS-CLIP 23824327
hsa-mir-30b-3p MIMAT0004589 ATP1B4 23439 HITS-CLIP 23824327
hsa-mir-345-5p MIMAT0000772 CDKN1A 1026 Luciferase reporter assay//qRT-PCR//Western blot 20190813
hsa-mir-345-5p MIMAT0000772 PAX8 7849 PAR-CLIP 23446348
hsa-mir-345-5p MIMAT0000772 CDKN1A 1026 Luciferase reporter assay//qRT-PCR//Western blot 20190813
hsa-mir-345-5p MIMAT0000772 NTRK3 4916 Luciferase reporter assay 19370765
hsa-mir-4291 MIMAT0016922 CDKN1A 1026 PAR-CLIP 26701625
hsa-mir-4291 MIMAT0016922 LAMA4 3910 PAR-CLIP 23592263
hsa-mir-4291 MIMAT0016922 CDK6 1021 PAR-CLIP 23446348|21572407|20371350
hsa-mir-4291 MIMAT0016922 FGF2 2247 PAR-CLIP 23446348|21572407|20371350
hsa-mir-4291 MIMAT0016922 RAF1 5894 PAR-CLIP 21572407
hsa-mir-4291 MIMAT0016922 TRAF1 7185 PAR-CLIP 23592263
hsa-mir-4291 MIMAT0016922 FZD6 8323 PAR-CLIP 22100165
hsa-mir-4291 MIMAT0016922 LAMA4 3910 PAR-CLIP 23592263
hsa-mir-4291 MIMAT0016922 RAF1 5894 PAR-CLIP 21572407
hsa-mir-4291 MIMAT0016922 VASP 7408 PAR-CLIP 26701625
hsa-mir-4291 MIMAT0016922 RAF1 5894 PAR-CLIP 21572407
hsa-mir-4291 MIMAT0016922 CDKN1A 1026 PAR-CLIP 26701625
hsa-mir-4291 MIMAT0016922 RAF1 5894 PAR-CLIP 21572407
hsa-mir-4291 MIMAT0016922 RAF1 5894 PAR-CLIP 21572407
hsa-mir-181a-3p MIMAT0000270 ARHGDIA 396 PAR-CLIP 26701625

PGRMC1 Signal Disruption and Silencing Alters miRNAs That Target Genes Involved in Breast Cancers

Once we identified the altered pathways following PGRMC1 signal disruption by AG-205 treatment we wanted to identify if the genes that are directly involved within these pathways are observed in breast cancer patient samples. Therefore, the identified genes were taken and computed into the xenabrowser database. TCGA data from primary and metastatic tumor samples was downloaded and plotted. Genes from p53 signaling pathway, cell cycle neutrophin signaling pathways, pathways in cancer, adherens junction, insulin signaling pathway, oocyte meiosis, mTOR signaling pathway, RNA degradation, and endocytosis were differentially expressed in both metastatic and primary tumor tissue samples ( Figure 4 ). Target genes of downregulated miRNAs were also differentially expressed in similar pathways including pathways in cancer, cell cycle, and p53 signaling pathway ( Supplementary Figure 5 ). Identified genes involved within each pathway following PGRMC1 silencing were similarly computed into the xenabrowser database. TCGA data analyzed from metastatic tumor samples identified upregulated miRNA target genes to be involved in pathways in cancer, T cell receptor signaling pathway, cell cycle, p53 signaling pathway, B cell receptor signaling pathway, MAPK signaling pathway, JAK-STAT signaling pathway, ErbB signaling pathway, NOD-like receptor signaling pathway, and mRNA surveillance pathway ( Figure 5 ). Intriguingly, downregulated miRNAs had similarly altered miRNA target genes in pathways in cancer, p53 signaling pathway, T cell receptor signaling pathway and ErbB signaling pathway ( Supplementary Figure 6 ). However, some miRNA target genes were also observed in adherens junctions, focal adhesion, neurotrophin signaling pathway, regulation of actin cytoskeleton, aldosterone-regulated sodium reabsorption and chemokine signaling pathway ( Supplementary Figure 6 ).

Figure 4.

Figure 4

Network analysis identified miRNA target genes to be upregulated in breast cancers following AG-205 treatment. miRNAs target differentially expressed genes miRNA target genes that are upregulated in metastatic breast tumor samples. A Log2 (normalized_counts) expression of upregulated miRNA target genes in metastatic breast tumor samples downloaded from TCGA database. miRNA target genes are involved in term pathways identified by KEGG analysis and are direct targets of the top miRNAs.

Figure 5.

Figure 5

Network analysis identified miRNA target genes to be upregulated in breast cancers following AG-205 treatment. The top upregulated miRNA target genes involved in KEGG pathway analysis have upregulated Log2 (normalized_counts) expression in metastatic breast tumor samples obtained from TCGA database.

PGRMC1 Regulates miRNAs Involved in Cell Cycle, Disease Signal and Transduction Processes

Gene network analysis allowed us to identify novel target genes and we were able to classify them using KEGG term enrichment following AG-205 treatment of PGRMC1 silencing. We employed the Reactome database to study pathway-topology analysis using the miRNA target genes from KEGG and GO analysis. Using the Reactome pathway identifier we were able to observe genes that are mapped to pathways and over-represented within those pathways (58, 61). Following AG-205 treatment, we identified over-representation of miRNA target genes in pathways involved in cell cycle, gene expression (Transcription), disease, and signal transduction ( Figure 6A ). Similarly, following PGRMC1 silencing we observed over-representation of miRNA target genes in pathways involved in immune system, signal transduction, gene expression (transcription), and cell cycle ( Figure 6B ).

Figure 6.

Figure 6

Reactome pathway analysis of the genes identified by KEGG term analysis. (A) Reactome pathways analysis of the miRNA target genes (n = 112) identified following AG-205 treatment illustrates increased pathway involvement. (B) Top pathways involved within the miRNA target genes (n = 84) observed following PGRMC1 silencing were also mapped. Over-represented pathways are highlighted in yellow. All overexpressed pathways are from gene lists of formerly annotated and published signatures.

