Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2021 Jul 23;77(Pt 8):829–833. doi: 10.1107/S2056989021007349

Crystal structure and Hirshfeld surface analysis of (2Z)-N,N-dimethyl-2-(penta­fluoro­phen­yl)-2-(2-phenyl­hydrazin-1-yl­idene)acetamide

Zeliha Atioğlu a, Mehmet Akkurt b, Namiq Q Shikhaliyev c, Ulviyya F Askerova c, Aytan A Niyazova c,d, Sixberth Mlowe e,*
PMCID: PMC8340965  PMID: 34422310

The dihedral angle between the aromatic rings in the title compound is 31.84 (8)°; N—H⋯O and C—H⋯O hydrogen bonds and π–π stacking inter­actions connect mol­ecules in the crystal, producing a three-dimensional network.

Keywords: crystal structure, fluorine, hydrogen bonds, π–π stacking inter­actions, SQUEEZE, Hirshfeld surface analysis

Abstract

In the title compound, C16H12F5N3O, the dihedral angle between the aromatic rings is 31.84 (8)°. In the crystal, the mol­ecules are linked into dimers possessing crystallographic twofold symmetry by pairwise N—H⋯O hydrogen bonds and weak C—H⋯O hydrogen bonds and aromatic π–π stacking inter­actions link the dimers into a three-dimensional network. A Hirshfeld surface analysis indicates that the most important contributions to the crystal packing are from F⋯H/H⋯F (41.1%), H⋯H (21.8%), C⋯H/H⋯C (9.7%) C⋯C (7.1%) and O⋯H/H⋯O (7.1%) contacts. The contribution of some disordered solvent to the scattering was removed using the SQUEEZE routine [Spek (2015). Acta Cryst. C71, 9–18] in PLATON. The solvent contribution was not included in the reported mol­ecular weight and density.

Chemical context  

Aryl­hydrazones containing a (Ph,R)C=N—NHR grouping possess controllable E/Z isomerization around the C=N double bond, which makes them good candidates for the construction of functional materials (Ma et al., 2021). Control of the supra­molecular chemistry of hydrazone ligands and the corresponding complexes may afford multi-dimensional synthons or metallo-organic tectons (Kopylovich et al., 2011; Gurbanov et al., 2020a ). The functionalization of aryl­hydrazone ligands with groups such as –SO3H, –COOH, –F, –Cl, etc., can improve the catalytic or biological activity of the corresponding coordination compounds (e.g., Shikhaliyev et al., 2019; Gurbanov et al., 2020b ). As part of our ongoing work in this area, we have synthesized the title fluorinated aryl­hydrazone compound, C16H12F5N3O, and determined its crystal structure and analysed its Hirshfeld surface. graphic file with name e-77-00829-scheme1.jpg

Structural commentary  

The title mol­ecule (Fig. 1) crystallizes in the monoclinic space group C2/c with Z = 8 and has an E conformation with an azomethine N2=C7 double bond length of 1.2880 (16) Å. The backbone of the mol­ecule is non-planar with a dihedral angle of 31.84 (8)° between the C1–C6 penta­flouro­benzene and C11–C16 benzene rings and the acetamide group lies almost perpendicular. The C5—C6—C7—N2, C6—C7—N2—N3, C7—N2—N3—C11, N2—N3—C11—C16 and C6—C7—C8—N1 torsion angles are −28.19 (17), 174.02 (10), −176.33 (11), 5.90 (18) and 122.80 (12)°, respectively.

Figure 1.

Figure 1

The title mol­ecule showing 30% probability displacement ellipsoids.

Supra­molecular features  

In the crystal, the mol­ecules are linked by pairwise N—H⋯O hydrogen bonds (Table 1), generating dimers featuring an Inline graphic (12) loop with crystallographic twofold symmetry. The dimers are linked by C—H⋯O hydrogen bonds and aromatic π–π stacking inter­actions [Cg1⋯Cg1 b = 3.7137 (10) Å, slippage = 1.158 Å, Cg1⋯Cg2 b = 3.7015 (9) Å, slippage = 1.407 Å, and Cg1⋯Cg2 a = 3.7016 (9) Å, slippage = 1.148 Å; where Cg1 and Cg2 are the centroids of the C1–C6 and C11–C16 rings, respectively; symmetry codes: (a) 1 − x, y, Inline graphic  − z; (b) 1 − x, 1 − y, 1 − z]. Together, these generate a three-dimensional network (Fig. 2).

