Abstract
目的
探讨巨噬细胞移动抑制因子(MIF)/κb(NF-κB)对1-甲基-4-苯基吡啶离子(MPP+)/1-甲基-4-苯基-1, 2, 3, 6-四氢吡啶(MPTP)激活小胶质细胞NLRP3炎症小体的影响和机制,进而对神经元的影响。
方法
慢病毒MIF-shRNA感染Bv-2细胞,敲低MIF表达。Western blot检测MPP+干预的Bv-2 NLRP3和MIF表达水平、转染病毒后细胞NLRP3、p65、caspase-1表达水平及细胞核、浆蛋白p65表达水平。ELISA检测细胞培养上清液IL-1β、IL-18表达水平。将细胞培养上清液作为条件培养基培养MN9D细胞,Western blot检测TH蛋白表达水平。C57BL/6小鼠腹腔注射MPTP构建PD小鼠模型,向中脑黑质致密部立体定位注射腺相关病毒MIF-shRNA(AAV-MIF-shRNA)敲低MIF表达。对小鼠进行旷场实验、爬杆实验、悬挂实验行为学评估,组织免疫组化检测小鼠多巴胺能神经元细胞数目和小胶质细胞活化情况,Western blot检测小鼠黑质MIF、NLRP3及TH表达情况。
结果
感染病毒的细胞MIF mRNA(P < 0.001)和MIF蛋白(P=0.014)明显降低。Western blot显示,0.2 mmol MPP+使Bv-2细胞NLRP3(P=0.012)和MIF(P=0.019)表达增高。与MPP组比较,MIF-shRNA组NLRP3(P=0.042)和caspase-1(P=0.003)表达减少,细胞总蛋白中p65表达没有差异(P=0.978)。ELISA检测细胞上清液发现MIF-shRNA组较MPP组IL-1β(P < 0.001)、IL-18(P=0.002)水平降低。与MPP组比较,MIF-shRNA组核蛋白p65表达降低(P=0.016),浆蛋白p65表达升高(P < 0.001)。相较于MPP+的条件培养基,MN9D细胞在MIF-shRNA条件培养基中TH(P=0.01)表达增加。与MPTP组比较,注射MIF-shRNA的小鼠爬杆实验(P=0.024)和旷场实验(P=0.026)评分显著降低,悬挂实验评分显著升高(P=0.001)。组织免疫组化结果显示,相较于MPTP组,AAV-MIF-shRNA组小鼠TH阳性神经元细胞数量增多(P=0.004),小胶质细胞数量减少(P=0.049)。MIF(P=0.033)、NLRP3表达减少(P=0.045),TH蛋白明显增多(P=0.043)。
结论
抑制MIF表达可以减少MPP+/MPTP干预所引起的小胶质细胞NLRP3炎症小体表达和炎症因子释放,减轻小胶质细胞激活,减轻炎症反应,改善MPTP引起的黑质多巴胺能神经元损伤,在帕金森病神经炎症方面具有保护作用。
Keywords: 帕金森病, 神经炎症, 巨噬细胞移动抑制因子, NLRP3炎症小体, 小胶质细胞
Abstract
Objective
To explore the mechanisms of macrophage migration inhibitory factor (MIF)/nucleus factor-κB (NF-κB) in mediating 1-methyl-4-phenylpyridinium iodide (MPP +)/1-Methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP)-induced activation of Nod-like receptor protein 3 (NLRP3) inflammasome in microglials and the its effects on neurons.
Methods
Murine microglial cell line Bv-2 was infected with a lentivirus carrying MIF shRNA for MIF knockdown and then treated with MPP+. The total protein levels of NLRP3, caspase-1, p65 and p65 in the cell nuclei and cytoplasm were detected. ELISA was used to detect the levels of IL-1β and IL-18 in the culture supernatant, which served as the conditioned culture medium for MN9D cells, whose TH expression level was detected using Western blotting. The effect of stereotactic injection of an adeno-associated virus (AAV) carrying MIF shRNA on behaviors was assessed in a C57BL/6 mouse model of Parkinson disease (PD) induced by intraperitoneal MPTP injection. TH and Iba-1 immunohistochemistry was used to evaluate the number of substantia nigra neurons and the activation of microglia cells, and the protein expressions of MIF, NLRP3 and TH in the substantia nigra were detected with Western blotting.
Results
MPP+ significantly increased NLRP3 and MIF expressions in Bv-2 cells (P < 0.05). MIF knockdown in Bv-2 cells significantly lowered NLRP3 and caspase-1 protein expressions and IL-1β and IL-18 levels in the culture supernatant (P < 0.05) without affecting total protein level of p65. Bv-2 cells with MIF knockdown showed significantly lowered p65 protein expression in the nuclei but increased p65 expression in the cytoplasm (P < 0.05). The conditioned medium derived from Bv-2 cells with MIF knockdown, as compared with that from than MPP +-treated Bv-2 cells, significantly increased TH expression in MN9D cells (P=0.01). Compared with those in MPTP group, the mice receiving injections of AAV-MIF-shRNA had higher scores in pole test and open field test with lower scores in traction test, and showed increased TH-positive neurons, decreased Iba-1 microglia cell activation, reduced expressions of MIF and NLRP3, and increased expression of TH in he substantia nigra (all P < 0.05).
Conclusion
Inhibition of MIF can reduce the expression of NLRP3 inflammasomes and inflammatory factor caused by MPP+ in microglia cells to relieve the damage of dopaminergic neurons and alleviate microglia cell activation, thus offering protection against neuroinflammation in Parkinson's disease.
