Skip to main content
Chinese Journal of Reparative and Reconstructive Surgery logoLink to Chinese Journal of Reparative and Reconstructive Surgery
. 2019 Apr;33(4):492–496. [Article in Chinese] doi: 10.7507/1002-1892.201807004

聚氨酯弹性体和 Medpor 作为人工耳支架材料的力学研究

Mechanical study of polyurethane elastomer and Medpor as the material of artificial auricular scaffold

Ge LIU 1, Qian WANG 1, Qinghua YANG 1,*, Ling ZHANG 1, Weiwei DONG 1, Ying LIU 1, Rui GUO 1, Jingjian HAN 1
PMCID: PMC8337182  PMID: 30983201

Abstract

Objective

By comparing the mechanics of human auricular cartilage, polyurethane elastic material, and high density polyethylene material (Medpor), to produce theoretical proof on choosing optimal artificial auricular scaffold materials.

Methods

The experimental materials were divided into 3 groups with 6 samples in each: the auricular cartilage group (group A), the polyurethane elastic material group (group B), and the Medpor group (group C). With an Instron5967 mechanical testing machine, compression and tensile testing were performed to respectively measure values of compression parameters (including yield stress, yield load, elastic modulus, yield compressibility, compressibility within 2 MPa, and compression stress within 10% strain) and values of tensile parameters (including yield stress, yield load, elastic modulus, yield elongation, elongation within 2 MPa, tensile stress within 1% strain) for comparison.

Results

Compression testing: no obvious yield points were observed in the whole process in samples of group B, while obvious yield points were observed in samples of groups A and C. There was no significant difference between groups A and C with respect to yield stress and yield load (P>0.05); while the yield compressibility in group C was significantly lower than that in group A (P<0.05) and the elastic modulus in group C was significantly higher than that in group A (P<0.05). There was a significant difference with respect to compressibility within 2 MPa of materials among the 3 groups (P<0.05), the high, medium, and low values go to groups B, A, and C respectively. The compression stress within 10% strain in group C was significantly higher than that in groups A and B (P<0.05), and there was no significant difference between that in groups A and B (P>0.05). Tensile testing: the materials in group B had extremely high tensile strength. The yield stress in groups A and B was significantly higher than that in group C (P<0.05), and the elastic modulus and tensile stress within 1% strain were significantly lower than those in group C (P<0.05); but no significant difference was found between those in groups A and B (P>0.05). There was no significant difference with respect to yield load among the 3 groups (P>0.05); but there was significant difference with respect to yield elongation among the 3 groups (P<0.05), and the high, medium, and low values go to groups B, A, and C respectively. The elongation within 2 MPa in group B was significantly higher than that in groups A and C (P<0.05), and there was no significant difference between that in groups A and C (P>0.05).

Conclusion

Compared with the Medpor, the polyurethane elastic material is a more ideal artificial auricular scaffold material.

Keywords: Polyurethane, Medpor, artificial auricular scaffold, biomechanics


人工耳支架材料常因力学性能不达标而造成支架外露等并发症[1]。因此,良好的人工耳支架材料关键之一就是其力学性能接近正常耳廓软骨。对人工耳支架进行力学分析,并以正常耳廓软骨作为对照标准,可以更好地评价人工耳支架的力学性能。高密度聚乙烯材料 Medpor 和聚氨酯弹性体是临床常用的两种植入支架材料,Medpor 耳支架已在临床有大量应用[2];而聚氨酯也被证明长期植入体内与组织相容性极佳,且已被广泛应用于临床的合成高分子材料,如人工气管、心脏瓣膜、药物缓释载体等[3-4];在组织工程及修复重建领域,聚氨酯也作为支架材料被广泛使用和研究[5-7]。本研究通过测量人耳廓软骨的生物力学性能,并与这两种材料的力学性能比较,为选择合适的人工耳支架材料提供理论基础。

1. 材料与方法

1.1. 研究对象

人耳廓软骨由中国医学科学院整形外科医院整形七科提供,供者为 6 岁左右学龄前(外耳再造最佳年龄)耳廓畸形(如招风耳、杯状耳)儿童。手术前与供者家属签署知情同意书,取耳畸形术中获得的多余耳廓软骨组织备用。

