Skip to main content
AJNR: American Journal of Neuroradiology logoLink to AJNR: American Journal of Neuroradiology
. 1995 Oct;16(9):1771-8.

Improved detection of enhancing and nonenhancing lesions of multiple sclerosis with magnetization transfer.

R C Mehta 1, G B Pike 1, D R Enzmann 1
PMCID: PMC8338214  PMID: 8693973

Abstract

PURPOSE

To determine whether magnetization transfer imaging can improve visibility of contrast enhancement of multiple sclerosis plaques.

METHODS

Fifty-nine enhancing and 63 nonenhancing lesions in 10 patients with multiple sclerosis were evaluated to calculate contrast-to-noise ratios on conventional T1-weighted and T1-weighted magnetization transfer images. The signal intensity of the lesion and the background (white matter) were measured on precontrast T1-weighted and T1-weighted magnetization transfer images (800/20/1 [repetition time/echo time/excitations]) and on postcontrast T1-weighted and T1-weighted magnetization transfer images. Mean contrast-to-noise ratios was calculated for all lesions.

RESULTS

The contrast-to-noise ratio was significantly higher for enhancing and nonenhancing lesions on T1-weighted magnetization transfer images than on conventional T1-weighted images. For enhancing lesions, the contrast-to-noise ratio was significantly higher on postcontrast T1-weighted magnetization transfer images, 32 +/- 2 compared with 21 +/- 2 on conventional T1-weighted images. Fifty of the 59 enhancing lesions were seen on both the T1-weighted and the T1-weighted magnetization transfer images. Nine enhancing lesions were seen only on the postcontrast T1-weighted magnetization transfer images. In addition, of 63 nonenhancing lesions seen on proton-density, T2-weighted, and T1-weighted magnetization transfer images, 16 were not seen on the conventional T1-weighted images. Seven of the 63 nonenhancing lesions and 7 of the 59 enhancing lesions had high signal intensity on the precontrast T1-weighted magnetization transfer images suggestive of lipid signal, a finding not seen on the conventional precontrast T1-weighted images.

CONCLUSION

Magnetization transfer improves the visibility of enhancing multiple sclerosis lesions, because they have a higher contrast-to-noise ratio than conventional postcontrast T1-weighted images. High signal intensity on both nonenhancing and enhancing lesions noted only on precontrast T1-weighted magnetization transfer suggests a lipid signal was unmasked. If magnetization transfer is used in multiple sclerosis patients, a precontrast magnetization transfer image is necessary.

Full Text

The Full Text of this article is available as a PDF (553.0 KB).


Articles from AJNR: American Journal of Neuroradiology are provided here courtesy of American Society of Neuroradiology

RESOURCES