Abstract
目的
探讨应用 Masquelet 技术联合人工真皮对家兔骨与软组织缺损的修复效果,观察诱导膜的微观结构及血管化情况,以期指导临床中对 Gustilo-AndersonⅢ型开放性骨折伴大段骨缺损及软组织缺损的治疗。
方法
雄性家兔 80 只,体质量 2.03~2.27 kg,平均 2.11 kg。取 64 只兔双侧大腿随机分为实验组及对照组,余 16 只兔双侧为假手术组。所有兔均制备股骨骨质缺损及软组织缺损模型。实验组以 Masquelet 技术第一阶段方法[将聚甲基丙烯酸甲酯骨水泥填充于骨缺损区]联合人工真皮治疗;对照组单纯以 Masquelet 技术第一阶段方法治疗;假手术组不作处理,直接缝合伤口。术后 2、4、6、8 周各处死假手术组 4 只家兔,以及实验组/对照组 16 只家兔,于双侧股骨原手术部位取材,大体观察诱导膜及结合膜情况;对膜结构取材行常规 HE 染色观察其微观结构;行 CD34 免疫组织化学染色观察,并计数微血管密度(microvessel density,MVD)。
结果
大体观察示:术后 4 周,实验组人工真皮胶原蛋白海绵层完全消失,实验组及对照组均产生完整诱导膜结构;对照组膜结构呈半透明状,实验组膜结构较厚,呈淡红色不透明,伴小血管增生。术后 6~8 周,实验组和对照组膜结构均逐渐增厚。假手术组随时间变化仅观察到瘢痕组织增生。HE 染色示:术后 2 周,实验组及对照组均可见大量肌纤维,少量胶原纤维增生伴炎性细胞浸润;假手术组大多为肌纤维,伴少量肌纤维间血管。术后 4 周,实验组较对照组胶原纤维增多,部分血管形成,对照组胶原纤维细胞核呈类圆形,实验组呈扁圆形。术后 6、8 周实验组和对照组胶原纤维均较前增多,对照组胶原纤维细胞核仍呈类圆形,实验组呈梭形且细胞核较同期对照组深染;两组均可观察到增生血管,实验组增生血管数目较对照组增多。假手术组仍可见大量成纤维细胞出现,未表现随时间变化的血管显著增生。CD34 免疫组织化学染色示,术后随时间延长,各组 MVD 均呈逐渐增加趋势。术后 2 周假手术组 MVD 显著大于实验组和对照组,4、6、8 周显著小于实验组和对照组,差异均有统计学意义(P<0.05)。实验组术后 4、6 周 MVD 显著大于对照组(P<0.05),2、8 周两组 MVD 比较差异无统计学意义(P>0.05)。
结论
Masquelet 技术结合人工真皮治疗兔股骨骨质缺损及软组织缺损,在术后 4~6 周明显促进了膜结构的血管化过程。这两种方法结合对临床 Gustilo-AndersonⅢ型开放性骨折伴骨及软组织缺损的治疗有指导意义。
Keywords: Masquelet技术, 诱导膜, 人工真皮, 骨缺损, 软组织缺损, 兔
Abstract
Objective
To investigate the effect of Masquelet technique combined with artificial dermis on repairing bone and soft tissue defects in rabbits, and to observe the microstructure and vascularization of induced membrane, so as to guide the clinical treatment of Gustilo-Anderson type Ⅲ open fracture with large bone defect and soft tissue defect.
Methods
Eighty male rabbits, weighing 2.03-2.27 kg (mean, 2.11 kg), were selected. The bilateral thighs of 64 rabbits were randomly divided into experimental group and control group, the remaining 16 rabbits were sham operation group. Bone and soft tissue defect models of femur were made in all rabbits. In the experimental group, the first stage of Masquelet technique was used [polymethyl methacrylate bone cement was filled in bone defect area] combined with artificial dermis treatment; in the control group, the first stage of Masquelet technique was used only; in the sham operation group, the wound was sutured directly without any treatment. Four rabbits in sham operation group and 16 rabbits in the experimental group and control group were sacrificed at 2, 4, 6, and 8 weeks after operation, respectively. The induced membranes and conjunctive membranes were observed on both sides of the femur. The membrane structure was observed by HE staining, and the microvessel density (MVD) was counted by CD34 immunohistochemical staining.