Keywords: Parkinson's disease, neuroinflammation, macrophage migration inhibitory factor, Nod-like receptor protein 3 inflammasome, microglia cells
帕金森病(PD)是临床上常见的中枢神经系统退行性疾病,好发于中老年人,病理特征主要是黑质致密部多巴胺能神经元丢失,α-突触核蛋白异常聚集和神经炎症。临床表现以静止性震颤、肌强直、运动迟缓及步态障碍等为主要症状,严重影响患者生活质量和寿命。近年来,有研究表明过度激活的小胶质细胞引起的神经炎症与PD进展有关[1-4]。PD患者脑脊液和外周血中发现炎症因子白介素1(IL-1β)、白介素2(IL-2)、白介素6(IL-6)明显升高[5-7],并在尸检中在中脑黑质部位观察到大量小胶质细胞激活[3]。活化的小胶质细胞分泌IL-1β等炎症因子在中枢神经系统中发挥着重要作用[8],因此进一步研究小胶质细胞激活机制具有重要意义。
巨噬细胞移动抑制因子(MIF)是一种具有广泛免疫调节的多功能分子,参与多种细胞活动,在调节炎症反应、能量代谢和凋亡中发挥重要作用。MIF参与各种急慢性炎症发病机制中,通过影响肿瘤坏死因子、IL-6、IL-1β等转录或翻译促进细胞因子的释放[9, 10]。研究显示MIF在神经系统疾病中发挥重要作用[11-14],在PD患者血清中也发现MIF水平增加[15]。最近的研究发现MIF是NOD样受体热蛋白结构域相关3(NLRP3)炎症小体激活的关键因素,在巨噬细胞中抑制MIF可以通过抑制NLRP3炎症小体激活而调节IL-1β和IL-18的释放[16]。NLRP3炎症小体在神经炎症反应起关键作用,神经毒素、线粒体破坏是小胶质细胞NLRP3炎症小体激活和炎症因子IL-1β、IL-18释放的关键调节因子[17, 18]。同时,在帕金森病人尸检中也发现大脑中存在NLRP3蛋白[19]。由此可知,MIF介导NLRP3炎症小体可能在PD神经炎症方面存在重要作用。
目前,在PD病理环境下MIF对NLRP3炎症小体的作用和机制尚未明确。因此,我们提出假说:MIF介导小胶质细胞NLRP3炎症小体的表达,在调控PD神经炎症方面具有重要作用。本研究采用MPP+/MPTP模拟PD病理环境下的炎症反应,通过干预MIF表达,探讨MIF介导小胶质细胞NLRP3炎症小体激活对PD神经炎症的作用。本研究将通过探讨小胶质细胞激活引起PD神经炎症的作用及机制,为PD治疗提供新思路、新方向。
1. 材料和方法
1.1. 细胞、动物和实验试剂
小鼠小胶质细胞Bv-2细胞株由本课题组保存,病毒由吉凯公司合成质粒载体和病毒。SPF级C57BL/6小鼠共56只,6~8周龄,体质量25~30 g,(湖南斯莱克景达实验动物有限公司)。小鼠的饲养和实验均于华南理工大学动物中心完成,实验过程均遵循华南理工大学实验动物中心伦理原则(2019034)。MPP +和MPTP(Sigma);IL-1β和IL-18ELISA(武汉华美);Anti-MIF抗体(Abcam);NLRP3、caspase-1、NF-κB抗体(CST);细胞核蛋白与细胞浆蛋白抽提试剂盒(碧云天)。
1.2. 细胞造模及分组
细胞实验以Bv-2细胞为对象,设置MPP+终浓度为0.1、0.2、0.5 mmol为干扰浓度,培养24 h后Western blot检测细胞NLRP3蛋白表达水平,选择最适浓度。将细胞分为4组,分别为对照组(无干预),MPP组(单纯MPP+干预),LV-con组(感染慢病毒阴性病毒和MPP+ 干预)和LV-shRNA组(慢病毒阴性病毒MIF-shRNA+MPP干预)。
1.3. 动物造模及分组
动物实验以C57BL/6为对象,对小鼠进行黑质致密部立体定位注射,构建特定部位沉默表达MIF的小鼠模型。造模28 d后,采用急性帕金森病小鼠模型,腹腔注射MPTP 25 mg/kg,2 h/次,共4次。将小鼠分为5组,分别为对照组(腹腔注射生理盐水,Ctrl组)、MPTP组(腹腔注射MPTP)、PBS组(腹腔注射MPTP,立体定位注射PBS 2 μL)、AAV-con组(腹腔注射MPTP,立体定位注射AAV-con 2 μL)、AAV-MIF-shRNA组(腹腔注射MPTP,立体定位注射AAV-MIF-shRNA 2 μL)。
1.4. 小鼠行为学评估
给药前对小鼠进行行为学训练,MPTP注射后第3天进行评估。爬杆实验为记录小鼠由50 cm的杆上爬至底部所需时间。旷场实验为观察小鼠在方盒中的9宫格跨入邻格次数2 min,评分便准为:跨入次数大于40次,1分;31~40次,2分;21~30次,3分;小于21次,4分。悬挂实验为倒置小鼠悬挂在高水平电线上,记录其抓握情况。评分标准为:双后肢均未勾住电线,记1分;有一后肢可稳定抓住电线即可获得1分;如出现间断抓握情况,记0.5分;稳定抓握后向两侧移动,记1分;小鼠悬挂时间>10 s,记1分。
1.5. 免疫组织化学检测
小鼠断颈、处死、取脑,将全脑组织固定、脱水、浸蜡、包埋等,制备组织蜡块,进行黑质冠状位石蜡切片,每组取相同位置切片,进行脱蜡、脱水、热修复,过氧化氢孵育,封闭液封闭1 h,滴加TH抗体(1∶250)、Iba1抗体(1∶200)后4 ℃孵育过夜,用相应的二抗室温孵育1 h,滴加DAB显色后PBS冲洗,递增梯度酒精脱水,二甲苯固定后封片,在显微镜下观察。
1.6. Western blot检测蛋白表达
小鼠取脑后,尽量剪碎组织。细胞干预后,用PBS润洗。加入蛋白裂解液,在冰上裂解30 min,转移至干净的1.5 mL EP管中。在冰上超声破碎细胞5 min,4 ℃离心12 000 g 15 min后,转移上清蛋白至另一干净的EP管中。BCA法测定蛋白浓度,加入5×Loading buffer煮沸后,使用SDS-PAGE凝胶电泳分离蛋白。PVDF转膜、5%脱脂牛奶封闭后进行一抗孵育过夜。而后二抗孵育,采用化学发光法曝光。