Table 1. Hydrogen-bond geometry (Å, °).

Cg2 is the centroid of the C11–C16 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3N⋯O1i 0.87 (1) 2.05 (2) 2.8658 (15) 154 (1)
C14—H14⋯O1ii 0.93 2.45 3.377 (2) 172
C10—H10BCg2iii 0.96 2.77 3.4685 (19) 130

Symmetry codes: (i) -x+1, y, -z+{\script{3\over 2}}; (ii) x-{\script{1\over 2}}, y-{\script{1\over 2}}, z; (iii) -x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1.

Figure 2.

Figure 2

View oblique to [010] of the inter­molecular N—H⋯O, C—H⋯O and π–π stacking inter­actions of the title compound.

Hirshfeld surface analysis  

Crystal Explorer 17.5 was used to calculate the Hirshfeld surfaces and two-dimensional fingerprint plots (Turner et al., 2017). The three-dimensional Hirshfeld surface mapped over d norm in the range −0.52 to 2.23 a.u. is shown in Fig. 3: the H9C⋯F1, H16⋯F2, F3⋯H10C, H3N⋯O1, N3—H3N⋯O1 and C14—H14⋯O1 inter­actions, which play a key role in the mol­ecular packing, can be correlated with the bright-red patches near F1, F2, F3 and O1 and hydrogen atoms H3N and H14, which highlight their functions as donors and/or acceptors. This may be compared to the Hirshfeld surface mapped over electrostatic potential (Spackman et al., 2008) depicted in the supporting information corresponding to positive electrostatic potential (hydrogen-bond donors) in blue and negative electrostatic potential is indicated in red (hydrogen-bond acceptors).

Figure 3.

Figure 3

View of the three-dimensional Hirshfeld surface of the title compound plotted over d norm in the range −0.52 to 2.23 a.u.

The overall two-dimensional fingerprint map for the title compound is shown in Fig. 4 a. The percentage contributions to the Hirshfeld surfaces from various inter­atomic contacts (Table 2) are F⋯H/H⋯F (41.1%; Fig. 4 b), H⋯H (21.8%; Fig. 4 c), C⋯H/H⋯C (9.7%; Fig. 4 d) C⋯C (7.1%; Fig. 4 e) and O⋯H/H⋯O (7.1%; Fig. 4 f). Other contact types including N⋯H/H⋯N, N⋯C/C⋯N and N⋯N contacts account for less than 5.4% of the Hirshfeld surface mapping and presumably have minimal directional impact on the packing.

Figure 4.

Figure 4

Two-dimensional fingerprint plots for the title compound showing (a) all inter­actions, and delineated into (b) F⋯H/H⋯F, (c) H⋯H, (d) C⋯H/H⋯C, (e) C⋯C and (f) O⋯H/H⋯O inter­actions. The d i and d e values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface.

Table 2. Percentage contributions of inter­atomic contacts to the Hirshfeld surface for the title compound.

Contact Percentage contribution
F⋯H/H⋯F 41.1
H⋯H 21.8
C⋯H/H⋯C 9.7
C⋯C 7.1
O⋯H/H⋯O 7.1
F⋯F 5.4
F⋯C/C⋯F 4.1
F⋯N/N⋯F 1.5
N⋯C/C⋯N 1.1
O⋯O 0.3
N⋯N 0.2
O⋯C/C⋯O 0.2
N⋯H/H⋯N 0.1

Database survey  

The five related compounds in the Cambridge Structural Database (CSD Version 5.42, update 1, Feb 2021; Groom et al., 2016) with a (1E)-1-benzyl­idene-2-phenyl­hydrazine skeleton are (E)-3-chloro-N′-(2-fluoro­benzyl­idene)thio­phene-2-carbohydrazide (refcode SOJQAL: Sultan et al., 2014), N′-[1-(2-fluoro­phen­yl)ethyl­idene]isonicotinohydrazide (HIX­RAJ: Sreeja et al., 2014a ), (1E,2E)-bis­[(thio­phen-2-yl)meth­yl­idene]hydrazine (MIHROK03: Geiger et al., 2013), N′-[1-(2-fluoro­phen­yl)ethyl­idene]nicotinohydrazide (ZISSAX: Sreeja et al., 2014b ) and 4-[1-(4-chloro­phen­yl)-3-oxo­butyl­amino]­benzoic acid (TINWIX: Narayana et al., 2007).