Results
Gross observation showed that the spongy layer of collagen in the artificial dermis of the experimental group disappeared completely at 4 weeks after operation, and the induced membrane structure of the experimental group and the control group was complete; the membrane structure of the control group was translucent, and the membrane structure of the experimental group was thicker, light red opaque, accompanied by small vessel proliferation. The membrane structure of the experimental group and the control group increased gradually from 6 to 8 weeks after operation. In the sham operation group, only scar tissue proliferation was observed over time. HE staining showed that a large number of muscle fibers and a small amount of collagen fibers proliferation with inflammatory cell infiltration could be seen in the experimental group and the control group at 2 weeks after operation; most of the sham operation group were muscle fibers with a small amount of interfibrous vessels. At 4 weeks after operation, collagen fibers increased and some blood vessels formed in the experimental group. The nuclei of collagen fibers in the control group were round-like, while those in the experimental group were flat-round. At 6 and 8 weeks after operation, the collagen fibers in the experimental group and the control group increased. The nuclei of the collagen fibers in the control group were still round-like. The nuclei of the collagen fibers in the experimental group were fusiformis and deeply stained compared with those in the control group. The proliferation of blood vessels was observed in both groups, and the number of proliferation vessels in the experimental group was increased compared with that in the control group. In the sham operation group, a large number of fibroblasts still appeared, but no significant proliferation of blood vessels with time was observed. CD34 immunohistochemical staining showed that MVD in each group increased gradually with the prolongation of time after operation. MVD in the sham operation group was significantly higher than that in the experimental group and the control group at 2 weeks after operation, and significantly smaller than that in the experimental group and the control group at 4, 6, and 8 weeks after operation (P<0.05). MVD in the experimental group was significantly higher than that in the control group at 4 and 6 weeks after operation (P<0.05), but there was no significant difference in MVD between the two groups at 2 and 8 weeks (P>0.05).
Conclusion
Masquelet technique combined with artificial dermis in the treatment of femoral bone defect and soft tissue defect in rabbits can significantly promote the vascularization of membrane structure at 4-6 weeks after operation. The combination of these two methods has guiding significance for the treatment of Gustilo-Anderson type Ⅲ open fracture with bone and soft tissue defects.
Keywords: Masquelet technology, induced membrane, artificial dermis, bone defect, soft tissue defect, rabbit
Gustilo-AndersonⅢ型开放性骨折伴骨及软组织缺损的治疗是骨科医生的一大挑战。此类患者不仅存在骨质节段性缺损,而且合并软组织条件不良、软组织供区不足等问题。Masquelet 技术显著改善了许多节段性骨缺损的预后,有助于恢复形态和功能[1-2]。Masquelet 技术包括两个阶段,第一阶段是该技术的核心。此阶段的成功不仅要求良好的骨缺损填充物质及其牢固程度,还要求有良好的软组织覆盖。所以针对软组织缺损及供区不足的治疗,可考虑应用人工真皮解决聚甲基丙烯酸甲酯(polymethyl methacrylate,PMMA)填充物表面的软组织覆盖问题。人工真皮的最初设计目的就是为了解决烧伤患者大面积皮肤缺损的治疗与自体组织供区相对不足之间的矛盾,在投入临床使用后已获得了满意效果[3-9]。
Masquelet 技术已被证明具有临床疗效,但其引起缺损愈合的生理学机制还不太明确[10]。人工真皮在临床中的应用范围不断增多,但二者联合治疗外伤后节段性骨缺损合并软组织缺损,尚未见临床病例及动物实验研究报道。通过回顾既往相关文献,我们发现 Masquelet 技术产生的诱导膜具有促进第二阶段植入骨的血管化过程作用[1,11-13]。而人工真皮材料的胶原蛋白海绵层具有多孔基质[14],有利于成纤维细胞和内皮细胞攀附,更有利于毛细血管由创面周边逐渐长入,从而加速血管化过程。这些研究启发我们是否可以通过 Masquelet 技术联合人工真皮修复外伤后节段性骨缺损合并软组织缺损。因此,本实验采用 Masquelet 技术联合人工真皮修复家兔骨与软组织缺损,研究结合膜(诱导膜与人工真皮结合后产生的膜结构)的最佳血管化时间,以期指导临床中对 Gustilo-AndersonⅢ型开放性骨折伴大段骨缺损及软组织缺损的治疗。
1. 材料与方法
1.1. 实验动物及主要材料、试剂、仪器
雄性成年家兔 80 只,体质量 2.03~2.27 kg,平均 2.11 kg,由河北医科大学实验动物中心提供。动物实验经石家庄市第三医院动物伦理委员会批准,实验动物使用许可证号:SYXK(冀)2016-003。
人工真皮 Pelnac® [“皮耐克®”加强型;郡是(GUNZE)株式会社,日本],光镜下观察显示为多孔细微“编织”结构(图 1)。Mendec® Spine 骨水泥(TECRES S.p.A.公司,意大利)。鼠抗兔 CD34 单克隆抗体(Abcam 公司,英国)。BX53 正置显微镜(Olympus 公司,日本)。
图 1.