聚氨酯弹性体由中国医学科学院基础医学研究所生物医学工程系许海燕教授课题组制备,由聚碳酸酯二醇和苯基甲烷二异氰酸酯合成。材料孔径为 150~220 μm,孔隙率为 77.69%±3.14%。高密度聚乙烯材料由中国医学科院整形外科医院提供,来自用于临床的 Medpor 假体。

1.2. 试验分组及样本制作

将实验材料分为 3 组,分别是人耳廓软骨组(A 组)、聚氨酯弹性体组(B 组)和 Medpor 组(C 组),每组 6 个样本,压缩试验和拉伸试验各 3 个样本。压缩试验样本制作:将各组样本制成长、宽约 4 mm,厚度约 2 mm;拉伸试验样本制作:将各组样本制作成哑铃型,长度约 15 mm,中间宽度约 2 mm。

1.3. 测试方法

所有试验均在 Instron5967 力学试验机(Instron 公司,美国)上进行。试验过程保持常温(20~25℃),且利用加湿器保持 45%~70% 的房间湿度。试验中用林格液间断浸湿样本以保持湿润。压缩试验样本厚度为试验开始时游标卡尺测量试验机抗压盘间距而得;拉伸试验样本长度为试验开始时游标卡尺测量试验机两夹具间距离而得。所得各样本参数输入 Bluehill3.22 测试软件(Instron 公司,美国)使用。测试中 Instron5967 力学试验机自动记录传感器载荷和位移。

1.3.1. 压缩试验

采用 500 N 传感器,将各组样本置于压缩盘中央位置,以 3 mm/min 速度均匀压缩,直至样本屈服。压缩试验需注意的是,样本的上下平面应与加载装置面保持平行,避免应力集中于样本的某个局部,从而减小了被测物的整体力学强度。检测以下指标:屈服应力,屈服载荷,弹性模量[7],屈服压缩率,2 MPa 压缩率及 10% 应变时的压缩应力。

1.3.2. 拉伸试验

采用 500 N 传感器,将各组样本固定于 Instron 力学试验机的上下夹头间,夹具夹持样本,使样本纵轴与上、下夹具中心连线相重合,并要求松紧适宜,以防样本滑脱或断在夹具内;以 3 mm/min 速度均匀拉伸直到样本断裂;若样本断裂在中间凹陷部分之外时,此样本作废,另取样本补做试验。检测以下指标:屈服应力,屈服载荷,弹性模量,屈服伸长率,2 MPa 伸长率及 1% 应变时的拉伸应力。

1.4. 统计学方法

采用 Originpro9.0 统计软件进行分析。数据以均数±标准差表示,组间比较采用单因素方差分析,两两比较采用 Bonferroni 检验;检验水准 α=0.05。

2. 结果

2.1. 压缩试验

B 组聚氨酯弹性体材料全程未见明显屈服点及线性段,压缩弹性模量无法测得,改用 2 MPa 压缩率及 10% 应变压缩应力进行评价;A 组人耳廓软骨与 C 组 Medpor 材料可见明显屈服点。见图 1。A、C 组屈服应力、屈服载荷比较差异无统计学意义(P>0.05);但 C 组屈服压缩率显著低于 A 组,弹性模量显著高于 A 组,差异均有统计学意义(P<0.05)。3 组 2 MPa 压缩率组间比较差异均有统计学意义(P<0.05);C 组 10% 应变压缩应力显著高于 A、B 组,差异有统计学意义(P<0.05),A、B 组间差异无统计学意义(P>0.05)。见表 1

图 1.

图 1

Compression yield curves of materials in each group

各组材料压缩屈服曲线

表 1.