Functional Annotation Analysis of PGRMC1 Altered miRNA Target Genes in Invasive Breast Carcinomas Samples Using TCGA Dataset

TCGA data was used to study possible genetic alterations of the miRNA target genes due to miRNA alterations in response to PGRMC1 disruption. From the miRNA target genes observed, the top 22 that displayed increased mRNA expression within the spectrum of signaling pathways identified by KEGG were further analyzed. Using the cBioportal database we were able to observe and differentiate between the miRNA target genes based on genetic alteration. Using oncoprint we visualized the genetic alterations in the 22 miRNA target genes (CCND1, YWHAZ, TPM3, BTG2, PABPC1, IGF1R, RAB11FIP1, PRKDC, MAPKAPK2, MAPK3, THBS1, CALM2, PIK3R1, RPS6, ACTB, PTPRF, ITGB1, RHOA, MAPK1, BCL2L1, RAC1 and PPP2R1A) ( Figure 7A and Supplementary Figure 7 ). However, the percentage of genetic alteration varied within each gene and most miRNA target genes that displayed an alteration in > 5 percent were mainly amplified ( Figure 7A ). Patients that displayed high expression of these genes had a cumulative lower survival rate ( Figure 7B ). Network analysis by the Genemania database demonstrated that these amplified genes have tight interactions within signaling pathways. The light-red lines connect genes that are known to directly interact with one another within signaling pathways that are well studied ( Figure 7C ). Although, cumulatively these genes displayed a lower survival rate, only high expression of CCDN1 and YWHAZ in ER-negative breast cancer patients displayed significant overall lower survival probability ( Figure 7D and Supplementary Figure 8 ). Finally, gene expression data analysis from the breast cancer cell line dataset and copy number variation from the cancer cell line encyclopedia dataset similarly demonstrated increased expression/CN variation of CCND1 and YWHAZ in TNBC cell lines ( Figure 7E ). Further, we also confirmed the decreased expression of CCND1 and YWHAZ in PGRMC1 silenced MDA-MB-468 cells ( Figure 7F ). Overall, our in vitro and in silico analysis demonstrates that PGRMC1 plays a major role in influencing the miRNome in such a way that these alterations favor breast tumor growth and progression.

Figure 7.

Figure 7

PGRMC1 impairment identified miRNA target genes to be amplified in invasive breast carcinoma patients. (A) Oncoprint illustrates genetic alterations such as inframe mutations, missense mutation, truncating mutation, amplification and deep deletion of breast cancer tumor samples (n=816). miRNA target genes that had a greater than 5% genetic alteration were considered for further analysis. (B) Cumulatively patient samples that have high signature/expression of miRNA target genes exhibiting > 5% genetic alterations are associated with poorer overall survival. (C) Network analysis links the top ten miRNA target genes with associated pathway interactions and predicts interactions within known pathways. (D) The top two miRNA target genes, CCND1 and YWHAZ are associated with significantly poorer overall survival in ER-negative breast tumor samples (P < 0.05 was considered significant). (E) Increased relative gene expression and copy number variation of CCND1 and YWHAZ, are observed in MDA-MB-468 breast cancer cell lines. (F) Relative mRNA expression of CCND1 and YWHAZ in PGRMC1 silenced MDA-MB-468 cells.

Discussion

TNBCs account for approximately 12-14% of breast cancers diagnosed in the United States, with most exhibiting BRCA1/2 and p53 germline mutations (62, 63). TNBCs are the most aggressive type of breast cancer and most patients do not respond well to conventional chemotherapy (64, 65). The concept of gene therapy has been brought up as an alternative to chemotherapy to treat these aggressive cancers (66, 67) in this case RNAi could be used to target mutated proteins which are a product of missense mutations, leading to high constitutive expression of mutated proteins such as TP53 (68). However, suppressing genes with RNAi requires effective delivery methods, which have proven to be effective in some cases but difficult in both in vivo and in vitro systems (6971). Therefore, other means of gene targeting therapies could be valued options.

miRNAs have emerged as important biological regulators of normal development (72) and evidence suggest that they play a major role in human cancers (73). miRNAs are abundantly found in multiple human cells and have the ability to regulate gene expression of approximately 60% of all mammalian genes (74, 75) hence they promote themselves as an attractive therapeutic option. Several miRNAs have been shown to be altered in TNBCs (2428). Two examples of this are through the activation of STAT3, a transcription factor that is well documented in cancers (76). Activation of STAT3 is observed in TNBC tumors where epigenetic suppression of miR-146b leads to constitutive STAT3 activation and tumor growth (77, 78). Secondly, through the activation of the miRNA-200 family, these miRNAs are known to negatively regulate the epithelial to mesenchymal transition (EMT) and can specifically target ZEB1/2 (79, 80). Thereby, leading to the question, if miRNAs such as miR-14b or the miR-200 family of miRNAs were to be up-regulated could they then target genes that are overexpressed or active like STAT3 and EMT inducers to inhibit tumor growth?

PGRMC1 has been deemed a novel tumor biomarker due to its elevated levels in human cancers (49, 8184). Because PGRMC1 plays a role in chemoresistance, tumor progression and growth it has become an attractive therapeutic target (36). Intriguingly, PGRMC1 is commonly observed in aggressive TNBC tissue (35). This is particularly interesting because TNBCs lack the classical signaling hormone receptors, ER and PR yet TNBCs that overexpress PGRMC1 could respond to steroid hormones via PGRMC1. Our previous studies showed that PGRMC1 is clearly overexpressed in the TNBC cell line MDA-MB-468 and using a known inhibitor (AG-205) and PGRMC1 silencing we demonstrated that it promotes TNBC cell proliferation through the EGFR/PI3K/AKT pathway (33). However, our study also focused on signaling pathways associated with ER-positive breast cancers (33). Here, we mainly focused on TNBCs as alternative mechanisms regulated by PGRMC1 in TNBCs should be further explored. To study and uncover novel mechanisms behind PGRMC1 we performed miRNome profiling following AG-205 treatment and PGRMC1 silencing. Studying the human miRNome enabled us to identify miRNAs that were significantly altered following PGRMC1 signal disruption and silencing. This presents itself as an important way to identify signaling pathways and genes involved within these pathways that could be associated with PGRMC1.

Human miRNome profiling identified alteration of 1,008 miRNAs following AG-205 treatment and 776 miRNAs after PGRMC1 siRNA transfection. Using a variety of gene mining platforms (miRNet, xenabrowser, cbioportal, Reactome, Kaplan-Meier plotter and GeneMANIA) we identified miRNA-mRNA network hubs that are altered when PGRMC1 is impaired. Network analysis by miRNet, an all in one, high-performance, analytics tool was used to predict PGRMC1 altered miRNAs targets (85). miRNet, incorporates data from TarBase, miRTarBase, starBase, EpimiR, PharmacomiR, SM2miR, PhenomiR, HMDD, miR2Disease, miRanda and miRecords making it a reliable data mining source (86). The top 10 most upregulated and downregulated miRNAs following AG-205 treatment and PGRMC1 silencing were identified. KEGG pathway analysis identified matching enriched pathways between the two treatment groups which included, pathways in cancer, cell cycle and p53 signaling pathway. In addition, TCGA derived gene expression data analysis taken from metastatic tissue identified the 22 most overexpressed genes in response to PGRMC1 signaling inhibition and silencing. Based on the above data, miRNAs that were upregulated following PGRMC1 impairment directly target and have the capability to suppress genes that are overexpressed in TNBC patient samples. However, because of their function we proceeded to study the downregulated miRNAs but considered them to be possible biomarkers. Interestingly, miR-30b, miR-664a-3p and miR-93-3p, miR-224-5p all which were downregulated following PGRMC1 impairment are commonly observed in multiple cancers including ovarian (87), prostate (88), gastric (89) and metastatic breast cancer (9092). Furthermore, miR-181a-3p, miR-224-5p, miR-345-5p and miR-93-3p act like oncogenes and all have been associated with chemoresistance, migration, metastasis and stemness (87, 88, 91, 93). Based on the available literature disrupting PGRMC1 downregulates miRNAs that display oncogenic potential.