Observation of the structure of artificial dermis under light microscope (×200)
光镜下观察人工真皮结构(×200)
1.2. 实验分组及方法
采用自身对照研究,取 64 只家兔双侧股骨随机分为实验组和对照组(n=64),余 16 只双侧股骨作为假手术组(n=32)。家兔股骨骨质及软组织缺损模型制备:将所有家兔以陆眠宁肌肉注射(0.1 mL/kg)麻醉并消毒后,侧卧于处置台,于大腿中部外侧切开皮肤,于外侧肌间隙分离进入,暴露股骨中部,环形破坏并刮除股骨中部长约 3 cm 骨膜,并以电钻于股骨中段外侧骨质表面钻孔造成约 1.0 cm×0.5 cm 大小骨质缺损,保留管型骨的内侧壁以利于稳定;然后去除股骨骨质缺损对应股四头肌外侧肌肉约 3 cm×2 cm 大小,制备软组织缺损模型。
假手术组造模后直接缝合皮肤。对照组和实验组将股骨骨缺损处以自制模具包裹固定,按照 Masquelet 技术第一阶段方法,灌入 2 mL PMMA 骨水泥,直至骨水泥固化后去除模具。然后对照组直接缝合皮肤;实验组将浸泡后的 Pelnac®人工真皮裁剪成多块 3 cm×2 cm 大小,每只家兔选取 1 块分别包裹骨水泥,以缝线固定,缝合皮肤。见图 2。
图 2.
Surgical management in the experimental group
实验组手术处理
a. 于家兔缺损处以 Masquelet 技术第一阶段方法放置骨水泥间隔;b. 将人工真皮均匀裁剪成多块备用;c. 人工真皮包裹骨水泥后固定
a. Place PMMA in the bone defect of rabbit according to the first stage of Masquelet technology; b. Cut the artificial dermis into multiple pieces for use; c. Place artificial dermis on the surface of the PMMA
1.3. 观测指标
1.3.1. 大体观察
术后 2、4、6、8 周各处死假手术组 4 只家兔,以及实验组/对照组 16 只家兔,于双侧股骨原手术部位取材,大体观察诱导膜及结合膜情况。
1.3.2. HE 染色观察
术后各时间点取实验组结合膜、对照组诱导膜及假手术组增生组织,经 4% 中性缓冲甲醛液固定,常规脱水,石蜡包埋,4 mm 厚切片,常规 HE 染色,光镜下观察。
1.3.3. CD34 免疫组织化学染色观察
术后各时间点取上述剩余切片脱蜡至水,3%H2O2 消除内源性过氧化物酶活性,室温孵育 5 min,0.1 mol/L PBS 浸泡 5 min;根据一抗需要进行组织处理,采用 0.25% 胰蛋白酶进行抗原修复或暴露 10% 正常山羊血清抑制非特异性表达,室温 10 min;弃血清,滴加一抗鼠抗兔 CD34 单克隆抗体(1∶100),4℃ 过夜;滴加二抗通用型生物素标记兔抗鼠 IgG,4℃ 过夜;滴加二抗通用型生物素标记兔抗鼠 IgG,37℃、10 min;加入辣根过氧化物酶进行标记,37℃、10 min,DAB 显色,苏木精复染,常规脱水、二甲苯透明、中性树胶封片。于 BX53 正置显微镜下观察 CD34 阳性染色微血管情况,血管内皮细胞的细胞质呈棕黄色为阳性染色。由 2 名观察者双盲以 Weidner 校正方法计数微血管密度(microvessel density,MVD),取均值。
1.4. 统计学方法
采用 SPSS22.0 统计软件进行分析。数据以均数±标准差表示,3 组间比较及组内各时间点间比较采用单因素方差分析,两两比较采用 LSD-t 检验;检验水准 α=0.05。
2. 结果
2.1. 大体观察
术后所有家兔均成活至实验完成。大体观察示:术后 2 周,实验组人工真皮胶原蛋白海绵层与表层硅胶膜大部分分离,少部分胶原蛋白海绵未降解;实验组和对照组骨水泥表面均未形成完整的诱导膜。假手术组可见术区周边组织水肿伴瘢痕增生。术后 4 周,实验组人工真皮仅残留表层硅胶膜,胶原蛋白海绵层完全消失。对照组及实验组均产生完整薄层膜结构,对照组膜结构呈半透明状;实验组膜结构呈淡红色不透明,伴小血管增生。假手术组可见术区瘢痕增生。术后 6 周,实验组及对照组膜结构均增厚,对照组膜结构与实验组 4 周时类似;实验组膜结构较对照组红润,可见毛细血管大量增生;假手术组仍为瘢痕组织,较前增厚。术后 8 周,实验组和对照组膜结构均较光滑、红润,膜表面可见毛细血管增生,大体观察膜结构类似;假手术组瘢痕组织较前增厚,未见明显毛细血管增生。见图 3。
图 3.