Parameter values of compression test for each group of samples (n=3, Inline graphic)

各组样本压缩试验参数值(n=3, Inline graphic

组别
Group
屈服应力(MPa)
Yield stress (MPa)
屈服载荷(N)
Yield load (N)
弹性模量(MPa)
Elastic modulus
(MPa)
屈服压缩率
Yield
compressibility
2 MPa 压缩率
Compressibility
within 2 MPa
10% 应变压缩应力(MPa)
Compression stress within
10% strain (MPa)
*与 A 组比较P<0.05,#与 B 组比较P<0.05
*Compared with group A, P<0.05;#compared with group B, P<0.05
A 5.65±1.13 90.37±18.04 28.91±4.23 0.50±0.03 0.369 7±0.014 2# 0.082 2±0.015 8
B 0.786 1±0.014 7* 0.082 1±0.059 7
C 3.10±1.31 49.62±20.90 56.87±4.30* 0.12±0.03* 0.130 6±0.029 1*# 1.166 0±0.299 1*#
统计值
Statistic
F=1.118
P=0.169
F=1.118
P=0.169
F=2.905
P=0.005
F=2.392
P=0.000
F=228.500
P= 0.000
F=11.930
P= 0.000

2.2. 拉伸试验

B 组聚氨酯弹性体材料具有极强的伸长性能,而 A 组人耳廓软骨和 C 组 Medpor 材料则表现为在较小应变下即出现了样本断裂。见图 2。A、B 组屈服应力显著高于 C 组,弹性模量及 1% 应变拉伸应力显著低于 C 组,差异有统计学意义(P<0.05);A、B 组间差异无统计学意义(P>0.05)。3 组间屈服载荷比较差异均无统计学意义(P>0.05),屈服伸长率 3 组间比较差异均有统计学意义(P<0.05)。B 组 2 MPa 伸长率显著高于 A、C 组,差异有统计学意义(P<0.05);A、C 组间差异无统计学意义(P>0.05)。见表 2

图 2.

图 2

Tensile strength curves of materials in each group

各组材料抗拉强度曲线

表 2.

Parameter values of tensile test for each group of samples (n=3, Inline graphic)

各组样本抗拉强度参数值(n=3, Inline graphic

组别
Group
屈服应力(MPa)
Yield stress (MPa)
屈服载荷(N)
Yield load (N)
弹性模量(MPa)
Elastic modulus (MPa)
屈服伸长率
Yield elongation
2 MPa 伸长率
Elongation within
2 MPa
1% 应变拉伸应力(MPa)
Tensile stress within
1% strain (MPa)
*与 A 组比较P<0.05,#与 B 组比较P<0.05
*Compared with group A, P<0.05;#compared with group B,P<0.05
A 6.05±0.93 13.31±2.39 28.88± 7.89 0.72±0.10# 0.202 4±0.055 7# 0.036 0±0.006 3
B 7.40±1.00 13.82±2.60 1.18± 0.03 6.11±0.39* 1.960 0±0.431 3* 0.028 0±0.011 4
C 2.76±0.44*# 9.76±1.75 261.10±40.92*# 0.15±0.03*# 0.020 4±0.004 1# 1.012 0±0.244 5*#
统计值
Statistic
F=13.260
P= 0.002
F=1.189
P=0.348
F=12.830
P= 0.003
F=361.800
P= 0.000
F=50.730
P= 0.000
F=16.030
P= 0.000

3. 讨论

软骨组织作为生物黏弹性材料,其力学性能与组织结构密切相关。耳廓软骨是弹性软骨,由软骨细胞及其分泌的细胞外基质构成,无血管、淋巴、神经等其他成分[8]。软骨基质主要含水、糖胺多糖、胶原纤维和弹力纤维。软骨对压力负荷的反应牵涉到两种不同机制[9]:细胞外基质固有的力学成分,以及渗透压和舒张压驱动水分在细胞外基质流动产生的阻力。软骨的生物力学,尤其是关节软骨的生物力学特性,中外学者已有诸多研究。然而作为弹性软骨的耳软骨,其力学特性目前研究并不多见,且已有的研究主要是进行了压缩试验的分析[10-11]

高分子聚合物材料是已知材料中力学特点表现范围最宽的,即拥有力学性质的多样性,如弹性、刚性、脆性、韧性、黏性等。归因于聚合物的长链分子结构和空间结构,以及对温度和时间有强烈的信赖性,聚合物的力学特性可以从纯黏性经黏弹性到纯弹性,为应用提供了广阔的选择余地[12-13]。除了优异的力学性能,高分子聚合物还拥有杰出的稳定性、生物相容性以及便于塑形等特性,因此被广泛用作支架材料应用于组织器官的修复重建等生命健康领域[3, 14-15]