1.7. 构建沉默表达MIF蛋白
在Bv-2细胞中加入不含胎牛血清的培养基和病毒液,24 h后吸出含有病毒液的培养液,更换为新鲜的完全培养基,继续37 ℃细胞培养。慢病毒转染72 h后,在荧光显微镜下观察荧光表达丰度。更换为含有2 μg/mL嘌呤霉素的完全培养基,用于杀死未感染病毒的野生型细胞。获得感染慢病毒MIF-shRNA稳定转染的细胞(Bv-2 LV-shRNA)和慢病毒阴性对照病毒稳定转染的细胞(Bv-2 LV-con)。
1.8. RT-PCR检测mRNA表达
在细胞中加入Trizol裂解液,经氯仿-异丙醇体系提取细胞总mRNA,逆转录合成相应的cDNA后进行RT-PCR检测。
1.9. ELISA
吸取各组MPP+处理的Bv-2上清液,参照ELISA试剂说明书进行检测。
1.10. 统计学方法
采用SPSS 26.0和GraphPad Prism 5进行统计分析。所有数据都以均数±标准差表示,符合正态分布的两组间均数比较采用独立样本t检验;不服从正态分布的两组间均数比较采用Mann-Whitney U检验;服从正态分布的多样本均数的组间比较采用单因素方差分析,用Dunnett检验用于各实验组均数比较;不服从非正态分布的多样本均数的组间比较采用Kruskal-Wallis H检验,Bonferoni用于校正组间两两比较的检验水准。P < 0.05为差异有统计学意义。
2. 结果
2.1. 构建MIF低表达Bv-2细胞模型
RT-PCR检测结果显示感染237病毒为沉默效率最高(P < 0.001)。Western blot结果显示MIF-shRNA组MIF蛋白水平显著下降(P=0.014,图 1)。
1.

感染病毒后细胞MIF mRNA表达统计图及蛋白表达统计图
MIF mRNA(A) and protein (B, C) expressions in Bv-2 cells after infection with MIF shRNAlentivirus. **P < 0.01, ***P < 0.001.
2.2. MPP+可以激活Bv-2细胞NLRP3及MIF表达
0.1/0.2/0.5 mmol MPP+干预细胞24 h后,MPP+激活细胞表达NLRP3(P=0.012)和MIF蛋白(P=0.019)显著高于对照组。0.2 mmol MPP+是激活Bv-2的NLRP3炎症小体最适浓度。MPP+干预的细胞NLRP3(P=0.014,图 3)和caspase-1(P=0.014,图 3)的表达水平显著高于对照组,同时细胞培养上清液中IL-1β(P < 0.001,图 4)和IL-18(P=0.008,图 4)也高于对照组。
3.

抑制MIF后,MPP+激活Bv-2细胞NLRP3、caspase-1、p65蛋白表达情况
Protein level of NRLP3 (A, B), caspase-1 (A, C), and p65 (A, D) in Bv-2 cells in MPP+ group and MIF-shRNA group. *P < 0.05, **P < 0.01.
4.

ELISA检测Bv-2细胞上清液IL-1β、IL-18表达和条件培养基处理MN9D细胞TH表达
IL-1β and IL-18 levels in culture supernatant (A, B) and TH protein expression in MN9D cells treated with the conditioned medium (C, D). *P < 0.05, **P < 0.01, ***P < 0.001.
2.

不同浓度MPP+处理激活NLRP3和MIF蛋白表达
NLRP3 (A, B) and MIF (A, C) protein expressions in Bv-2 cells treated with different concentrations of MPP+. *P < 0.05, **P < 0.01.
2.3. 抑制MIF后可减少MPP+激活的Bv-2细胞NLRP3及炎症因子表达,增加MN9D细胞TH蛋白表达
感染MIF-shRNA病毒的Bv-2细胞中NLRP3(P=0.042,图 3)、caspase-1(P=0.003,图 3)的表达水平显著低于MPTP组,同时细胞培养上清液中IL-1β(P < 0.001,图 4)和IL-18(P=0.002,图 4)也低于MPTP组。将MPP+干预后Bv-2细胞上清液转移至MN9D细胞中培养24 h后,观察MN9D细胞TH蛋白表达量。相比于单纯MPTP干预的细胞上清培养,抑制MIF的Bv-2上清液培养的MN9D细胞TH(P=0.01,图 4)有增高。
2.4. MIF/NF-κB介导MPP+诱导小胶质细胞NLRP3炎症小体激活
各组间细胞总蛋白中p65(P=0.978,图 5)表达水平没有差异。在MPP+诱导下p65激活入核,细胞核p65蛋白(P=0.016)表达水平增加,细胞浆p65蛋白(P=0.004)相对减少。与MPP组比较,MIF-shRNA慢病毒转染的LV-shRNA组在MPP+刺激下,细胞核内p65蛋白表达水平减少(P=0.016),细胞浆p65蛋白显著增加(P < 0.001)。
5.

抑制MIF后,MPP+激活Bv-2细胞核浆p65蛋白表达情况
Protein expression of p65 (A) in the cell nuclei (C) and cytoplasm (B) in Bv-2 cells in MPP + group and MIF-shRNA group. *P < 0.05, **P < 0.01, ***P < 0.001.