Gross observation of each group at each time point after operation
术后各时间点各组大体观察
a. 术后 2 周实验组人工真皮,可见少部分胶原蛋白海绵未降解;b. 术后 4 周实验组人工真皮,胶原蛋白层完全降解;c. 术后 4 周对照组可见完整诱导膜形成,呈半透明状;d. 术后 4 周实验组膜结构呈淡红色不透明,伴小血管增生;e. 术后 4 周假手术组骨质表面呈白色瘢痕组织增生;f. 术后 8 周对照组诱导膜较前增厚、红润;g. 术后 8 周实验组诱导膜较前增厚、红润;h. 术后 8 周假手术组骨质表面大部分仍为白色瘢痕组织
a. The artificial dermis of the experimental group at 2 weeks after operation, showed the collagen sponge layer of artificial dermis was not completely degraded; b. The artificial dermis of the experimental group at 4 weeks after operation, showed complete degradation of the artificial dermal collagen layer; c. At 4 weeks after operation, complete induction membrane was observed in the control group, which was translucent; d. At 4 weeks after operation, the membrane structure of the experimental group was light red and opaque, accompanied by small vessel proliferation; e. White scar tissue hyperplasia on bone surface in the sham operation group at 4 weeks after operation; f. At 8 weeks after operation, the induced membrane was thicker and rosy than before in the control group; g. At 8 weeks after operation, the induced membrane was thicker and rosy than before in the experimental group; h. At 8 weeks after operation, most of the bone surface in the sham operation group was still white scar tissue
2.2. HE 染色观察
术后 2 周,实验组及对照组均可见大量肌纤维,少量胶原纤维增生伴少量炎性细胞浸润;假手术组大多为肌纤维,伴少量肌纤维间血管。术后 4 周,实验组较对照组胶原纤维增多,部分血管形成,对照组胶原纤维细胞核呈类圆形,实验组呈扁圆形;假手术组可见成纤维细胞增生。术后 6、8 周,实验组和对照组胶原纤维均较前增多,对照组胶原纤维细胞核仍呈类圆形,实验组呈梭形,较前成熟,且细胞核颜色较同期对照组深染。两组均可观察到增生血管,血管形态均不规则,实验组增生血管数目较对照组增多,小血管管腔逐渐变大,小血管逐渐增生,充血明显,管腔内出现纤维素沉积,周边伴少量炎性细胞浸润。假手术组仍可见大量成纤维细胞出现,数量较前增多,伴少量血管出现,但未表现随时间变化的血管显著增生。见图 4。
图 4.
HE staining observation of induced membranes in each group at each time point after operation
术后各时间点各组膜结构 HE 染色观察
a. 对照组术后 2 周(×100);b. 对照组术后 4 周(×200);c. 对照组术后 6 周(×100);d. 对照组术后 8 周(×100);e. 实验组术后 2 周(×100);f. 实验组术后 4 周(×200);g. 实验组术后 6 周(×100);h. 实验组术后 8 周(×100);i. 假手术组术后 2 周(×100);j. 假手术组术后 4 周(×100);k. 假手术组术后 6 周(×100);l. 假手术组术后 8 周(×100)
a. Control group at 2 weeks (×100); b. Control group at 4 weeks (×200); c. Control group at 6 weeks (×100); d. Control group at 8 weeks (×100); e. Experimental group at 2 weeks (×100); f. Experimental group at 4 weeks (×200); g. Experimental group at 6 weeks (×100); h. Experimental group at 8 weeks (×100); i. Sham operation group at 2 weeks (×100); j. Sham operation group at 4 weeks (×100); k. Sham operation group at 6 weeks (×100); l. Sham operation group at 8 weeks (×100)
2.3. CD34 免疫组织化学染色观察
术后 2 周,实验组和对照组肌组织较多,仅见肌肉间单一血管;假手术组可见少量血管存在。术后 4 周,实验组和对照组均出现少量血管。术后 6、8 周,实验组和对照组均显示血管形态不规则,结合膜管腔逐渐变大,伴少量炎性细胞浸润,小血管逐渐增生,充血明显,管腔内出现纤维素沉积;实验组增生血管数目较对照组增多。假手术组术后 4~8 周仍伴少量血管,未表现随时间变化的血管增生。见图 5。
图 5.