The hydrazide derivative SOJQAL adopts an E conformation with an azomethine N=C double bond length of 1.272 (2) Å. The mol­ecular skeleton is approximately planar, the terminal five- and six-membered rings forming a dihedral angle of 5.47 (9)°. In the crystal, mol­ecules are linked by N—H⋯O and C—H⋯O hydrogen bonds into zigzag chains propagating in [100].

The mol­ecule of HIXRAJ adopts an E conformation with respect to the azomethine bond. The pyridyl and fluoro­benzene rings make dihedral angles of 38.58 (6) and 41.61 (5)° respectively with the central C(=O)N2CC unit, resulting in a non-planar mol­ecule. The inter­molecular inter­actions comprise two classical N—H⋯O and N—H⋯N hydrogen bonds and four non-classical C—H⋯O and C—H⋯F hydrogen bonds. These inter­actions are augmented by a weak π–π inter­action between the benzene and pyridyl rings of neighbouring mol­ecules, with a centroid–centroid distance of 3.9226 (10) Å. This leads to a three-dimensional supra­molecular assembly in the crystal.

The asymmetric unit of MIHROK03 comprises two independent half-mol­ecules, each residing on a centre of symmetry. The two mol­ecules are essentially planar. In the crystal, weak C—H⋯π inter­actions join the two symmetry-independent mol­ecules into inter­linked chains parallel to [011].

The mol­ecule of ZISSAX adopts an E conformation with respect to the azomethine double bond whereas the N and methyl C atoms are in a Z conformation with respect to the same bond. The ketonic O and azomethine N atoms are cis to each other. The non-planar mol­ecule [the dihedral angle between the benzene rings is 7.44 (11)°] exists in an amido form with a C=O bond length of 1.221 (2) Å. In the crystal, a bifurcated N—H⋯(O,N) hydrogen bond is formed between the amide H atom and the keto O and imine N atoms of an adjacent mol­ecule, leading to the formation of chains propagating along the b-axis direction.

In TINWIX, the aromatic rings are almost perpendicular, making a dihedral angle of 89.26 (5)°. The carboxyl group is coplanar with the aromatic ring to which it is attached [dihedral angle = 1.70 (17)°]. The packing involves inversion-symmetric dimers bridged via hydrogen bonding of the carboxyl groups. In addition, there is an N—H⋯O hydrogen bond between the amino group and the carbonyl O atom.