2.5. 抑制MIF可改善PD模型小鼠的行为障碍
腹腔注射MPTP构建的PD小鼠模型,可见与对照组相比,MPTP组旷场实验(P < 0.001)和爬杆实验(P=0.028)评分明显增高,悬挂实验(P < 0.001)评分明显降低。而注射AAV-MIF-shRNA组与MPTP组相比,旷场实验(P=0.026)评分和爬杆实验(P=0.024)评分明显降低,悬挂实验(P=0.001,图 6)评分明显升高。
6.

各组小鼠旷场实验、悬挂实验、爬杆实验结果图
Results of field test (A), traction test (B) and pole test (C) of the mice. *P < 0.05, **P < 0.01, ***P < 0.001.
2.6. 抑制MIF可减少PD模型小鼠小胶质细胞活化、黑质多巴胺能神经元损伤
通过免疫组化TH染色和Iba-1染色,发现MPTP组黑质多巴胺能神经元数量明显减少(P=0.004),小胶质细胞激活数目增多(P=0.035),而AAV-MIF-shRNA组小鼠黑质多巴胺能神经元数量较MPTP组增加(P=0.004),且小胶质细胞激活数量减少(P=0.049,图 7、8)。
7.

小鼠黑质区致密部TH染色结果
TH immunohistochemical staining of the substantia nigra (A) and quantitative analysis of TH expression (B). **P < 0.01.
8.

小鼠黑质区致密部Iba-1染色
Iba-1 immunohistochemical staining of the substantia nigra (A) and quantitative analysis of Iba-1 expression (B). *P < 0.05.
2.7. 各组小鼠中脑黑质中MIF、NLRP3及TH蛋白表达
与生理盐水对照组比较,腹腔注射MPTP的PD小鼠模型中发现黑质区NLRP3蛋白表达水平明显增加(P=0.006),TH蛋白表达减少(P < 0.001),MIF蛋白表达有增多的趋势但无统计学意义(P=0.172)。抑制MIF表达的小鼠较MPTP组MIF蛋白表达明显减少(P=0.033),NLRP3蛋白表达也明显减少(P=0.045),TH蛋白表达增多(P=0.043)。
3. 讨论
PD是一种遗传和环境共同作用的疾病,主要病理特征是多巴胺能神经元变性、α-突触核蛋白异常聚集和神经炎症。发病机制复杂,与神经炎症、氧化应激、线粒体功能障碍等多方面有关。越来越多研究表明,神经炎症与帕金森病病理生理过程中起关键作用,MPTP、α-突触核蛋白均可激活NLRP3炎症小体并诱导IL-1β生成[20],NLRP3炎症小体与多巴胺能神经元丢失存在关联[21, 22],提示NLRP3炎症小体介导的神经炎症反应可能是PD的重要发病机制。作为中枢神经系统主要的先天免疫细胞,小胶质细胞在炎症反应过程是主要的免疫应答细胞[23],在病理情况下小胶质细胞的激活和炎症因子释放会导致慢性神经炎症和神经元功能障碍[24, 25]。因此,在PD病理环境下的炎症反应以小胶质细胞介导为主。本研究采用MPP+刺激Bv-2小胶质细胞模拟PD病理环境,观察到MPP+处理后的小胶质细胞NLRP3炎症小体相关蛋白NLRP3、caspase-1表达增加和细胞因子IL-1β、IL-18释放,说明MPP+可以激活Bv-2细胞NLRP3炎症小体,这与既往研究结果一致[26, 27]。并且在MPTP动物模型中观察到黑质区NLRP3蛋白表达,多巴胺能神经元丢失和小胶质细胞激活活化,这与目前研究结果中PD患者的脑内情况相近[3],说明MPP+/MPTP模型可以成功模拟PD患者大脑炎症环境。
9.

各组小鼠黑质区MIF、NLRP3、TH蛋白表达情况
Expression of TH (A, D), MIF (A, B), and NLRP3 (A, C) in the substantia nigra in different groups. *P < 0.05, **P < 0.01, ***P < 0.001.
NLRP3炎症小体主要存在于小胶质细胞中的炎性复合体[28],主要由NLRP3蛋白、衔接蛋白细胞凋亡相关斑点样蛋白(ASC)和效应分子pro-caspase-1组成的多蛋白复合体。NLRP3的激活需要两个信号,通过TLR识别刺激,激活NF-κB上调NLRP3和IL-1β转录水平作为启动信号,ASC通过吡啉结构域与NLRP3结合,组装成复合体。诱导pro-caspase-1自切割,成为有活性的caspase-1,促进炎症因子IL-1β和IL-18成熟和分泌[29, 30]。级联效应放大炎症反应,最终导致促炎细胞死亡[31, 32]。既往研究发现,MPTP模型中NLRP3炎症小体与多巴胺能神经元丢失有关,因此,对于帕金森病的NLRP3炎症小体的诱导和抑制的研究对疾病治疗具有重要意义。
MIF参与炎症和自身免疫系统疾病,增加促炎因子分泌的同时也抑制抗炎因子[33, 34]。有研究证明,MIF可以抑制糖皮质激素的免疫调节作用[10, 35],具有改变炎症反应的潜力。既往研究结果显示,MIF是通过Toll样受体4(TLR4)调节先天免疫反应[36]。MIF缺失减少TLR4表达和NF-κB活性降低。在动物模型中证明,TLR4敲除抑制MPTP诱导的小胶质细胞活化,NF-κB和NLRP3炎症小体通路[37]。在细胞模型中验证TLR4信号通路是Bv-2细胞激活和炎症的关键通路[38],TLR信号通路也是NLRP3炎症小体激活的启动信号。由此可得,MIF/TLR4/NF-κB/NLRP3通路是导致本研究中抑制MIF表达可以减少MPP+/MPTP诱导的NLRP3炎症小体的可能机制。本研究中发现,我们通过shRNA下调MIF表达的小胶质细胞,发现MPP+诱导激活的NLRP3炎症小体减少。动物注射AAV-MIF-shRNA后,明显减轻MPTP引起的黑质致密部TH多巴胺能神经元损伤,缓解小胶质细胞激活。提示降低MIF表达可抑制NLRP3炎症小体激活,缓解神经炎症。Western blot检测到细胞核、浆蛋白中NF-κB信号分子,发现抑制MIF表达降低NF-κB活性。
本研究结果中,在腹腔注射MPTP的动物模型未发现明显的MIF蛋白表达增多,可能是由于黑质区的蛋白提取含有杂细胞导致蛋白表达增多未达到统计学意义的结果,本课题组前期研究结果显示,在急性和慢性MPTP模型中,小鼠黑质部位免疫组化MIF表达明显增加[39]。本研究在细胞模型对PD模型NLRP3炎症小体激活的机制进行阐述,但未进行进一步动物模型机制验证,MIF介导的NLRP3激活调控机制还有待进一步探索。
综上所述,抑制MIF表达可以减少MPP+/MPTP干预所引起的小胶质细胞NLRP3炎症小体表达和炎症因子释放,减轻小胶质细胞激活,缓解炎症反应,改善MPTP引起的黑质多巴胺能神经元损伤,在PD神经炎症方面具有保护作用。靶向抑制小胶质细胞MIF表达可以改善神经炎症、减轻神经元损伤,可能是PD治疗的有效途径。
Biography
黄河灵,硕士,E-mail: hhl58710687@163.com
Funding Statement
国家自然科学基金(81671275,81974195);国家重点研发计划(2017YFC1310200);广东省重点领域研发计划项目(2018B030337001)、广东省科技计划项目(2020A0505140006);广东省基础与应用基础研究基金项目(2019A1515110061)
Supported by National Natural Science Foundation of China (81671275, 81974195)
Contributor Information
黄 河灵 (Heling HUANG), Email: hhl58710687@163.com.
王 丽娟 (Lijuan WANG), Email: wligd68@163.com.
References
- 1.Rocha NP, de Miranda AS, Teixeira AL. Insights into neuroinflammation in Parkinson's disease: from biomarkers to antiinflammatory based therapies. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4532803/ Biomed Res Int. 2015;2015:628192. doi: 10.1155/2015/628192. [Rocha NP, de Miranda AS, Teixeira AL. Insights into neuroinflammation in Parkinson's disease: from biomarkers to antiinflammatory based therapies[J]. Biomed Res Int, 2015, 2015: 628192.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 2.Jellinger KA. Neuropathology of sporadic Parkinson's disease: evaluation and changes of concepts. Mov Disord. 2012;27(1):8–30. doi: 10.1002/mds.23795. [Jellinger KA. Neuropathology of sporadic Parkinson's disease: evaluation and changes of concepts[J]. Mov Disord, 2012, 27(1): 8-30.] [DOI] [PubMed] [Google Scholar]