本研究选择比较的 3 种材料分别归属生物材料和聚合物材料。通过对 3 种材料进行非限制性压缩试验和拉伸试验[16],得到若干力学指标,用以比较 Medpor 材料和聚氨酯弹性体材料在力学性能上与耳软骨的差异。在非限制性压缩试验中,通过对各指标结果的分析可以得出,虽然 Medpor 材料屈服应力与人耳廓软骨无显著差异,但是其弹性模量显著高于人耳廓软骨,体现了本身优异的对抗压缩变形的能力;屈服压缩率结果也从另一个角度说明了 Medpor 材料的耐压强度。这与众多利用高密度聚乙烯支架行耳再造的临床观察结果相符[17]。然而 Medpor 常温环境下质地较硬,如无充足的皮下组织筋膜瓣或肌肉瓣包裹支架,容易发生外露[18]。而聚氨酯弹性体材料与 Medpor 材料不同,通过 2 MPa 压缩率可以看出,当 3 组材料面对相同应力时,聚氨酯弹性体材料发生的应变率最大,人耳廓软骨次之,Medpor 材料最小,说明 3 种材料中聚氨酯弹性体材料硬度最小,弹性最大。这样的力学特点虽然与耳软骨的表现也完全不一致,但从耳廓形变的现实角度出发,聚氨酯弹性体支架比坚硬的 Medpor 支架更不容易造成压力下支架表面包裹的皮肤软组织破损。从 10% 应变压缩应力结果可以更明显地看出,聚氨酯弹性体材料的压缩弹性性能与人耳廓软骨最接近,对再造外耳的术后安全性更为有利。在拉伸试验中,通过对各指标结果的分析可以得出,聚氨酯弹性体材料的力学性能相较 Medpor 材料优势明显。在屈服应力、弹性模量及 1% 应变拉伸应力方面,聚氨酯弹性体材料和人耳廓软骨无显著差异。在屈服伸长率及 2 MPa 伸长率方面,聚氨酯弹性体材料伸长率最大,Medpor 伸长率最小,说明聚氨酯弹性体材料拉伸性能最优,而 Medpor 几乎不可拉伸。外耳廓的拉伸性能是其重要的生物力学特性,聚氨酯材料既能在高应力条件下表现出较大形变,又可以在低应变(1%)条件下保持与耳软骨相似的拉伸性能,有利于维持其在生理条件下的弹性及强度,使得应用其再造的外耳廓弹性性能更加接近生理状态的外耳。

我们通过非限制性压缩试验和拉伸试验分析了人耳廓软骨和两种支架材料的力学性能,发现聚氨酯弹性体材料与 Medpor 相比,是一种在力学性能上更理想的耳廓人工支架。此外,两种支架材料最终的使用方式是不同的,Medpor 支架是作为肋软骨支架的替代品使用的,其覆盖筋膜和皮肤植入人体后力学性能几乎不再发生变化;而聚氨酯支架是可以作为组织工程支架使用的,在聚氨酯支架材料上形成的组织工程软骨会重塑和补偿支架的力学性能,使得单纯支架的力学缺陷得到改善。

Funding Statement

中国医学科学院医学与健康科技创新工程(201612M2001)

Medical and Health Science and Technology Innovative Project of Chinese Academy of Medical Sciences (201612M2001)