To get a better understanding of the signaling mechanism involved within the upregulated miRNA target genes we employed the Reactome pathway analyzer. This enabled us to study different signaling pathways that are not associated with the KEGG analysis from the miRNet database. We observed the upregulated genes to be involved in cell cycle and signal transduction mechanisms. This agrees with our previous findings of cell cycle involvement; interestingly upregulated genes involved in signal transduction mechanisms could be directly regulated by PGRMC1, as signal transduction mechanisms are known to be directly involved in cellular membranes where PGRMC1 is primarily located (94). To further study the clinical impact of these genes, we studied genetic alterations using OncoPrint. It was particularly interesting to see that only 10 genes displayed significant genetic alteration among the 22 genes that were overexpressed. However, of the ten genes the top two most genetically altered, CCND1 and YWHAZ seemed to be overexpressed due to amplification and had overall lower survival probability. CCND1 has long been considered an oncogene and has been demonstrated to be amplified in 10-20% in one study while in another study CCND1 amplification was seen in 78.6% of breast cancer cases (9597). CCND1 is thought to play a major role in ER-positive but not in ER-negative breast cancers (98). One of the reasons could be because it is a known downstream target of PR that can promote breast cancer cell proliferation (99, 100). One interesting thought could be that in TNBCs that overexpress PGRMC1, it could be enhancing the transcription of CCND1 even in tumors that lack ER and PR making it a potential target in TNBCs. The YWHAZ gene has been described in multiple cancers including non-small lung cancer (101), hepatocellular carcinoma (102), gastric cancer (103), bladder cancer (104), and in breast cancers (105). Overexpression of YWHAZ in breast cancers has been associated with chemoresistance to anthracyclines particularly associated with metastatic recurrence (105). This is also extremely interesting as PGRMC1 has been linked to chemoresistance (106) and it would be strongly warranted to further explore the possibility of a PGRMC1/YWHAZ axis in metastatic breast cancers that do not respond to chemotherapy.

Conclusion

In summary, our study identified that impairing PGRMC1 can alter miRNAs, specifically hsa-mir-646 that directly targets CCND1 (107) as well as hsa-mir-410-3p and hsa-mir-3150b-3p which target YWHAZ (108113). Interestingly, both genes were amplified in patients with aggressive TNBCs and patients that express high levels of either gene have lower overall survival probability. Lastly, PGRMC1 impairment downregulates oncogenic miRNAs (miR-30b, miR-664a-3p and miR-93-3p, miR-224-5p, miR-181a-3p and miR-345-5p) in TNBC cells. Therefore, targeting PGRMC1 with AG-205 or a novel compound that can downregulate PGRMC1 expression could be potential therapeutic options for TNBC patients that overexpress PGRMC1.

Data Availability Statement

The original contributions presented in the study are included in the article/ Supplementary Material . Further inquiries can be directed to the corresponding author.

Author Contributions

Conception and design: RL and DP. Methodology was developed by DP and VR. Data acquisition: DP, MR, and VR. Data was interpreted by RL, DP, MR, VR, RS, and AE. The manuscript was written and/or revised by DP, MR, RS, VM, TG, and RL. This study was supervised by RL. All authors contributed to the article and approved the submitted version.

Funding

Breast Cancer Discretionary Fund from Texas Tech University Health Sciences Center El Paso.

Conflict of Interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Acknowledgments

We would like to thank Texas Tech University Health Sciences Center El Paso for supporting this research.

Supplementary Material

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fonc.2021.710337/full#supplementary-material