- 3.Gerhard A, Pavese N, Hotton G, et al. In vivo imaging of microglial activation with [11C] (R)-PK11195 PET in idiopathic Parkinson's disease. Neurobiol Dis. 2006;21(2):404–12. doi: 10.1016/j.nbd.2005.08.002. [Gerhard A, Pavese N, Hotton G, et al. In vivo imaging of microglial activation with [11C] (R)-PK11195 PET in idiopathic Parkinson's disease[J]. Neurobiol Dis, 2006, 21(2): 404-12.] [DOI] [PubMed] [Google Scholar]
- 4.Braak H, Sastre M, Del Tredici K. Development of alpha-synuclein immunoreactive astrocytes in the forebrain parallels stages of intraneuronal pathology in sporadic Parkinson's disease. Acta Neuropathol. 2007;114(3):231–41. doi: 10.1007/s00401-007-0244-3. [Braak H, Sastre M, Del Tredici K. Development of alpha-synuclein immunoreactive astrocytes in the forebrain parallels stages of intraneuronal pathology in sporadic Parkinson's disease[J]. Acta Neuropathol, 2007, 114(3): 231-41.] [DOI] [PubMed] [Google Scholar]
- 5.Mogi M, Harada M, Narabayashi H, et al. Interleukin (IL)-1 beta, IL-2, IL-4, IL-6 and transforming growth factor-alpha levels are elevated in ventricular cerebrospinal fluid in juvenile parkinsonism and Parkinson's disease. Neurosci Lett. 1996;211(1):13–6. doi: 10.1016/0304-3940(96)12706-3. [Mogi M, Harada M, Narabayashi H, et al. Interleukin (IL)-1 beta, IL-2, IL-4, IL-6 and transforming growth factor-alpha levels are elevated in ventricular cerebrospinal fluid in juvenile parkinsonism and Parkinson's disease[J]. Neurosci Lett, 1996, 211(1): 13-6.] [DOI] [PubMed] [Google Scholar]
- 6.Blum-Degen D, Müller T, Kuhn W, et al. Interleukin-1 beta and interleukin-6 are elevated in the cerebrospinal fluid of Alzheimer's and de novo Parkinson's disease patients. http://onlinelibrary.wiley.com/resolve/reference/PMED?id=8787820. Neurosci Lett. 1995;202(1/2):17–20. doi: 10.1016/0304-3940(95)12192-7. [Blum-Degen D, Müller T, Kuhn W, et al. Interleukin-1 beta and interleukin-6 are elevated in the cerebrospinal fluid of Alzheimer's and de novo Parkinson's disease patients [J]. Neurosci Lett, 1995, 202(1/2): 17-20.] [DOI] [PubMed] [Google Scholar]
- 7.Qin XY, Zhang SP, Cao C, et al. Aberrations in peripheral inflammatory cytokine levels in parkinson disease: a systematic review and meta-analysis. http://www.ncbi.nlm.nih.gov/pubmed/27668667?dopt=Abstract. JAMANeurol. 2016;73(11):1316–24. doi: 10.1001/jamaneurol.2016.2742. [Qin XY, Zhang SP, Cao C, et al. Aberrations in peripheral inflammatory cytokine levels in parkinson disease: a systematic review and meta-analysis [J]. JAMANeurol, 2016, 73(11): 1316-24.] [DOI] [PubMed] [Google Scholar]
- 8.Koprich JB, Reske-Nielsen C, Mithal P, et al. Neuroinflammation mediated by IL-1beta increases susceptibility of dopamine neurons to degeneration in an animal model of Parkinson's disease. J Neuroinflammation. 2008;5:8. doi: 10.1186/1742-2094-5-8. [Koprich JB, Reske-Nielsen C, Mithal P, et al. Neuroinflammation mediated by IL-1beta increases susceptibility of dopamine neurons to degeneration in an animal model of Parkinson's disease[J]. J Neuroinflammation, 2008, 5: 8.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9.Bozza FA, Gomes RN, Japiassu AM, et al. Macrophage migration inhibitory factor levels correlate with fatal outcome in sepsis. Shock. 2004;22(4):309–13. doi: 10.1097/01.shk.0000140305.01641.c8. [Bozza FA, Gomes RN, Japiassu AM, et al. Macrophage migration inhibitory factor levels correlate with fatal outcome in sepsis[J]. Shock, 2004, 22(4): 309-13.] [DOI] [PubMed] [Google Scholar]
- 10.Calandra T, Bernhagen J, Metz CN, et al. MIF as a glucocorticoidinduced modulator of cytokine production. Nature. 1995;377(6544):68–71. doi: 10.1038/377068a0. [Calandra T, Bernhagen J, Metz CN, et al. MIF as a glucocorticoidinduced modulator of cytokine production[J]. Nature, 1995, 377(6544): 68-71.] [DOI] [PubMed] [Google Scholar]