CD34 immunohistochemical staining observation in each group at each time point after operation (Positive microscope×100)
术后各时间点各组膜结构 CD34 免疫组织化学染色观察(正置显微镜×100)
a. 对照组术后 2 周;b. 对照组术后 4 周;c. 对照组术后 6 周;d. 对照组术后 8 周;e. 实验组术后 2 周;f. 实验组术后 4 周;g. 实验组术后 6 周;h. 实验组术后 8 周;i. 假手术组术后 2 周;j. 假手术组术后 4 周;k. 假手术组术后 6 周;l. 假手术组术后 8 周
a. Control group at 2 weeks; b. Control group at 4 weeks; c. Control group at 6 weeks; d. Control group at 8 weeks; e. Experimental group at 2 weeks; f. Experimental group at 4 weeks; g. Experimental group at 6 weeks; h. Experimental group at 8 weeks; i. Sham operation group at 2 weeks; j. Sham operation group at 4 weeks; k. Sham operation group at 6 weeks; l. Sham operation group at 8 weeks
术后随时间延长,各组 MVD 均呈逐渐增加趋势。实验组和对照组术后各时间点间 MVD 比较差异均有统计学意义(P<0.05);假手术组除术后 2、4 周间 MVD 差异无统计学意义(P>0.05)外,其余各时间点间 MVD 比较差异均有统计学意义(P<0.05)。术后 2 周假手术组 MVD 显著大于实验组和对照组,4、6、8 周显著小于实验组和对照组,差异均有统计学意义(P<0.05)。实验组术后 4、6 周 MVD 显著大于对照组,差异有统计学意义(P<0.05);2、8 周两组 MVD 比较差异无统计学意义(P>0.05)。见表 1。
表 1.
Comparison of MVD in each group at different time points after operation (/HP,
)
术后各时间点各组 MVD 比较(个/HP,
)
组别
Group |
样本量
n |
术后 2 周
Postoperative at 2 weeks |
术后 4 周
Postoperative at 4 weeks |
术后 6 周
Postoperative at 6 weeks |
术后 8 周
Postoperative at 8 weeks |
统计值
Statistic |
*与对照组比较 P<0.05,#与假手术组比较 P<0.05
*Compared with control group, P<0.05;#compared with sham operation group, P<0.05 | ||||||
实验组
Experimental group |
16 | 0.75±0.48# | 4.32±0.99*# | 5.89±1.16*# | 6.26±0.95# |
F=116.58
P= 0.00 |
对照组
Control group |
16 | 0.68±0.41# | 3.34±1.06# | 4.28±0.84# | 5.85±0.88# |
F=108.49
P= 0.00 |
假手术组
Sham operation group |
8 | 1.17±0.37* | 1.21±0.38* | 1.81±0.75* | 2.85±0.54* |
F= 17.86
P= 0.00 |
统计值
Statistic |
F=3.81
P=0.03 |
F=29.33
P= 0.00 |
F=47.17
P= 0.00 |
F=45.40
P= 0.00 |
3. 讨论
临床上对大段骨缺损及软组织缺损的治疗一直是难点,既往多选择截肢术,不仅造成患者肢体残缺,而且大多数患者长期存在更加严重的心理障碍。两种肢体挽救技术——Ilizarov 骨搬运及 Masquelet 技术显著改善了许多节段性骨缺损的预后[15-16]。虽然这两种技术都被证明是有效的,但 Ilizarov 骨搬运在技术上操作较为困难且并发症较多,包括供体部位发病率和疼痛、不愈合和感染等[17-19]。与之相比,Masquelet 技术是一种更简便的方法,具有手术时间更短、并发症更少、关节活动及骨痂形成不良等发病率更低等优点[20]。
Masquelet 技术首先由法国 Masquelet 等发现,于 2000 年报道应用此方法治疗 35 例长骨骨干缺损,骨缺损范围为 4~25 cm,植骨后平均 4 个月影像学检查显示骨缺损完全愈合[1-2]。Masquelet 技术包括两个相对独立的阶段[1]。第一阶段:创面清创并将 PMMA 填充于骨缺损区,防止纤维组织长入,并稳定患肢。植入的 PMMA 主要有两个作用:首先起到力学支撑作用,防止纤维组织长入骨缺损区,为后期植骨的生长提供良好生物环境;其次,PMMA 周围形成的诱导膜起到生物保护作用,既可以促进植入骨的重建和再血管化,又避免了植入骨被吸收。第二阶段:植入后 6~8 周,在不损伤诱导膜的前提下取出 PMMA,将足量的颗粒状自体松质骨填充骨缺损部位,再用固定物稳定患肢[11-13,21]。第一阶段诱导膜形成质量是 Masquelet 技术的关键,诱导膜的形成必须有良好的软组织覆盖。皮瓣手术是治疗此类创面较为有效的方法[22-23],但它要求有良好的皮瓣供区,而此类患者组织缺损面积较大,皮瓣供区不足,并且许多患者因自身心理因素往往拒绝此类手术;即使部分患者进行了皮瓣手术,术后皮瓣坏死概率仍较高。而在原创面进行 Masquelet 技术的第二阶段手术,更加大了皮瓣的坏死风险。
人工真皮来源广泛、手术简便、易操作等特点,恰好能解决以上问题。上世纪 80 年代后,人们开始研究及制备各种真皮替代物治疗创面。真皮替代物为表皮细胞膜片移植提供了三维支架,它提高了表皮细胞膜片移植的成活率,改善了创面愈合质量,真皮成分还可影响表皮细胞的迁移、分化、黏附和生长。添加自体成纤维细胞的真皮替代物还有利于表皮细胞的生长增殖,促进真皮表皮连接形成,改变皮片的物理性质及外观,使其更接近正常皮肤组织。世界首例人工合成真皮 Integra® 在 1996 年获批应用于临床[24]。Integra® 为两层结构,上层为硅胶膜,下层胶原蛋白层是由交联的牛Ⅰ型胶原纤维和硫酸软骨素组成[25]。有报道应用人工真皮结合自体刃厚皮片移植治疗骨质及肌腱外露创面,可以获得稳定及耐磨的组织覆盖,并得出人工真皮可作为烧伤后骨外露特别是供区有限患者良好的治疗选择[3-9]。另一种在我国应用更为广泛的人工真皮 Pelnac® 改良了 Integra® 的胶原来源,选用猪肌腱提取胶原,并去除了端肽,减少了免疫原性。Pelnac® 和 Integra® 有共同特征,两者都具有双层结构,且都具有外部临时表皮硅胶片和由胶原制成的真皮组分[26]。Wosgrau 等[27]研究指出 Pelnac® 和 Integra® 在皮肤全层损伤的小鼠模型的伤口愈合过程中显示出相似的生物学行为;它们均在三维培养系统中有效地支持皮肤间充质细胞的生长[28]。