Synthesis and crystallization  

A 20 ml screw-neck vial was charged with DMSO (10 ml), (E)-1-[(perfluoro­phen­yl)methyl­ene]-2-phenyl­hydrazine (286 mg, 1.00 mmol), tetra­methyl­ethylenedi­amine (TMEDA) (295 mg, 2.50 mmol), CuCl (2 mg, 0.02 mmol) and CCl4 (20 mmol, 10 equiv). After 1–3 h (until TLC analysis showed complete consumption of the corresponding Schiff base), the reaction mixture was poured into a 0.01 M solution of HCl (100 ml, pH = 2–3), and extracted with di­chloro­methane (3 × 20 ml). The combined organic phase was washed with water (3 × 50 ml), brine (30 ml), dried over anhydrous Na2SO4 and concentrated in vacuo using a rotary evaporator. The residue was purified by column chromatography on silica gel using appropriate mixtures of hexane and di­chloro­methane (3/1–1/1). Colourless prisms of the title compound suitable for X-ray analysis were obtained by slow evaporation of a di­chloro­methane solution (69%); m.p. 405 K. Analysis calculated for C16H12F5N3O: C 53.79, H 3.39, N 11.76; found: C 53.73, H 3.36, N 11.71%. 1H NMR (300MHz, CDCl3) δ 3.04 (6H, NMe2), 6.50–7.33 (5H, Ar). 13C NMR (75MHz, CDCl3) δ 33.58, 108.97, 116.87, 120.75, 124.11, 124.76, 140.95, 146.33, 149.87, 150.91, 155.21. ESI–MS: m/z: 358.24 [M + H]+.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 3. The H atom of the NH group was found from a difference-Fourier map and refined freely. All H atoms bonded to C atoms were positioned geometrically and treated as riding atoms, with C—H = 0.93 or 0.96 Å, and with U iso(H) = 1.2 or 1.5U eq (C). The residual electron density was difficult to model and therefore the SQUEEZE routine (Spek, 2015) in PLATON (Spek, 2020) was used to remove the contribution of the electron density in the solvent region from the intensity data and the solvent-free model was employed for the final refinement. The solvent formula mass and unit-cell characteristics were not taken into account during refinement. The cavity of volume ca 255.0 Å3 (ca 7.6% of the unit-cell volume) contains approximately three electrons.

Table 3. Experimental details.

Crystal data
Chemical formula C16H12F5N3O
M r 357.29
Crystal system, space group Monoclinic, C2/c
Temperature (K) 296
a, b, c (Å) 19.0048 (6), 11.5216 (4), 17.2227 (6)
β (°) 116.526 (1)
V3) 3374.2 (2)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.13
Crystal size (mm) 0.86 × 0.76 × 0.32
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015)
T min, T max 0.666, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 20072, 3619, 3075
R int 0.025
(sin θ/λ)max−1) 0.639
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.044, 0.129, 1.08
No. of reflections 3619
No. of parameters 232
No. of restraints 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.27, −0.16

Computer programs: APEX3 and SAINT (Bruker, 2007), SHELXS (Sheldrick, 2008), SHELXL2016/6 (Sheldrick, 2015), ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2020).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989021007349/hb7979sup1.cif

e-77-00829-sup1.cif (974.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989021007349/hb7979Isup2.hkl

e-77-00829-Isup2.hkl (289.1KB, hkl)

Electrostatic potential map. DOI: 10.1107/S2056989021007349/hb7979sup3.docx

Supporting information file. DOI: 10.1107/S2056989021007349/hb7979Isup4.cml

CCDC reference: 1878189

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The author’s contributions are as follows: Conceptualization, NQS, MA and SM; synthesis and characterization, NQS, UFA and AAN; X-ray analysis, ZA and MA; writing (original draft), ZA, MA and SM; writing (review and editing of the manuscript), ZA, MA and SM; funding acquisition, NQS, UFA and AAN; supervision, MA and SM.

supplementary crystallographic information

Crystal data

C16H12F5N3O F(000) = 1456
Mr = 357.29 Dx = 1.407 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
a = 19.0048 (6) Å Cell parameters from 9937 reflections
b = 11.5216 (4) Å θ = 3.0–30.5°
c = 17.2227 (6) Å µ = 0.13 mm1
β = 116.526 (1)° T = 296 K
V = 3374.2 (2) Å3 Prism, colourless
Z = 8 0.86 × 0.76 × 0.32 mm

Data collection

Bruker APEXII CCD diffractometer 3075 reflections with I > 2σ(I)
φ and ω scans Rint = 0.025
Absorption correction: multi-scan (SADABS; Krause et al., 2015) θmax = 27.0°, θmin = 3.0°
Tmin = 0.666, Tmax = 0.746 h = −24→24
20072 measured reflections k = −14→14
3619 independent reflections l = −21→21

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.044 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.129 w = 1/[σ2(Fo2) + (0.066P)2 + 1.0984P] where P = (Fo2 + 2Fc2)/3
S = 1.08 (Δ/σ)max < 0.001
3619 reflections Δρmax = 0.27 e Å3
232 parameters Δρmin = −0.16 e Å3
1 restraint