- 11.Chalimoniuk M, King-Pospisil K, Metz CN, et al. Macrophage migration inhibitory factor induces cell death and decreases neuronal nitric oxide expression in spinal cord neurons. Neuroscience. 2006;139(3):1117–28. doi: 10.1016/j.neuroscience.2005.12.056. [Chalimoniuk M, King-Pospisil K, Metz CN, et al. Macrophage migration inhibitory factor induces cell death and decreases neuronal nitric oxide expression in spinal cord neurons[J]. Neuroscience, 2006, 139(3): 1117-28.] [DOI] [PubMed] [Google Scholar]
- 12.Matsuura T, Sun C, Leng L, et al. Macrophage migration inhibitory factor increases neuronal delayed rectifier K + current. J Neurophysiol. 2006;95(2):1042–8. doi: 10.1152/jn.00499.2005. [Matsuura T, Sun C, Leng L, et al. Macrophage migration inhibitory factor increases neuronal delayed rectifier K + current[J]. J Neurophysiol, 2006, 95(2): 1042-8.] [DOI] [PubMed] [Google Scholar]
- 13.Inácio AR, Ruscher K, Leng L, et al. Macrophage migration inhibitory factor promotes cell death and aggravates neurologic deficits after experimental stroke. J Cereb Blood Flow Metab. 2011;31(4):1093–106. doi: 10.1038/jcbfm.2010.194. [Inácio AR, Ruscher K, Leng L, et al. Macrophage migration inhibitory factor promotes cell death and aggravates neurologic deficits after experimental stroke[J]. J Cereb Blood Flow Metab, 2011, 31(4): 1093-106.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 14.Zis O, Zhang S, Dorovini-Zis K, et al. Hypoxia signaling regulates macrophage migration inhibitory factor (MIF) expression in stroke. http://www.ncbi.nlm.nih.gov/pubmed/24826917. Mol Neurobiol. 2015;51(1):155–67. doi: 10.1007/s12035-014-8727-4. [Zis O, Zhang S, Dorovini-Zis K, et al. Hypoxia signaling regulates macrophage migration inhibitory factor (MIF) expression in stroke [J]. Mol Neurobiol, 2015, 51(1): 155-67.] [DOI] [PubMed] [Google Scholar]
- 15.Nicoletti A, Fagone P, Donzuso G, et al. Parkinson's disease is associated with increased serum levels of macrophage migration inhibitory factor. Cytokine. 2011;55(2):165–7. doi: 10.1016/j.cyto.2011.03.027. [Nicoletti A, Fagone P, Donzuso G, et al. Parkinson's disease is associated with increased serum levels of macrophage migration inhibitory factor [J]. Cytokine, 2011, 55(2): 165-7.] [DOI] [PubMed] [Google Scholar]
- 16.Lang T, Lee JPW, Elgass K, et al. Macrophage migration inhibitory factor is required for NLRP3 inflammasome activation. Nat Commun. 2018;9(1):2223. doi: 10.1038/s41467-018-04581-2. [Lang T, Lee JPW, Elgass K, et al. Macrophage migration inhibitory factor is required for NLRP3 inflammasome activation[J]. Nat Commun, 2018, 9(1): 2223.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 17.韩 晨阳, 张 晓玲, 杨 毅, et al. α-突触核蛋白激活NLRP3炎性小体介导神经细胞焦亡的发生. https://www.cnki.com.cn/Article/CJFDTOTAL-YLZL201906007.htm. 中国临床药理学与治疗学. 2019;24(6):637–43. [韩晨阳, 张晓玲, 杨毅, 等. α-突触核蛋白激活NLRP3炎性小体介导神经细胞焦亡的发生[J]. 中国临床药理学与治疗学, 2019, 24(6): 637-43.] [Google Scholar]
- 18.黄 树宣, 卢 欢欢, 范 秉林, et al. 雷帕霉素对MPP+诱导的小胶质细胞中NLRP3炎症小体激活的影响. 中华行为医学与脑科学杂志. 2020;29(9):774–9. doi: 10.3760/cma.j.cn371468-20200611-01462. [黄树宣, 卢欢欢, 范秉林, 等. 雷帕霉素对MPP+诱导的小胶质细胞中NLRP3炎症小体激活的影响[J]. 中华行为医学与脑科学杂志, 2020, 29(9): 774-9.] [DOI] [Google Scholar]
- 19.Gordon R, Albornoz EA, Christie DC, et al. Inflammasome inhibition prevents alpha-synuclein pathology and dopaminergic neurodegeneration in mice. Sci Transl Med. 2018;10(465):eaah4066. doi: 10.1126/scitranslmed.aah4066. [Gordon R, Albornoz EA, Christie DC, et al. Inflammasome inhibition prevents alpha-synuclein pathology and dopaminergic neurodegeneration in mice[J]. Sci Transl Med, 2018, 10(465): eaah4066.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 20.Codolo G, Plotegher N, Pozzobon T, et al. Triggering of inflammasome by aggregated α-synuclein, an inflammatory response in synucleinopathies. PLoS One. 2013;8(1):e55375. doi: 10.1371/journal.pone.0055375. [Codolo G, Plotegher N, Pozzobon T, et al. Triggering of inflammasome by aggregated α-synuclein, an inflammatory response in synucleinopathies [J]. PLoS One, 2013, 8(1): e55375.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 21.Mao Z, Liu C, Ji S, et al. The NLRP3 inflammasome is involved in the pathogenesis of Parkinson's disease in rats. Neurochem Res. 2017;42(4):1104–15. doi: 10.1007/s11064-017-2185-0. [Mao Z, Liu C, Ji S, et al. The NLRP3 inflammasome is involved in the pathogenesis of Parkinson's disease in rats[J]. Neurochem Res, 2017, 42(4): 1104-15.] [DOI] [PubMed] [Google Scholar]
- 22.Yan Y, Jiang W, Liu L, et al. Dopamine controls systemic inflammation through inhibition of NLRP3 inflammasome. http://europepmc.org/abstract/med/25594175. Cell. 2015;160(1/2):62–73. doi: 10.1016/j.cell.2014.11.047. [Yan Y, Jiang W, Liu L, et al. Dopamine controls systemic inflammation through inhibition of NLRP3 inflammasome[J]. Cell, 2015, 160(1/2): 62-73.] [DOI] [PubMed] [Google Scholar]
- 23.Streit WJ, Mrak RE, Griffin WS. Microglia and neuroinflammation: a pathological perspective. J Neuroinflammation. 2004;1(1):14. doi: 10.1186/1742-2094-1-14. [Streit WJ, Mrak RE, Griffin WS. Microglia and neuroinflammation: a pathological perspective[J]. J Neuroinflammation, 2004, 1(1): 14.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 24.McCoy MK, Ruhn KA, Martinez TN, et al. Intranigral lentiviral delivery of dominant-negative TNF attenuates neurodegeneration and behavioral deficits in hemiparkinsonian rats. Mol Ther. 2008;16(9):1572–9. doi: 10.1038/mt.2008.146. [McCoy MK, Ruhn KA, Martinez TN, et al. Intranigral lentiviral delivery of dominant-negative TNF attenuates neurodegeneration and behavioral deficits in hemiparkinsonian rats[J]. Mol Ther, 2008, 16(9): 1572-9.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 25.Madore C, Yin Z, Leibowitz J, et al. Microglia, lifestyle stress, and neurodegeneration. http://www.sciencedirect.com/science/article/pii/S1074761319304996. Immunity. 2020;52(2):222–40. doi: 10.1016/j.immuni.2019.12.003. [Madore C, Yin Z, Leibowitz J, et al. Microglia, lifestyle stress, and neurodegeneration[J]. Immunity, 2020, 52(2): 222-40.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 26.Lee E, Hwang I, Park S, et al. MPTP-driven NLRP3 inflammasome activation in microglia plays a central role in dopaminergic neurodegeneration. http://europepmc.org/abstract/MED/29786072. Cell Death Differ. 2019;26(2):213–28. doi: 10.1038/s41418-018-0124-5. [Lee E, Hwang I, Park S, et al. MPTP-driven NLRP3 inflammasome activation in microglia plays a central role in dopaminergic neurodegeneration[J]. Cell Death Differ, 2019, 26(2): 213-28.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 27.王 子, 王 雪峰, 吴 振起. 清肺透邪汤介导NLRP3炎性小体抑制NF-κB信号通路改善肺炎支原体小鼠炎性反应. 中国实验动物学报. 2020;28(4):470–7. doi: 10.3969/j.issn.1005-4847.2020.04.006. [王子, 王雪峰, 吴振起. 清肺透邪汤介导NLRP3炎性小体抑制NF-κB信号通路改善肺炎支原体小鼠炎性反应[J]. 中国实验动物学报, 2020, 28(4): 470-7.] [DOI] [Google Scholar]
- 28.Wang S, Yuan YH, Chen NH, et al. The mechanisms of NLRP3 inflammasome/pyroptosis activation and their role in Parkinson's disease. http://www.sciencedirect.com/science/article/pii/S1567576918307641. Int Immunopharmacol. 2019;67:458–64. doi: 10.1016/j.intimp.2018.12.019. [Wang S, Yuan YH, Chen NH, et al. The mechanisms of NLRP3 inflammasome/pyroptosis activation and their role in Parkinson's disease[J]. Int Immunopharmacol, 2019, 67: 458-64.] [DOI] [PubMed] [Google Scholar]
- 29.Martinon F, Burns K, Tschopp J. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell. 2002;10(2):417–26. doi: 10.1016/s1097-2765(02)00599-3. [Martinon F, Burns K, Tschopp J. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta[J]. Mol Cell, 2002, 10(2): 417-26.] [DOI] [PubMed] [Google Scholar]
- 30.Yang X, Chang HY, Baltimore D. Autoproteolytic activation of procaspases by oligomerization. http://www.sciencedirect.com/science/article/pii/S1097276500800325. Mol Cell. 1998;1(2):319–25. doi: 10.1016/s1097-2765(00)80032-5. [Yang X, Chang HY, Baltimore D. Autoproteolytic activation of procaspases by oligomerization[J]. Mol Cell, 1998, 1(2): 319-25.] [DOI] [PubMed] [Google Scholar]