References

  • 1. Siegel RL, Miller KD, Jemal A. Cancer Statistics, 2020. CA Cancer J Clin (2020) 70(1):7–30.   10.3322/caac.21590 [DOI] [PubMed] [Google Scholar]
  • 2. Prat A, Perou CM. Deconstructing the Molecular Portraits of Breast Cancer. Mol Oncol (2011) 5(1):5–23.   10.1016/j.molonc.2010.11.003 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3. Clark SE, Warwick J, Carpenter R, Bowen RL, Duffy SW, Jones JL. Molecular Subtyping of DCIS: Heterogeneity of Breast Cancer Reflected in Pre-Invasive Disease. Br J Cancer (2011) 104(1):120–7.   10.1038/sj.bjc.6606021 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4. McGuire A, Lowery AJ, Kell MR, Kerin MJ, Sweeney KJ. Locoregional Recurrence Following Breast Cancer Surgery in the Trastuzumab Era: A Systematic Review by Subtype. Ann Surg Oncol (2017) 24(11):3124–32.   10.1245/s10434-017-6021-1 [DOI] [PubMed] [Google Scholar]
  • 5. Cheang MC, Martin M, Nielsen TO, Prat A, Voduc D, Rodriguez-Lescure A, et al. Defining Breast Cancer Intrinsic Subtypes by Quantitative Receptor Expression. Oncologist (2015) 20(5):474–82.   10.1634/theoncologist.2014-0372 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6. Jhan JR, Andrechek ER. Triple-Negative Breast Cancer and the Potential for Targeted Therapy. Pharmacogenomics (2017) 18(17):1595–609.   10.2217/pgs-2017-0117 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7. Gradishar WJ, Anderson BO, Abraham J, Aft R, Agnese D, Allison KH, et al. Breast Cancer, Version 3.2020, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw (2020) 18(4):452–78.   10.6004/jnccn.2020.0016 [DOI] [PubMed] [Google Scholar]
  • 8. Li X, Yang J, Peng L, Sahin AA, Huo L, Ward KC, et al. Triple-Negative Breast Cancer has Worse Overall Survival and Cause-Specific Survival Than non-Triple-Negative Breast Cancer. Breast Cancer Res Treat (2017) 161(2):279–87.   10.1007/s10549-016-4059-6 [DOI] [PubMed] [Google Scholar]
  • 9. Hasegawa S, Eguchi H, Nagano H, Konno M, Tomimaru Y, Wada H, et al. MicroRNA-1246 Expression Associated With CCNG2-mediated Chemoresistance and Stemness in Pancreatic Cancer. Br J Cancer (2014) 111(8):1572–80.   10.1038/bjc.2014.454 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10. Schreiber R, Mezencev R, Matyunina LV, McDonald JF. Evidence for the Role of microRNA 374b in Acquired Cisplatin Resistance in Pancreatic Cancer Cells. Cancer Gene Ther (2016) 23:241–5.   10.1038/cgt.2016.23 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11. Asakura K, Kadota T, Matsuzaki J, Yoshida Y, Yamamoto Y, Nakagawa K, et al. A miRNA-based Diagnostic Model Predicts Resectable Lung Cancer in Humans With High Accuracy. Commun Biol (2020) 3:134.   10.1038/s42003-020-0863-y [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12. Yokoi A, Matsuzaki J, Yamamoto Y, Yoneoka Y, Takahashi K, Shimizu H, et al. Integrated Extracellular microRNA Profiling for Ovarian Cancer Screening. Nat Commun (2018) 9:4319.   10.1038/s41467-018-06434-4 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13. Le Rhun E, Seoane J, Salzet M, Soffietti R, Weller M. Liquid Biopsies for Diagnosing and Monitoring Primary Tumors of the Central Nervous System. Cancer Lett (2020) 480:24–8.   10.1016/j.canlet.2020.03.021 [DOI] [PubMed] [Google Scholar]
  • 14. Nandy SB, Arumugam A, Subramani R, Pedroza D, Hernandez K, Saltzstein E, et al. MicroRNA-125a Influences Breast Cancer Stem Cells by Targeting Leukemia Inhibitory Factor Receptor Which Regulates the Hippo Signaling Pathway. Oncotarget (2015) 6:17366–78.   10.18632/oncotarget.3953 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15. Nandy SB, Orozco A, Lopez-Valdez R, Roberts R, Subramani R, Arumugam A, et al. Glucose Insult Elicits Hyperactivation of Cancer Stem Cells Through miR-424-cdc42-prdm14 Signalling Axis. Br J Cancer (2017) 117(11):1665–75.   10.1038/bjc.2017.335 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16. Sherafatian M. Tree-Based Machine Learning Algorithms Identified Minimal Set of miRNA Biomarkers for Breast Cancer Diagnosis and Molecular Subtyping. Gene (2018) 677:111–8.   10.1016/j.gene.2018.07.057 [DOI] [PubMed] [Google Scholar]
  • 17. Subramani R, Gangwani L, Nandy SB, Arumugam A, Chattopadhyay M, Lakshmanaswamy R. Emerging Roles of microRNAs in Pancreatic Cancer Diagnosis, Therapy and Prognosis (Review). Int J Oncol (2015) 47(4):1203–10.   10.3892/ijo.2015.3129 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18. Ivanov Y, Pleshakova T, Malsagova K, Kurbatov L, Popov V, Glukhov A, et al. Detection of Marker Mirnas, Associated With Prostate Cancer, in Plasma Using SOI-NW Biosensor in Direct and Inversion Modes. Sensors (Basel) (2019) 19(23).   10.3390/s19235248 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19. Blenkiron C, Miska EA. miRNAs in Cancer: Approaches, Aetiology, Diagnostics and Therapy. Hum Mol Genet (2007) 16 Spec No 1:R106–13.   10.1093/hmg/ddm056 [DOI] [PubMed] [Google Scholar]
  • 20. Piva R, Spandidos DA, Gambari R. From microRNA Functions to microRNA Therapeutics: Novel Targets and Novel Drugs in Breast Cancer Research and Treatment (Review). Int J Oncol (2013) 43:985–94.   10.3892/ijo.2013.2059 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21. van Schooneveld E, Wouters MC, Van der Auwera I, Peeters DJ, Wildiers H, Van Dam PA, et al. Expression Profiling of Cancerous and Normal Breast Tissues Identifies microRNAs That are Differentially Expressed in Serum From Patients With (Metastatic) Breast Cancer and Healthy Volunteers. Breast Cancer Res (2012) 14(1):R34.   10.1186/bcr3127 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22. Van der Auwera I, Yu W, Suo L, Van Neste L, van Dam P, Van Marck EA, et al. Array-Based DNA Methylation Profiling for Breast Cancer Subtype Discrimination. PLoS One (2010) 5(9):e12616.   10.1371/journal.pone.0012616 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23. van Schooneveld E, Wildiers H, Vergote I, Vermeulen PB, Dirix LY, Van Laere SJ. Dysregulation of microRNAs in Breast Cancer and Their Potential Role as Prognostic and Predictive Biomarkers in Patient Management. Breast Cancer Res (2015) 17:21.   10.1186/s13058-015-0526-y [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24. Piasecka D, Braun M, Kordek R, Sadej R, Romanska H. MicroRNAs in Regulation of Triple-Negative Breast Cancer Progression. J Cancer Res Clin Oncol (2018) 144(8):1401–11.   10.1007/s00432-018-2689-2 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25. Chang YY, Kuo WH, Hung JH, Lee CY, Lee YH, Chang YC, et al. Deregulated microRNAs in Triple-Negative Breast Cancer Revealed by Deep Sequencing. Mol Cancer (2015) 14:36.   10.1186/s12943-015-0301-9 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26. Lü L, Mao X, Shi P, He B, Xu K, Zhang S, et al. MicroRNAs in the Prognosis of Triple-Negative Breast Cancer: A Systematic Review and Meta-Analysis. Med (Baltimore) (2017) 96:e7085.   10.1097/MD.0000000000007085 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27. Zhu H, Dai M, Chen X, Qin S, Dai S. Integrated Analysis of the Potential Roles of miRNA−mRNA Networks in Triple Negative Breast Cancer. Mol Med Rep (2017) 16:1139–46.   10.3892/mmr.2017.6750 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28. Paszek S, Gabło N, Barnaś E, Szybka M, Morawiec J, Kołacińska A, et al. Dysregulation of microRNAs in Triple-Negative Breast Cancer. Ginekol Pol (2017) 88:530–6.   10.5603/GP.a2017.0097 [DOI] [PubMed] [Google Scholar]
  • 29. Mueck AO, Ruan X, Seeger H, Fehm T, Neubauer H. Genomic and non-Genomic Actions of Progestogens in the Breast. J Steroid Biochem Mol Biol (2014) 142:62–7.   10.1016/j.jsbmb.2013.08.011 [DOI] [PubMed] [Google Scholar]
  • 30. Wang C, Liu Y, Cao JM. G Protein-Coupled Receptors: Extranuclear Mediators for the non-Genomic Actions of Steroids. Int J Mol Sci (2014) 15:15412–25.   10.3390/ijms150915412 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31. Zhang Y, Ruan X, Mi X, Mueck AO. Expression of PGRMC1 in Paraffin-Embedded Tissues of Breast Cancer. Int J Clin Exp Pathol (2017) 10:9639–43. [PMC free article] [PubMed] [Google Scholar]
  • 32. Pedroza DA, Subramani R, Lakshmanaswamy R. Classical and Non-Classical Progesterone Signaling in Breast Cancers. Cancers (Basel) (2020) 12(9).   10.3390/cancers12092440 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33. Pedroza DA, Rajamanickam V, Subramani R, Bencomo A, Galvez A, Lakshmanaswamy R. Progesterone Receptor Membrane Component 1 Promotes the Growth of Breast Cancers by Altering the Phosphoproteome and Augmenting EGFR/PI3K/AKT Signalling. Br J Cancer (2020).   10.1038/s41416-020-0992-6 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34. Ruan X, Zhang Y, Mueck AO, Willibald M, Seeger H, Fehm T, et al. Increased Expression of Progesterone Receptor Membrane Component 1 is Associated With Aggressive Phenotype and Poor Prognosis in ER-positive and Negative Breast Cancer. Menopause (2017) 24:203–9.   10.1097/GME.0000000000000739 [DOI] [PubMed] [Google Scholar]
  • 35. Clark NC, Friel AM, Pru CA, Zhang L, Shioda T, Rueda BR, et al. Progesterone Receptor Membrane Component 1 Promotes Survival of Human Breast Cancer Cells and the Growth of Xenograft Tumors. Cancer Biol Ther (2016) 17:262–71.   10.1080/15384047.2016.1139240 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36. Rohe HJ, Ahmed IS, Twist KE, Craven RJ. PGRMC1 (Progesterone Receptor Membrane Component 1): A Targetable Protein With Multiple Functions in Steroid Signaling, P450 Activation and Drug Binding. Pharmacol Ther (2009) 121:14–9.   10.1016/j.pharmthera.2008.09.006 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37. Cahill MA, Jazayeri JA, Catalano SM, Toyokuni S, Kovacevic Z, Richardson DR. The Emerging Role of Progesterone Receptor Membrane Component 1 (PGRMC1) in Cancer Biology. Biochim Biophys Acta (2016) 1866:339–49.   10.1016/j.bbcan.2016.07.004 [DOI] [PubMed] [Google Scholar]
  • 38. Ahmed IS, Rohe HJ, Twist KE, Mattingly MN, Craven RJ. Progesterone Receptor Membrane Component 1 (Pgrmc1): A Heme-1 Domain Protein That Promotes Tumorigenesis and is Inhibited by a Small Molecule. J Pharmacol Exp Ther (2010) 333:564–73.   10.1124/jpet.109.164210 [DOI] [PubMed] [Google Scholar]
  • 39. Willibald M, Wurster I, Meisner C, Vogel U, Seeger H, Mueck AO, et al. High Level of Progesteron Receptor Membrane Component 1 (PGRMC 1) in Tissue of Breast Cancer Patients is Associated With Worse Response to Anthracycline-Based Neoadjuvant Therapy. Horm Metab Res (2017) 49:595–603.   10.1055/s-0043-113635 [DOI] [PubMed] [Google Scholar]
  • 40. Shih CC, Chou HC, Chen YJ, Kuo WH, Chan CH, Lin YC, et al. Role of PGRMC1 in Cell Physiology of Cervical Cancer. Life Sci (2019) 231:116541.   10.1016/j.lfs.2019.06.016 [DOI] [PubMed] [Google Scholar]
  • 41. Network, C. G. A . Comprehensive Molecular Portraits of Human Breast Tumours. Nature (2012) 490:61–70.   10.1038/nature11412 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42. Stephens PJ, Tarpey PS, Davies H, Van Loo P, Greenman C, Wedge DC, et al. The Landscape of Cancer Genes and Mutational Processes in Breast Cancer. Nature (2012) 486:400–4.   10.1038/nature11017 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 43. Kawazu M, Kojima S, Ueno T, Totoki Y, Nakamura H, Kunita A, et al. Integrative Analysis of Genomic Alterations in Triple-Negative Breast Cancer in Association With Homologous Recombination Deficiency. PLoS Genet (2017) 13:e1006853.   10.1371/journal.pgen.1006853 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 44. Rice JC, Ozcelik H, Maxeiner P, Andrulis I, Futscher BW. Methylation of the BRCA1 Promoter is Associated With Decreased BRCA1 mRNA Levels in Clinical Breast Cancer Specimens. Carcinogenesis (2000) 21:1761–5.   10.1093/carcin/21.9.1761 [DOI] [PubMed] [Google Scholar]