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.57129 (9) 0.67608 (14) 0.56090 (9) 0.0560 (4)
C2 0.62879 (10) 0.6234 (2) 0.54530 (11) 0.0709 (5)
C3 0.64867 (9) 0.5107 (2) 0.57013 (12) 0.0741 (6)
C4 0.61080 (9) 0.45216 (16) 0.60894 (11) 0.0675 (5)
C5 0.55429 (8) 0.50569 (13) 0.62548 (9) 0.0526 (3)
C6 0.53295 (7) 0.62075 (12) 0.60236 (8) 0.0441 (3)
C7 0.47580 (7) 0.68280 (11) 0.62380 (7) 0.0396 (3)
C8 0.49138 (7) 0.81069 (11) 0.64576 (8) 0.0405 (3)
C9 0.44817 (14) 1.00857 (16) 0.61948 (15) 0.0898 (6)
H9A 0.503442 1.022817 0.652886 0.135*
H9B 0.420993 1.030799 0.652629 0.135*
H9C 0.428581 1.053157 0.566896 0.135*
C10 0.36406 (10) 0.85441 (17) 0.52042 (11) 0.0755 (5)
H10A 0.363739 0.772275 0.510888 0.113*
H10B 0.363100 0.895011 0.471289 0.113*
H10C 0.318605 0.875319 0.527986 0.113*
C11 0.31918 (7) 0.60410 (11) 0.67138 (7) 0.0409 (3)
C12 0.27412 (8) 0.65818 (13) 0.70541 (9) 0.0505 (3)
H12 0.281692 0.736455 0.720011 0.061*
C13 0.21793 (9) 0.59576 (16) 0.71764 (11) 0.0635 (4)
H13 0.187876 0.632183 0.740795 0.076*
C14 0.20605 (9) 0.48080 (17) 0.69601 (11) 0.0698 (5)
H14 0.167784 0.439171 0.703856 0.084*
C15 0.25111 (10) 0.42742 (15) 0.66262 (11) 0.0678 (4)
H15 0.243095 0.349161 0.648076 0.081*
C16 0.30814 (9) 0.48750 (13) 0.65015 (9) 0.0530 (3)
H16 0.338580 0.450219 0.627863 0.064*
N1 0.43528 (7) 0.88584 (11) 0.59834 (8) 0.0539 (3)
N2 0.42258 (6) 0.62135 (9) 0.63136 (6) 0.0417 (3)
N3 0.37406 (6) 0.67219 (10) 0.65833 (7) 0.0450 (3)
O1 0.55445 (5) 0.84009 (8) 0.70599 (6) 0.0477 (2)
F1 0.55220 (7) 0.78590 (9) 0.53338 (7) 0.0777 (3)
F2 0.66439 (8) 0.68233 (13) 0.50601 (9) 0.1088 (5)
F3 0.70507 (6) 0.45858 (14) 0.55668 (9) 0.1114 (5)
F4 0.62894 (7) 0.34098 (10) 0.63199 (9) 0.0994 (4)
F5 0.52239 (6) 0.44377 (8) 0.66683 (7) 0.0724 (3)