当前对于 Masquelet 技术两个阶段实施的时机存在争议。一般认为 Masquelet 技术第一阶段的标志是形成成熟的、血管良好的、不渗透的诱导膜[29-33]。Masquelet 教授主张为期 8 周的诱导期[1,34],诱导期是骨水泥间隔物必须保留在缺损部位以允许膜形成的时间。自该技术应用以来,许多研究者已经测试了不同的时间方案,但最佳诱导期仍未确定,而且其与 Masquelet 技术最终成功是否相关一直不明确。许多研究者认为第一阶段的持续时间会影响形成诱导膜的结构[30-31,35],随时间增加(2~6 周),膜的厚度和纤维组织的量增加[29-31]。但 Gouron 等[30]研究对 3、4、5、6 周的诱导膜进行比较时,诱导膜在 4 周时达到最厚,并随时间延长厚度逐渐降低,认为 4 周时诱导膜的结构最适合促进骨形成和骨愈合。这与异物反应的生理学机制有关[36]。因此本实验选择术后 2、4、6、8 周取材。
本实验中,对实验组家兔进行骨质缺损和软组织缺损造模后,进行 Masquelet 技术联合人工真皮治疗,结果显示实验组及对照组均表现出随时间进展,膜结构逐渐增厚趋势,实验组及对照组内 MVD 亦表现出随时间进展,血管化程度逐渐增高趋势。但相同时间点组间比较显示,术后 2 周实验组因人工真皮未完全降解,且未形成诱导膜,此时并未发生人工真皮胶原蛋白海绵促进诱导膜的血管化过程;同时,术后 2 周对照组亦未形成诱导膜结构。以上与文献中诱导膜的出现时间及人工真皮的降解时间均符合。术后 4 周,实验组胶原蛋白海绵层完全降解,实验组与对照组均出现完整的诱导膜结构;实验组膜结构较厚且红润,可见表层血管增生,HE 染色示实验组的胶原纤维较对照组增多,且细胞核结构更为成熟。并且 MVD 检测结果显示,术后 4 周人工真皮完全降解的胶原蛋白海绵层为诱导膜的血管爬行提供了支架结构,两者的结合增加了血管的生成速度和数量,促进了创伤的修复。术后 6 周,实验组血管化程度及胶原纤维的质量仍高于对照组。8 周时实验组及对照组血管化程度类似,但实验组形成的胶原纤维数量及成熟度仍高于对照组。
综上述,人工真皮胶原蛋白海绵层的多孔结构可促进 PMMA 间隔物表面诱导膜的形成,支架结构有利于细胞黏附及血管生长;且在术后 4~6 周时结合膜较诱导膜血管化更为明显。而诱导膜的快速血管化有利于 Masquelet 技术第二阶段骨质生长及皮片移植。因此我们认为,Masquelet 技术结合人工真皮治疗的最佳诱导期为 4~6 周,应用此方法可尝试对 Gustilo-AndersonⅢ型开放性骨折伴骨及软组织缺损进行临床治疗。
Funding Statement
河北省医学科学研究重点课题(20181042)
Key Topics of Medical Science Research in Hebei Province (20181042)
References
- 1.Masquelet AC, Fitoussi F, Begue T, et al Reconstruction of the long bones by the induced membrane and spongy autograft. Ann Chir Plast Esthet. 2000;45(3):346–353. [PubMed] [Google Scholar]
- 2.Masquelet AC, Begue T The concept of induced membrane for reconstruction of long bone defects. Orthop Clin North Am. 2010;41(1):27–37. doi: 10.1016/j.ocl.2009.07.011. [DOI] [PubMed] [Google Scholar]
- 3.Chen X, Chen H, Zhang G Management of wounds with exposed bone structures using an artificial dermis and skin grafting technique. Clin Plast Surg. 2012;39(1):69–75. doi: 10.1016/j.cps.2011.09.011. [DOI] [PubMed] [Google Scholar]
- 4.Molnar JA, DeFranzo AJ, Hadaegh A, et al Acceleration of Integra incorporation in complex tissue defects with subatmospheric pressure. Plast Reconstr Surg. 2004;113(5):1339–1346. doi: 10.1097/01.PRS.0000112746.67050.68. [DOI] [PubMed] [Google Scholar]
- 5.Lee LF, Porch JV, Spenler W, et al Integra in lower extremity reconstruction after burn injury. Plast Reconstr Surg. 2008;121(4):1256–1262. doi: 10.1097/01.prs.0000304237.54236.66. [DOI] [PubMed] [Google Scholar]
- 6.Clerici G, Caminiti M, Curci V, et al The use of a dermal substitute to preserve maximal foot length in diabetic foot wounds with tendon and bone exposure following urgent surgical debridement for acute infection. Int Wound J. 2010;7(3):176–183. doi: 10.1111/iwj.2010.7.issue-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 7.Yeong EK, Yu YC, Chan ZH, et al Is artificial dermis an effective tool in the treatment of tendon-exposed wounds. J Burn Care Res. 2013;34(1):161–167. doi: 10.1097/BCR.0b013e3182685f0a. [DOI] [PubMed] [Google Scholar]
- 8.Murray RC, Gordin EA, Saigal K, et al Reconstruction radial forearm free flap donor site using integra artificial dermis. Microsurgery. 2011;31(2):104–108. doi: 10.1002/micr.v31.2. [DOI] [PubMed] [Google Scholar]
- 9.Yeong EK, Chen SH, Tang YB The treatment of bone exposure in burns by using artificial dermis. Ann Plast Surg. 2012;69(6):607–610. doi: 10.1097/SAP.0b013e318273f845. [DOI] [PubMed] [Google Scholar]
- 10.Tarchala M, Harvey EJ, Barralet J Biomaterial-stabilized soft tissue healing for healing of critical-sized bone defects: the Masquelet technique. Adv Healthc Mater. 2016;5(6):630–640. doi: 10.1002/adhm.201500793. [DOI] [PubMed] [Google Scholar]
- 11.Wiese A, Pape HC Bone defects caused by high-energy injuries, bone loss, infected nonunions, and nonunions. Orthop Clin North Am. 2010;41(1):1–4. doi: 10.1016/j.ocl.2009.07.003. [DOI] [PubMed] [Google Scholar]
- 12.Viateau V, Guillemin G, Calando Y, et al Induction of a barrier membrane to facilitate reconstruction of massive segmental diaphyseal bone defects: an ovine model. Vet Surg. 2006;35(5):445–452. doi: 10.1111/vsu.2006.35.issue-5. [DOI] [PubMed] [Google Scholar]
- 13.Precheur HV Bone graft materials. Dent Clin North Am. 2007;51(3):729–746. doi: 10.1016/j.cden.2007.03.004. [DOI] [PubMed] [Google Scholar]
- 14.Wang F, Wang M, She Z, et al Collagen/chitosan based two compartment and bi-functional dermal scaffolds for skin regeneration. Mater Sci Eng C Mater Biol Appl. 2015;52:155–162. doi: 10.1016/j.msec.2015.03.013. [DOI] [PubMed] [Google Scholar]
- 15.Giannoudis PV, Faour O, Goff T, et al Masquelet technique for the treatment of bone defects: tips-tricks and future directions. Injury. 2011;42(6):591–598. doi: 10.1016/j.injury.2011.03.036. [DOI] [PubMed] [Google Scholar]
- 16.Mekhail AO, Abraham E, Gruber B, et al Bone transport in the management of posttraumatic bone defects in the lower extremity. J Trauma. 2004;56(2):368–378. doi: 10.1097/01.TA.0000057234.48501.30. [DOI] [PubMed] [Google Scholar]
- 17.Pelissier P, Martin D, Baudet J, et al Behaviour of cancellous bone graft placed in induced membranes. Br J Plast Surg. 2002;55(7):596–598. doi: 10.1054/bjps.2002.3936. [DOI] [PubMed] [Google Scholar]
- 18.Myeroff C, Archdeacon M Autogenous bone graft: donor sites and techniques. J Bone Joint Surg (Am) 2011;93(23):2227–2236. doi: 10.2106/JBJS.J.01513. [DOI] [PubMed] [Google Scholar]
- 19.张磊, 王新卫, 陈雨声, 等 应用Ilizarov技术治疗骨髓炎出现复杂软组织问题的处理技巧探讨. 中国修复重建外科杂志. 2018;32(10):1286–1291. doi: 10.7507/1002-1892.201805055. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 20.Motsitsi NS Masquelet's technique for management of long bone defects: from experiment to clinical application. East Cent Afr J Surg. 2012;17(2):43–47. [Google Scholar]
- 21.Henrich D, Seebach C, Nau C, et al Establishment and characterization of the Masquelet induced membrane technique in a rat femur critical-sized defect model. J Tissue Eng Regen Med. 2016;10(10):E382–E396. doi: 10.1002/term.v10.10. [DOI] [PubMed] [Google Scholar]
- 22.Koga Y, Komuro Y, Yamato M, et al Recovery course of full-thickness skin defects with exposed bone: an evaluation by a quantitative examination of new blood vessels. J Surg Res. 2007;137(1):30–37. doi: 10.1016/j.jss.2006.05.041. [DOI] [PubMed] [Google Scholar]
- 23.沈余明, 陈辉, 胡骁骅, 等 组织瓣移植联合骨延长技术分期修复烧创伤后下肢严重软组织与骨缺损. 中国修复重建外科杂志. 2017;31(2):160–164. doi: 10.7507/1002-1892.201609117. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 24.Dantzer E, Braye FM Reconstructive surgery using an artificial dermis (Integra): results with 39 grafts. Br J Plast Surg. 2001;54(8):659–664. doi: 10.1054/bjps.2001.3684. [DOI] [PubMed] [Google Scholar]
- 25.Burke JF, Yannas IV, Quinby WC Jr, et al Successful use of a physiologically acceptable artificial skin in the treatment of extensive burn injury. Ann Surg. 1981;194(4):413–428. doi: 10.1097/00000658-198110000-00005. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 26.Suzuki S, Matsuda K, Maruguchi T, et al Further applications of “bilayer artificial skin”. Br J Plast Surg. 1995;48(4):222–229. doi: 10.1016/0007-1226(95)90006-3. [DOI] [PubMed] [Google Scholar]
- 27.Wosgrau AC, Jeremias Tda S, Leonardi DF, et al Comparative experimental study of wound healing in mice: pelnac versus integra. PLoS One. 2015;10(3):e0120322. doi: 10.1371/journal.pone.0120322. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 28.Jeremias Tad S, Machado RG, Visoni SB, et al Dermal substitutes support the growth of human skin-derived mesenchymal stromal cells: potential tool for skin regeneration. PLoS One. 2014;9(2):e89542. doi: 10.1371/journal.pone.0089542. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 29.Wong TM, Lau TW, Li X, et al Masquelet technique for treatment of posttraumatic bone defects. ScientificWorldJournal. 2014;2014:710302. doi: 10.1155/2014/710302. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 30.Gouron R, Petit L, Boudot C, et al Osteoclasts and their precursors are present in the induced-membrane during bone reconstruction using the Masquelet technique. J Tissue Eng Regen Med. 2017;11(2):382–389. doi: 10.1002/term.v11.2. [DOI] [PubMed] [Google Scholar]
- 31.Aho OM, Lehenkari P, Ristiniemi J, et al The mechanism of action of induced membranes in bone repair. J Bone Joint Surg (Am) 2013;95(7):597–604. doi: 10.2106/JBJS.L.00310. [DOI] [PubMed] [Google Scholar]
- 32.Woon CY, Chong KW, Wong MK Induced membranes-a staged technique of bone-grafting for segmental bone loss: a report of two cases and a literature review. J Bone Joint Surg (Am) 2010;92(1):196–201. doi: 10.2106/JBJS.I.00273. [DOI] [PubMed] [Google Scholar]
- 33.Pelissier P, Masquelet AC, Bareille R, et al Induced membranes secrete growth factors including vascular and osteoinductive factors and could stimulate bone regeneration. J Orthop Res. 2004;22(1):73–79. doi: 10.1016/S0736-0266(03)00165-7. [DOI] [PubMed] [Google Scholar]
- 34.Masquelet AC Muscle reconstruction in reconstructive surgery: soft tissue repair and long bone reconstruction. Langenbecks Arch Surg. 2003;388(5):344–346. doi: 10.1007/s00423-003-0379-1. [DOI] [PubMed] [Google Scholar]
- 35.Christou C, Oliver RA, Yu Y, et al The Masquelet technique for membrane induction and the healing of ovine critical sized segmental defects. PLoS One. 2014;9(12):e114122. doi: 10.1371/journal.pone.0114122. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 36.Kenneth Ward W A review of the foreign-body response to subcutaneously-implanted devices: the role of macrophages and cytokines in biofouling and fibrosis. J Diabetes Sci Technol. 2008;2(5):768–777. doi: 10.1177/193229680800200504. [DOI] [PMC free article] [PubMed] [Google Scholar]