  • 45. Bareche Y, Venet D, Ignatiadis M, Aftimos P, Piccart M, Rothe F, et al. Unravelling Triple-Negative Breast Cancer Molecular Heterogeneity Using an Integrative Multiomic Analysis. Ann Oncol (2018) 29:895–902.   10.1093/annonc/mdy024 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 46. Harbeck N, Penault-Llorca F, Cortes J, Gnant M, Houssami N, Poortmans P, et al. Breast Cancer. Nat Rev Dis Primers (2019) 5:66.   10.1038/s41572-019-0111-2 [DOI] [PubMed] [Google Scholar]
  • 47. Zhu X, Han Y, Fang Z, Wu W, Ji M, Teng F, et al. Progesterone Protects Ovarian Cancer Cells From Cisplatin-Induced Inhibitory Effects Through Progesterone Receptor Membrane Component 1/2 as Well as AKT Signaling. Oncol Rep (2013) 30:2488–94.   10.3892/or.2013.2680 [DOI] [PubMed] [Google Scholar]
  • 48. Liu L, Wang J, Zhao L, Nilsen J, McClure K, Wong K, et al. Progesterone Increases Rat Neural Progenitor Cell Cycle Gene Expression and Proliferation Via Extracellularly Regulated Kinase and Progesterone Receptor Membrane Components 1 and 2. Endocrinology (2009) 150:3186–96.   10.1210/en.2008-1447 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 49. Neubauer H, Clare SE, Wozny W, Schwall GP, Poznanovic S, Stegmann W, et al. Breast Cancer Proteomics Reveals Correlation Between Estrogen Receptor Status and Differential Phosphorylation of PGRMC1. Breast Cancer Res (2008) 10:R85.   10.1186/bcr2155 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 50. Polivka J, Janku F. Molecular Targets for Cancer Therapy in the PI3K/AKT/mTOR Pathway. Pharmacol Ther (2014) 142:164–75.   10.1016/j.pharmthera.2013.12.004 [DOI] [PubMed] [Google Scholar]
  • 51. Engelman JA. Targeting PI3K Signalling in Cancer: Opportunities, Challenges and Limitations. Nat Rev Cancer (2009) 9:550–62.   10.1038/nrc2664 [DOI] [PubMed] [Google Scholar]
  • 52. Liu P, Cheng H, Roberts TM, Zhao JJ. Targeting the Phosphoinositide 3-Kinase Pathway in Cancer. Nat Rev Drug Discov (2009) 8:627–44.   10.1038/nrd2926 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 53. Fruman DA, Rommel C. PI3K and Cancer: Lessons, Challenges and Opportunities. Nat Rev Drug Discov (2014) 13:140–56.   10.1038/nrd4204 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 54. Thorpe LM, Yuzugullu H, Zhao JJ. PI3K in Cancer: Divergent Roles of Isoforms, Modes of Activation and Therapeutic Targeting. Nat Rev Cancer (2015) 15:7–24.   10.1038/nrc3860 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 55. Janku F, Yap TA, Meric-Bernstam F. Targeting the PI3K Pathway in Cancer: Are We Making Headway? Nat Rev Clin Oncol (2018) 15:273–91.   10.1038/nrclinonc.2018.28 [DOI] [PubMed] [Google Scholar]
  • 56. Shapiro GI, LoRusso P, Kwak E, Pandya S, Rudin CM, Kurkjian C, et al. Phase Ib Study of the MEK Inhibitor Cobimetinib (GDC-0973) in Combination With the PI3K Inhibitor Pictilisib (GDC-0941) in Patients With Advanced Solid Tumors. Invest New Drugs (2020) 38:419–32.   10.1007/s10637-019-00776-6 [DOI] [PubMed] [Google Scholar]
  • 57. Basho RK, Gilcrease M, Murthy RK, Helgason T, Karp DD, Meric-Bernstam F, et al. Targeting the PI3K/AKT/mTOR Pathway for the Treatment of Mesenchymal Triple-Negative Breast Cancer: Evidence From a Phase 1 Trial of Mtor Inhibition in Combination With Liposomal Doxorubicin and Bevacizumab. JAMA Oncol (2017) 3:509–15.   10.1001/jamaoncol.2016.5281 [DOI] [PubMed] [Google Scholar]
  • 58. Jassal B, Matthews L, Viteri G, Gong C, Lorente P, Fabregat A, et al. The Reactome Pathway Knowledgebase. Nucleic Acids Res (2020) 48:D498–503.   10.1093/nar/gkz1031 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 59. Milacic M, Haw R, Rothfels K, Wu G, Croft D, Hermjakob H, et al. Annotating Cancer Variants and Anti-Cancer Therapeutics in Reactome. Cancers (Basel) (2012) 4:1180–211.   10.3390/cancers4041180 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 60. Ciriello G, Gatza ML, Beck AH, Wilkerson MD, Rhie SK, Pastore A, et al. Comprehensive Molecular Portraits of Invasive Lobular Breast Cancer. Cell (2015) 163:506–19.   10.1016/j.cell.2015.09.033 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 61. Fabregat A, Sidiropoulos K, Viteri G, Forner O, Marin–Garcia P, Arnau V, et al. Reactome Pathway Analysis: A High-Performance in-Memory Approach. BMC Bioinf (2017) 18:142.   10.1186/s12859-017-1559-2 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 62. Hwang SY, Park S, Kwon Y. Recent Therapeutic Trends and Promising Targets in Triple Negative Breast Cancer. Pharmacol Ther (2019) 199:30–57.   10.1016/j.pharmthera.2019.02.006 [DOI] [PubMed] [Google Scholar]
  • 63. Shah SP, Roth A, Goya R, Oloumi A, Ha G, Zhao Y, et al. The Clonal and Mutational Evolution Spectrum of Primary Triple-Negative Breast Cancers. Nature (2012) 486:395–9.   10.1038/nature10933 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 64. Dent R, Trudeau M, Pritchard KI, Hanna WM, Kahn HK, Sawka CA, et al. Triple-Negative Breast Cancer: Clinical Features and Patterns of Recurrence. Clin Cancer Res (2007) 13:4429–34.   10.1158/1078-0432.CCR-06-3045 [DOI] [PubMed] [Google Scholar]
  • 65. de Ruijter TC, Veeck J, de Hoon JP, van Engeland M, Tjan-Heijnen VC. Characteristics of Triple-Negative Breast Cancer. J Cancer Res Clin Oncol (2011) 137:183–92.   10.1007/s00432-010-0957-x [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 66. O’Toole SA, Beith JM, Millar EK, West R, McLean A, Cazet A, et al. Therapeutic Targets in Triple Negative Breast Cancer. J Clin Pathol (2013) 66:530–42.   10.1136/jclinpath-2012-201361 [DOI] [PubMed] [Google Scholar]
  • 67. Turner N, Moretti E, Siclari O, Migliaccio I, Santarpia L, D'Incalci M, et al. Targeting Triple Negative Breast Cancer: Is p53 the Answer? Cancer Treat Rev (2013) 39:541–50.   10.1016/j.ctrv.2012.12.001 [DOI] [PubMed] [Google Scholar]
  • 68. Coradini D, Biganzoli E, Ardoino I, Ambrogi F, Boracchi P, Demicheli R, et al. p53 Status Identifies Triple-Negative Breast Cancer Patients Who do Not Respond to Adjuvant Chemotherapy. Breast (2015) 24:294–7.   10.1016/j.breast.2015.01.007 [DOI] [PubMed] [Google Scholar]
  • 69. Davis ME, Zuckerman JE, Choi CH, Seligson D, Tolcher A, Alabi CA, et al. Evidence of RNAi in Humans From Systemically Administered siRNA Via Targeted Nanoparticles. Nature (2010) 464:1067–70.   10.1038/nature08956 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 70. Lares MR, Rossi JJ, Ouellet DL. Rnai and Small Interfering RNAs in Human Disease Therapeutic Applications. Trends Biotechnol (2010) 28:570–9.   10.1016/j.tibtech.2010.07.009 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 71. Hu B, Zhong L, Weng Y, Peng L, Huang Y, Zhao Y, et al. Therapeutic siRNA: State of the Art. Signal Transduct Target Ther (2020) 5:101.   10.1038/s41392-020-0207-x [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 72. Ivey KN, Srivastava D. microRNAs as Developmental Regulators. Cold Spring Harb Perspect Biol (2015) 7:a008144.   10.1101/cshperspect.a008144 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 73. Peng Y, Croce CM. The Role of MicroRNAs in Human Cancer. Signal Transduct Target Ther (2016) 1:15004.   10.1038/sigtrans.2015.4 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 74. Friedman RC, Farh KK, Burge CB, Bartel DP. Most Mammalian mRNAs are Conserved Targets of Micrornas. Genome Res (2009) 19:92–105.   10.1101/gr.082701.108 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 75. Lim LP, Lau NC, Weinstein EG, Abdelhakim A, Yekta S, Rhoades MW, et al. The microRNAs of Caenorhabditis Elegans. Genes Dev (2003) 17:991–1008.   10.1101/gad.1074403 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 76. Yu H, Lee H, Herrmann A, Buettner R, Jove R. Revisiting STAT3 Signalling in Cancer: New and Unexpected Biological Functions. Nat Rev Cancer (2014) 14:736–46.   10.1038/nrc3818 [DOI] [PubMed] [Google Scholar]
  • 77. Xiang M, Birkbak NJ, Vafaizadeh V , Walker SR, Yeh JE, Liu S, et al. STAT3 Induction of miR-146b Forms a Feedback Loop to Inhibit the NF-κb to IL-6 Signaling Axis and STAT3-driven Cancer Phenotypes. Sci Signal (2014) 7:ra11.   10.1126/scisignal.2004497 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 78. Paliouras AR, Monteverde T, Garofalo M. Oncogene-Induced Regulation of microRNA Expression: Implications for Cancer Initiation, Progression and Therapy. Cancer Lett (2018) 421:152–60.   10.1016/j.canlet.2018.02.029 [DOI] [PubMed] [Google Scholar]
  • 79. Korpal M, Lee ES, Hu G, Kang Y. The miR-200 Family Inhibits Epithelial-Mesenchymal Transition and Cancer Cell Migration by Direct Targeting of E-cadherin Transcriptional Repressors ZEB1 and ZEB2. J Biol Chem (2008) 283:14910–4.   10.1074/jbc.C800074200 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 80. Wang J, Tsouko E, Jonsson P, Bergh J, Hartman J, Aydogdu E, et al. miR-206 Inhibits Cell Migration Through Direct Targeting of the Actin-Binding Protein Coronin 1C in Triple-Negative Breast Cancer. Mol Oncol (2014) 8:1690–702.   10.1016/j.molonc.2014.07.006 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 81. Zhang D, Xia X, Wang X, Zhang P, Lu W, Yu Y, et al. PGRMC1 Is a Novel Potential Tumor Biomarker of Human Renal Cell Carcinoma Based on Quantitative Proteomic and Integrative Biological Assessments. PLoS One (2017) 12:e0170453.   10.1371/journal.pone.0170453 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 82. Craven RJ. PGRMC1: A New Biomarker for the Estrogen Receptor in Breast Cancer. Breast Cancer Res (2008) 10(6):113.   10.1186/bcr2191 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 83. Peluso JJ, Liu X, Saunders MM, Claffey KP, Phoenix K. Regulation of Ovarian Cancer Cell Viability and Sensitivity to Cisplatin by Progesterone Receptor Membrane Component-1. J Clin Endocrinol Metab (2008) 93(5):1592–9.   10.1210/jc.2007-2771 [DOI] [PubMed] [Google Scholar]
  • 84. Mir SU, Ahmed IS, Arnold S, Craven RJ. Elevated Progesterone Receptor Membrane Component 1/Sigma-2 Receptor Levels in Lung Tumors and Plasma From Lung Cancer Patients. Int J Cancer (2012) 131(2):E1–9.   10.1002/ijc.26432 [DOI] [PubMed] [Google Scholar]
  • 85. Fan Y, Xia J. Mirnet-Functional Analysis and Visual Exploration of Mirna-Target Interactions in a Network Context. Methods Mol Biol (2018) 1819:215–33.   10.1007/978-1-4939-8618-7_10 [DOI] [PubMed] [Google Scholar]
  • 86. Fan Y, Siklenka K, Arora SK, Ribeiro P, Kimmins S, Xia J. miRNet - Dissecting miRNA-target Interactions and Functional Associations Through Network-Based Visual Analysis. Nucleic Acids Res (2016) 44(W1):W135–41.   10.1093/nar/gkw288 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 87. Zhao H, Bi T, Qu Z, Jiang J, Cui S, Wang Y. Expression of miR-224-5p is Associated With the Original Cisplatin Resistance of Ovarian Papillary Serous Carcinoma. Oncol Rep (2014) 32(3):1003–12.   10.3892/or.2014.3311 [DOI] [PubMed] [Google Scholar]
  • 88. Tinay I, Tan M, Gui B, Werner L, Kibel AS, Jia L. Functional Roles and Potential Clinical Application of miRNA-345-5p in Prostate Cancer. Prostate (2018) 78(12):927–37.   10.1002/pros.23650 [DOI] [PubMed] [Google Scholar]
  • 89. Wang L, Li B, Zhang L, Li Q, He Z, Zhang X, et al. miR-664a-3p Functions as an Oncogene by Targeting Hippo Pathway in the Development of Gastric Cancer. Cell Prolif (2019) 52(3):e12567.   10.1111/cpr.12567 [DOI] [PMC free article] [PubMed] [Google Scholar] [Retracted]
  • 90. Wu L, Li Y, Li J, Ma D. Microrna-664 Targets Insulin Receptor Substrate 1 to Suppress Cell Proliferation and Invasion in Breast Cancer. Oncol Res (2019) 27(4):459–67.   10.3727/096504018X15193500663936 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 91. Li HY, Liang JL, Kuo YL, Lee HH, Calkins MJ, Chang HT, et al. miR-105/93-3p Promotes Chemoresistance and Circulating miR-105/93-3p Acts as a Diagnostic Biomarker for Triple Negative Breast Cancer. Breast Cancer Res (2017) 19(1):133.   10.1186/s13058-017-0918-2 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 92. Estevão-Pereira H, Lobo J, Salta S, Amorim M, Lopes P, Cantante M, et al. Overexpression of Circulating MiR-30b-5p Identifies Advanced Breast Cancer. J Transl Med (2019) 17(1):435.   10.1186/s12967-019-02193-y [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 93. Lu Q, Chen Y, Sun D, Wang S, Ding K, Liu M, et al. Microrna-181a Functions as an Oncogene in Gastric Cancer by Targeting Caprin-1. Front Pharmacol (2018) 9:1565.   10.3389/fphar.2018.01565 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 94. Groves JT, Kuriyan J. Molecular Mechanisms in Signal Transduction at the Membrane. Nat Struct Mol Biol (2010) 17(6):659–65.   10.1038/nsmb.1844 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 95. Gillett C, Fantl V, Smith R, Fisher C, Bartek J, Dickson C, et al. Amplification and Overexpression of Cyclin D1 in Breast Cancer Detected by Immunohistochemical Staining. Cancer Res (1994) 54(7):1812–7. [PubMed] [Google Scholar]
  • 96. Zhang SY, Caamano J, Cooper F, Guo X, Klein-Szanto AJ. Immunohistochemistry of Cyclin D1 in Human Breast Cancer. Am J Clin Pathol (1994) 102(5):695–8.   10.1093/ajcp/102.5.695 [DOI] [PubMed] [Google Scholar]
  • 97. Mohammadizadeh F, Hani M, Ranaee M, Bagheri M. Role of Cyclin D1 in Breast Carcinoma. J Res Med Sci (2013) 18(12):1021–5. [PMC free article] [PubMed] [Google Scholar]
  • 98. Ahlin C, Lundgren C, Embretén-Varro E, Jirström K, Blomqvist C, Fjällskog M. High Expression of Cyclin D1 is Associated to High Proliferation Rate and Increased Risk of Mortality in Women With ER-positive But Not in ER-negative Breast Cancers. Breast Cancer Res Treat (2017) 164(3):667–78.   10.1007/s10549-017-4294-5 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 99. Giulianelli S, Vaqué JP, Soldati R, Wargon V, Vanzulli SI, Martins R, et al. Estrogen Receptor Alpha Mediates Progestin-Induced Mammary Tumor Growth by Interacting With Progesterone Receptors at the Cyclin D1/MYC Promoters. Cancer Res (2012) 72(9):2416–27.   10.1158/0008-5472.CAN-11-3290 [DOI] [PubMed] [Google Scholar]
  • 100. Diep CH, Ahrendt H, Lange CA. Progesterone Induces Progesterone Receptor Gene (PGR) Expression Via Rapid Activation of Protein Kinase Pathways Required for Cooperative Estrogen Receptor Alpha (ER) and Progesterone Receptor (PR) Genomic Action at ER/PR Target Genes. Steroids (2016) 114:48–58.   10.1016/j.steroids.2016.09.004 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 101. Deng Y, Zheng J, Ma J. The Clinical and Prognostic Significance of YWHAZ in non-Small-Cell Lung Cancer Patients: Immunohistochemical Analysis. J Cell Biochem (2019) 120(4):6290–8.   10.1002/jcb.27915 [DOI] [PubMed] [Google Scholar]
  • 102. Zhao JF, Zhao Q, Hu H, Liao JZ, Lin JS, Xia C, et al. The ASH1-miR-375-YWHAZ Signaling Axis Regulates Tumor Properties in Hepatocellular Carcinoma. Mol Ther Nucleic Acids (2018) 11:538–53.   10.1016/j.omtn.2018.04.007 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 103. Guo F, Jiao D, Sui GQ, Sun LN, Gao YJ, Fu QF, et al. Anticancer Effect of YWHAZ Silencing Via Inducing Apoptosis and Autophagy in Gastric Cancer Cells. Neoplasma (2018) 65(5):693–700.   10.4149/neo_2018_170922N603 [DOI] [PubMed] [Google Scholar]
  • 104. Liu S, Jiang H, Wen H, Ding Q, Feng C. Knockdown of Tyrosine 3-Monooxygenase/Tryptophan 5-Monooxygenase Activation Protein Zeta (YWHAZ) Enhances Tumorigenesis Both In Vivo and In Vitro in Bladder Cancer. Oncol Rep (2018) 39(5):2127–35.   10.3892/or.2018.6294 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 105. Li Y, Zou L, Li Q, Haibe-Kains B, Tian R, Desmedt C, et al. Amplification of LAPTM4B and YWHAZ Contributes to Chemotherapy Resistance and Recurrence of Breast Cancer. Nat Med (2010) 16(2):214–8.   10.1038/nm.2090 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 106. Kabe Y, Nakane T, Koike I, Yamamoto T, Sugiura Y, Harada E, et al. Haem-Dependent Dimerization of PGRMC1/Sigma-2 Receptor Facilitates Cancer Proliferation and Chemoresistance. Nat Commun (2016) 7:11030.   10.1038/ncomms11030 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 107. Farazi TA, Ten Hoeve JJ, Brown M, Mihailovic A, Horlings HM, van de Vijver MJ, et al. Identification of Distinct miRNA Target Regulation Between Breast Cancer Molecular Subtypes Using AGO2-PAR-CLIP and Patient Datasets. Genome Biol (2014) 15(1):R9.   10.1186/gb-2014-15-1-r9 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 108. Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A, et al. Circular RNAs are a Large Class of Animal RNAs With Regulatory Potency. Nature (2013) 495:333–8.   10.1038/nature11928 [DOI] [PubMed] [Google Scholar]
  • 109. Kishore S, Jaskiewicz L, Burger L, Hausser J, Khorshid M, Zavolan M. A Quantitative Analysis of CLIP Methods for Identifying Binding Sites of RNA-binding Proteins. Nat Methods (2011) 8(7):559–64.   10.1038/nmeth.1608 [DOI] [PubMed] [Google Scholar]
  • 110. Hafner M, Landthaler M, Burger L, Khorshid M, Hausser J, Berninger P, et al. Transcriptome-Wide Identification of RNA-binding Protein and microRNA Target Sites by PAR-CLIP. Cell (2010) 141(1):129–41.   10.1016/j.cell.2010.03.009 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 111. Karginov FV, Hannon GJ. Remodeling of Ago2-mRNA Interactions Upon Cellular Stress Reflects miRNA Complementarity and Correlates With Altered Translation Rates. Genes Dev (2013) 27(14):1624–32.   10.1101/gad.215939.113 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 112. Xue Y, Ouyang K, Huang J, Zhou Y, Ouyang H, Li H, et al. Direct Conversion of Fibroblasts to Neurons by Reprogramming PTB-regulated microRNA Circuits. Cell (2013) 152(1–2):82–96.   10.1016/j.cell.2012.11.045 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 113. Tang YT, Hu T, Arterburn M, Boyle B, Bright JM, Emtage PC, et al. PAQR Proteins: A Novel Membrane Receptor Family Defined by an Ancient 7-Transmembrane Pass Motif. J Mol Evol (2005) 61(3):372–80.   10.1007/s00239-004-0375-2 [DOI] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Data Availability Statement

The original contributions presented in the study are included in the article/ Supplementary Material . Further inquiries can be directed to the corresponding author.


Articles from Frontiers in Oncology are provided here courtesy of Frontiers Media SA

RESOURCES