H3N 0.3875 (9) 0.7382 (12) 0.6861 (10) 0.054 (4)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0493 (8) 0.0732 (10) 0.0498 (7) −0.0048 (7) 0.0261 (6) −0.0096 (7)
C2 0.0543 (9) 0.1071 (15) 0.0627 (9) −0.0149 (9) 0.0364 (8) −0.0285 (9)
C3 0.0426 (8) 0.1094 (15) 0.0668 (10) 0.0056 (9) 0.0212 (7) −0.0389 (10)
C4 0.0506 (8) 0.0744 (11) 0.0600 (9) 0.0171 (7) 0.0089 (7) −0.0206 (8)
C5 0.0418 (7) 0.0594 (8) 0.0477 (7) 0.0051 (6) 0.0121 (6) −0.0074 (6)
C6 0.0334 (6) 0.0566 (7) 0.0379 (6) 0.0006 (5) 0.0120 (5) −0.0064 (5)
C7 0.0327 (6) 0.0469 (7) 0.0363 (6) 0.0012 (5) 0.0127 (4) 0.0019 (5)
C8 0.0371 (6) 0.0464 (7) 0.0414 (6) 0.0012 (5) 0.0205 (5) 0.0072 (5)
C9 0.1062 (16) 0.0507 (9) 0.0990 (15) 0.0159 (10) 0.0337 (12) 0.0198 (9)
C10 0.0611 (10) 0.0881 (12) 0.0561 (9) 0.0207 (9) 0.0070 (7) 0.0169 (8)
C11 0.0315 (6) 0.0488 (7) 0.0371 (6) −0.0040 (5) 0.0106 (5) 0.0028 (5)
C12 0.0396 (6) 0.0577 (8) 0.0542 (7) 0.0002 (6) 0.0211 (6) 0.0032 (6)
C13 0.0446 (7) 0.0856 (11) 0.0660 (9) 0.0030 (7) 0.0299 (7) 0.0159 (8)
C14 0.0475 (8) 0.0849 (12) 0.0746 (10) −0.0139 (8) 0.0250 (7) 0.0232 (9)
C15 0.0670 (10) 0.0552 (9) 0.0730 (10) −0.0188 (7) 0.0239 (8) 0.0062 (7)
C16 0.0527 (8) 0.0511 (8) 0.0533 (7) −0.0072 (6) 0.0220 (6) −0.0016 (6)
N1 0.0531 (7) 0.0507 (7) 0.0530 (7) 0.0100 (5) 0.0193 (5) 0.0129 (5)
N2 0.0340 (5) 0.0477 (6) 0.0415 (5) −0.0013 (4) 0.0152 (4) −0.0029 (4)
N3 0.0406 (6) 0.0448 (6) 0.0540 (6) −0.0072 (4) 0.0250 (5) −0.0087 (5)
O1 0.0402 (5) 0.0487 (5) 0.0521 (5) −0.0068 (4) 0.0186 (4) 0.0037 (4)
F1 0.0964 (8) 0.0791 (7) 0.0827 (7) −0.0027 (6) 0.0624 (6) 0.0109 (5)
F2 0.1025 (9) 0.1503 (12) 0.1183 (10) −0.0331 (8) 0.0893 (8) −0.0381 (9)
F3 0.0624 (7) 0.1649 (13) 0.1112 (9) 0.0196 (7) 0.0426 (6) −0.0552 (9)
F4 0.0920 (8) 0.0804 (8) 0.1078 (9) 0.0392 (6) 0.0285 (7) −0.0140 (6)
F5 0.0759 (6) 0.0556 (5) 0.0884 (7) 0.0128 (4) 0.0389 (5) 0.0134 (5)