References

  • 1.Kim YS, Yun IS, Chung S Salvage of ear framework exposure in total auricular reconstruction. Ann Plast Surg. 2017;78(2):178–183. doi: 10.1097/SAP.0000000000000839. [DOI] [PubMed] [Google Scholar]
  • 2.Ali K, Trost JG, Truong TA, et al Total ear reconstruction using porous polyethylene. Semin Plast Surg. 2017;31(3):161–172. doi: 10.1055/s-0037-1604261. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Jung SY, Lee SJ, Kim HY, et al 3D printed polyurethane prosthesis for partial tracheal reconstruction: a pilot animal study. Biofabrication. 2016;8(4):045015. doi: 10.1088/1758-5090/8/4/045015. [DOI] [PubMed] [Google Scholar]
  • 4.Pinchuk L A review of the biostability and carcinogenicity of polyurethanes in medicine and the new generation of ‘biostable’ polyurethanes. J Biomater Sci Polym Ed. 1994;6(3):225–267. doi: 10.1163/156856294x00347. [DOI] [PubMed] [Google Scholar]
  • 5.肖原, 张杰, 陆燕蓉, 等 聚氨酯-脱细胞基质复合支架的制备及体内外生物相容性研究. 中国修复重建外科杂志. 2015;29(8):1016–1021. [PubMed] [Google Scholar]
  • 6.Agnol LD, Gonzalez Dias FT, Nicoletti NF, et al Polyurethane as a strategy for annulus fibrosus repair and regeneration: a systematic review. Regen Med. 2018;13(5):611–626. doi: 10.2217/rme-2018-0003. [DOI] [PubMed] [Google Scholar]
  • 7.张东力, 刘文, 吴向东, 等 新型纳米羟基磷灰石/聚氨酯复合材料治疗慢性骨髓炎的实验研究. 中国修复重建外科杂志. 2018;32(7):880–886. doi: 10.7507/1002-1892.201802049. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.陈兵, 高学宏, 徐达传, 等 全耳再造的解剖学基础研究. 中国临床解剖学杂志. 2002;20(4):250–252. doi: 10.3969/j.issn.1001-165X.2002.04.004. [DOI] [Google Scholar]
  • 9.Mow VC, Guo XE Mechano-electrochemical properties of articular cartilage: their inhomogeneities and anisotropies. Annu Rev Biomed Eng. 2002;4:175–209. doi: 10.1146/annurev.bioeng.4.110701.120309. [DOI] [PubMed] [Google Scholar]
  • 10.Zopf DA, Flanagan CL, Nasser HB, et al Biomechanical evaluation of human and porcine auricular cartilage. Laryngoscope. 2015;125(8):E262–E268. doi: 10.1002/lary.v125.8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Griffin MF, Premakumar Y, Seifalian AM, et al Biomechanical characterisation of the human auricular cartilages; implications for tissue engineering. Ann Biomed Eng. 2016;44(12):3460–3467. doi: 10.1007/s10439-016-1688-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Alizadeh-Osgouei M, Li Y, Wen C A comprehensive review of biodegradable synthetic polymer-ceramic composites and their manufacture for biomedical applications. Bioact Mater. 2018;4(1):22–36. doi: 10.1016/j.bioactmat.2018.11.003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Charles LF, Shaw MT, Olson JR, et al Fabrication and mechanical properties of PLLA/PCL/HA composites via a biomimetic, dip coating, and hot compression procedure. J Mater Sci Mater Med. 2010;21(6):1845–1854. doi: 10.1007/s10856-010-4051-3. [DOI] [PubMed] [Google Scholar]
  • 14.Raeisdasteh Hokmabad V, Davaran S, Ramazani A, et al Design and fabrication of porous biodegradable scaffolds: a strategy for tissue engineering. J Biomater Sci Polym Ed. 2017;28(16):1797–1825. doi: 10.1080/09205063.2017.1354674. [DOI] [PubMed] [Google Scholar]
  • 15.蔡江瑜, 蒋佳, 莫秀梅, 等 丝素蛋白/聚乳酸-聚己内酯纳米纤维支架对兔腱-骨愈合影响的实验研究. 中国修复重建外科杂志. 2017;31(8):957–962. doi: 10.7507/1002-1892.201704077. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Nimeskern L, van Osch GJ, Müller R, et al Quantitative evaluation of mechanical properties in tissue-engineered auricular cartilage. Tissue Eng Part B Rev. 2014;20(1):17–27. doi: 10.1089/ten.teb.2013.0117. [DOI] [PubMed] [Google Scholar]
  • 17.Stephan S, Reinisch J Auricular Reconstruction Using Porous Polyethylene Implant Technique. Facial Plast Surg Clin North Am. 2018;26(1):69–85. doi: 10.1016/j.fsc.2017.09.009. [DOI] [PubMed] [Google Scholar]
  • 18.Lewin S Complications after total porous implant ear reconstruction and their management. Facial Plast Surg. 2015;31(6):617–625. doi: 10.1055/s-00000018. [DOI] [PubMed] [Google Scholar]

Articles from Chinese Journal of Reparative and Reconstructive Surgery are provided here courtesy of Sichuan University

RESOURCES