- 31.Wen H, Miao EA, Ting JP. Mechanisms of NOD-like receptorassociated inflammasome activation. http://europepmc.org/articles/PMC3835203/ Immunity. 2013;39(3):432–41. doi: 10.1016/j.immuni.2013.08.037. [Wen H, Miao EA, Ting JP. Mechanisms of NOD-like receptorassociated inflammasome activation[J]. Immunity, 2013, 39(3): 432-41.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 32.Vanaja SK, Rathinam VA, Fitzgerald KA. Mechanisms of inflammasome activation: recent advances and novel insights. http://europepmc.org/abstract/med/25639489. Trends Cell Biol. 2015;25(5):308–15. doi: 10.1016/j.tcb.2014.12.009. [Vanaja SK, Rathinam VA, Fitzgerald KA. Mechanisms of inflammasome activation: recent advances and novel insights[J]. Trends Cell Biol, 2015, 25(5): 308-15.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 33.Calandra T, Echtenacher B, Roy DL, et al. Protection from septic shock by neutralization of macrophage migration inhibitory factor. http://gut.bmj.com/external-ref?access_num=10655104&link_type=MED. Nat Med. 2000;6(2):164–70. doi: 10.1038/72262. [Calandra T, Echtenacher B, Roy DL, et al. Protection from septic shock by neutralization of macrophage migration inhibitory factor [J]. Nat Med, 2000, 6(2): 164-70.] [DOI] [PubMed] [Google Scholar]
- 34.Stavitsky AB, Xianli J. In vitro and in vivo regulation by macrophage migration inhibitory factor (MIF) of expression of MHC-Ⅱ, costimulatory, adhesion, receptor, and cytokine molecules. http://www.sciencedirect.com/science/article/pii/S0008874902005166. Cell Immunol. 2002;217(1/2) doi: 10.1016/s0008-8749(02)00516-6. [Stavitsky AB, Xianli J. In vitro and in vivo regulation by macrophage migration inhibitory factor (MIF) of expression of MHC-Ⅱ, costimulatory, adhesion, receptor, and cytokine molecules[J]. Cell Immunol, 2002, 217(1/2): .] [DOI] [PubMed] [Google Scholar]
- 35.Fan H, Kao W, Yang YH, et al. Macrophage migration inhibitory factor inhibits the antiinflammatory effects of glucocorticoids via glucocorticoid-induced leucine zipper. http://lupus.bmj.com/lookup/external-ref?access_num=10.1002/art.38689&link_type=DOI. Arthritis Rheumatol. 2014;66(8):2059–70. doi: 10.1002/art.38689. [Fan H, Kao W, Yang YH, et al. Macrophage migration inhibitory factor inhibits the antiinflammatory effects of glucocorticoids via glucocorticoid-induced leucine zipper[J]. Arthritis Rheumatol, 2014, 66(8): 2059-70.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 36.Roger T, David J, Glauser MP, et al. MIF regulates innate immune responses through modulation of Toll-like receptor 4. http://europepmc.org/abstract/MED/11780066. Nature. 2001;414(6866):920–4. doi: 10.1038/414920a. [Roger T, David J, Glauser MP, et al. MIF regulates innate immune responses through modulation of Toll-like receptor 4[J]. Nature, 2001, 414(6866): 920-4.] [DOI] [PubMed] [Google Scholar]
- 37.Shao QH, Chen Y, Li FF, et al. TLR4 deficiency has a protective effect in the MPTP/probenecid mouse model of Parkinson's disease. http://www.nature.com/articles/s41401-019-0280-2?utm_content=null&utm_medium=cpc&utm_source=trendmd. Acta Pharmacol Sin. 2019;40(12):1503–12. doi: 10.1038/s41401-019-0280-2. [Shao QH, Chen Y, Li FF, et al. TLR4 deficiency has a protective effect in the MPTP/probenecid mouse model of Parkinson's disease [J]. Acta Pharmacol Sin, 2019, 40(12): 1503-12.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 38.Zhou P, Weng R, Chen Z, et al. TLR4 signaling in MPP+-induced activation of BV-2 cells. Neural Plast. 2016;2016:5076740. doi: 10.1155/2016/5076740. [Zhou P, Weng R, Chen Z, et al. TLR4 signaling in MPP+-induced activation of BV-2 cells [J]. Neural Plast, 2016, 2016: 5076740.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 39.Li S, Nie K, Zhang Q, et al. Macrophage migration inhibitory factor mediates neuroprotective effects by regulating inflammation, apoptosis and autophagy in Parkinson's disease. http://www.sciencedirect.com/science/article/pii/S0306452219303823. Neuroscience. 2019;416:50–62. doi: 10.1016/j.neuroscience.2019.05.052. [Li S, Nie K, Zhang Q, et al. Macrophage migration inhibitory factor mediates neuroprotective effects by regulating inflammation, apoptosis and autophagy in Parkinson's disease[J]. Neuroscience, 2019, 416: 50-62.] [DOI] [PubMed] [Google Scholar]