Geometric parameters (Å, º)

C1—F1 1.3430 (19) C9—H9C 0.9600
C1—C2 1.377 (2) C10—N1 1.463 (2)
C1—C6 1.383 (2) C10—H10A 0.9600
C2—F2 1.336 (2) C10—H10B 0.9600
C2—C3 1.367 (3) C10—H10C 0.9600
C3—F3 1.3359 (18) C11—C12 1.3832 (19)
C3—C4 1.360 (3) C11—C16 1.3835 (19)
C4—F4 1.340 (2) C11—N3 1.4011 (16)
C4—C5 1.374 (2) C12—C13 1.380 (2)
C5—F5 1.3301 (18) C12—H12 0.9300
C5—C6 1.392 (2) C13—C14 1.367 (3)
C6—C7 1.4783 (17) C13—H13 0.9300
C7—N2 1.2880 (16) C14—C15 1.372 (3)
C7—C8 1.5172 (18) C14—H14 0.9300
C8—O1 1.2317 (15) C15—C16 1.381 (2)
C8—N1 1.3325 (16) C15—H15 0.9300
C9—N1 1.453 (2) C16—H16 0.9300
C9—H9A 0.9600 N2—N3 1.3385 (14)
C9—H9B 0.9600 N3—H3N 0.873 (13)
F1—C1—C2 117.32 (15) N1—C10—H10B 109.5
F1—C1—C6 119.67 (13) H10A—C10—H10B 109.5
C2—C1—C6 123.01 (17) N1—C10—H10C 109.5
F2—C2—C3 120.62 (16) H10A—C10—H10C 109.5
F2—C2—C1 120.0 (2) H10B—C10—H10C 109.5
C3—C2—C1 119.34 (17) C12—C11—C16 119.99 (12)
F3—C3—C4 120.3 (2) C12—C11—N3 117.50 (12)
F3—C3—C2 120.2 (2) C16—C11—N3 122.50 (12)
C4—C3—C2 119.47 (14) C13—C12—C11 119.85 (14)
F4—C4—C3 119.80 (16) C13—C12—H12 120.1
F4—C4—C5 119.29 (18) C11—C12—H12 120.1
C3—C4—C5 120.90 (17) C14—C13—C12 120.56 (16)
F5—C5—C4 117.09 (14) C14—C13—H13 119.7
F5—C5—C6 121.33 (12) C12—C13—H13 119.7
C4—C5—C6 121.55 (15) C13—C14—C15 119.37 (14)
C1—C6—C5 115.69 (13) C13—C14—H14 120.3
C1—C6—C7 121.43 (13) C15—C14—H14 120.3
C5—C6—C7 122.82 (12) C14—C15—C16 121.37 (16)
N2—C7—C6 117.21 (12) C14—C15—H15 119.3
N2—C7—C8 125.67 (11) C16—C15—H15 119.3
C6—C7—C8 116.65 (10) C15—C16—C11 118.85 (15)
O1—C8—N1 123.28 (12) C15—C16—H16 120.6
O1—C8—C7 119.03 (11) C11—C16—H16 120.6
N1—C8—C7 117.68 (11) C8—N1—C9 118.65 (14)
N1—C9—H9A 109.5 C8—N1—C10 124.09 (13)
N1—C9—H9B 109.5 C9—N1—C10 116.99 (14)
H9A—C9—H9B 109.5 C7—N2—N3 119.24 (11)
N1—C9—H9C 109.5 N2—N3—C11 119.22 (11)
H9A—C9—H9C 109.5 N2—N3—H3N 119.5 (10)
H9B—C9—H9C 109.5 C11—N3—H3N 117.2 (11)
N1—C10—H10A 109.5
F1—C1—C2—F2 1.5 (2) C5—C6—C7—N2 −28.19 (17)
C6—C1—C2—F2 −179.03 (14) C1—C6—C7—C8 −32.65 (16)
F1—C1—C2—C3 −178.29 (14) C5—C6—C7—C8 144.48 (12)
C6—C1—C2—C3 1.2 (2) N2—C7—C8—O1 114.61 (14)
F2—C2—C3—F3 1.2 (2) C6—C7—C8—O1 −57.36 (15)
C1—C2—C3—F3 −179.06 (14) N2—C7—C8—N1 −65.23 (16)
F2—C2—C3—C4 −179.10 (15) C6—C7—C8—N1 122.80 (12)
C1—C2—C3—C4 0.7 (2) C16—C11—C12—C13 −0.4 (2)
F3—C3—C4—F4 −1.5 (2) N3—C11—C12—C13 178.48 (12)
C2—C3—C4—F4 178.76 (14) C11—C12—C13—C14 −0.3 (2)
F3—C3—C4—C5 178.08 (13) C12—C13—C14—C15 0.6 (2)
C2—C3—C4—C5 −1.7 (2) C13—C14—C15—C16 −0.2 (3)
F4—C4—C5—F5 2.3 (2) C14—C15—C16—C11 −0.5 (2)
C3—C4—C5—F5 −177.31 (13) C12—C11—C16—C15 0.7 (2)
F4—C4—C5—C6 −179.60 (13) N3—C11—C16—C15 −178.03 (13)
C3—C4—C5—C6 0.8 (2) O1—C8—N1—C9 −1.2 (2)
F1—C1—C6—C5 177.51 (12) C7—C8—N1—C9 178.61 (14)
C2—C1—C6—C5 −2.0 (2) O1—C8—N1—C10 172.55 (14)
F1—C1—C6—C7 −5.2 (2) C7—C8—N1—C10 −7.6 (2)
C2—C1—C6—C7 175.37 (13) C6—C7—N2—N3 174.02 (10)
F5—C5—C6—C1 179.00 (12) C8—C7—N2—N3 2.09 (18)
C4—C5—C6—C1 0.95 (19) C7—N2—N3—C11 −176.33 (11)
F5—C5—C6—C7 1.72 (19) C12—C11—N3—N2 175.29 (11)
C4—C5—C6—C7 −176.33 (12) C16—C11—N3—N2 −5.90 (18)
C1—C6—C7—N2 154.68 (12)

Hydrogen-bond geometry (Å, º)

Cg2 is the centroid of the C11–C16 ring.

D—H···A D—H H···A D···A D—H···A
N3—H3N···O1i 0.87 (1) 2.05 (2) 2.8658 (15) 154 (1)
C9—H9A···O1 0.96 2.33 2.717 (2) 103
C10—H10A···N2 0.96 2.55 3.194 (2) 124
C14—H14···O1ii 0.93 2.45 3.377 (2) 172
C10—H10B···Cg2iii 0.96 2.77 3.4685 (19) 130

Symmetry codes: (i) −x+1, y, −z+3/2; (ii) x−1/2, y−1/2, z; (iii) −x+1/2, −y+3/2, −z+1.

Funding Statement

This work was funded by Science Development Foundation under the President of the Republic of Azerbaijan grant EIF-BGM-4- RFTF-1/2017-21/13/4.

References

  1. Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  3. Geiger, D. K., Geiger, H. C. & Szczesniak, L. M. (2013). Acta Cryst. E69, o916. [DOI] [PMC free article] [PubMed]
  4. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  5. Gurbanov, A. V., Kuznetsov, M. L., Demukhamedova, S. D., Alieva, I. N., Godjaev, N. M., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2020a). CrystEngComm, 22, 628–633.
  6. Gurbanov, A. V., Kuznetsov, M. L., Mahmudov, K. T., Pombeiro, A. J. L. & Resnati, G. (2020b). Chem. Eur. J. 26, 14833–14837. [DOI] [PubMed]
  7. Kopylovich, M. N., Mahmudov, K. T., Haukka, M., Luzyanin, K. V. & Pombeiro, A. J. L. (2011). Inorg. Chim. Acta, 374, 175–180.
  8. Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. [DOI] [PMC free article] [PubMed]
  9. Ma, Z., Mahmudov, K. T., Aliyeva, V. A., Gurbanov, A. V., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2021). Coord. Chem. Rev. 437, 213859.
  10. Narayana, B., Sunil, K., Sarojini, B. K., Yathirajan, H. S. & Bolte, M. (2007). Acta Cryst. E63, o4420–o4421.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  13. Shikhaliyev, N. Q., Kuznetsov, M. L., Maharramov, A. M., Gurbanov, A. V., Ahmadova, N. E., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2019). CrystEngComm, 21, 5032–5038.
  14. Spackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377–388.
  15. Spek, A. L. (2015). Acta Cryst. C71, 9–18. [DOI] [PubMed]
  16. Spek, A. L. (2020). Acta Cryst. E76, 1–11. [DOI] [PMC free article] [PubMed]
  17. Sreeja, P. B., Sithambaresan, M., Aiswarya, N. & Kurup, M. R. P. (2014a). Acta Cryst. E70, o532–o533. [DOI] [PMC free article] [PubMed]
  18. Sreeja, P. B., Sithambaresan, M., Aiswarya, N. & Kurup, M. R. P. (2014b). Acta Cryst. E70, o115. [DOI] [PMC free article] [PubMed]
  19. Sultan, S., Taha, M., Shah, S. A. A., Yamin, B. M. & Zaki, H. M. (2014). Acta Cryst. E70, o751. [DOI] [PMC free article] [PubMed]
  20. Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989021007349/hb7979sup1.cif

e-77-00829-sup1.cif (974.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989021007349/hb7979Isup2.hkl

e-77-00829-Isup2.hkl (289.1KB, hkl)

Electrostatic potential map. DOI: 10.1107/S2056989021007349/hb7979sup3.docx

Supporting information file. DOI: 10.1107/S2056989021007349/hb7979Isup4.cml

CCDC reference: 1878189

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES