Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2021 Jul 20;77(Pt 8):819–823. doi: 10.1107/S2056989021007295

Crystal structures of two copper(I)–6,6′-dimethyl-2,2′-bipyridyl (dmbpy) compounds, [Cu(dmbpy)2]2[MF6xH2O (M = Zr, Hf; x = 1.134, 0.671)

Yiran Wang a, Matthew L Nisbet a, Kenneth R Poeppelmeier a,*
PMCID: PMC8340967  PMID: 34422308

The syntheses and crystal structures of two bimetallic mol­ecular compounds, namely, bis­(6,6′-dimethyl-2,2′-bi­pyridine)­copper(I) hexa­fluorido­zirconate(IV) 1.134-hydrate, [Cu(dmbpy)2]2[ZrF6]·1.134H2O (dmbpy = 6,6′-dimethyl-2,2′-bipyridyl, C12H12N2), (I), and bis­(6,6′-dimethyl-2,2′-bi­pyridine)­copper(I) hexa­fluorido­hafnate(IV) 0.671-hydrate, [Cu(dmbpy)2]2[HfF6]·0.671H2O, (II), are reported. Apart from a slight site occupancy difference for the water mol­ecule of crystallization, compounds (I) and (II) are isostructural, featuring isolated tetra­hedral cations of copper(I) ions coordinated by two dmbpy ligands and centrosymmetric, octa­hedral anions of fluorinated early transition metals.

Keywords: crystal structures, CuI complex, d 0 early transition metals, hydro­thermal synthesis

Abstract

The syntheses and crystal structures of two bimetallic mol­ecular compounds, namely, bis[bis­(6,6′-dimethyl-2,2′-bi­pyridine)­copper(I)] hexa­fluorido­zir­con­ate(IV) 1.134-hydrate, [Cu(dmbpy)2]2[ZrF6]·1.134H2O (dmbpy = 6,6′-di­methyl-2,2′-bipyri­dyl, C12H12N2), (I), and bis[bis­(6,6′-dimethyl-2,2′-bi­pyr­idine)­copper(I)] hexa­fluorido­hafnate(IV) 0.671-hydrate, [Cu(dmbpy)2]2[HfF6]·0.671H2O, (II), are reported. Apart from a slight site occupany difference for the water mol­ecule of crystallization, compounds (I) and (II) are isostructural, featuring isolated tetra­hedral cations of copper(I) ions coordinated by two dmbpy ligands and centrosymmetric, octa­hedral anions of fluorinated early transition metals. The tetra­hedral environments of the copper complexes are distorted owing to the steric effects of the dmbpy ligands. The extended structures are built up through Coulombic inter­actions between cations and anions and π–π stacking inter­actions between heterochiral Δ- and Λ-[Cu(dmbpy)2]+ complexes. A comparison between the title compounds and other [Cu(dmbpy)2]+ compounds with monovalent and bivalent anions reveals a significant influence of the cation-to-anion ratio on the resulting crystal packing architectures, providing insights for future crystal design of distorted tetra­hedral copper compounds.

Chemical context  

Copper(I) complexes with distorted tetra­hedral environments have been studied as catalytic active sites in electron-transfer reactions and are found in a number of proteins that contain copper (Vallee & Williams, 1968; Colman et al., 1978; Adman et al., 1978). The realization of significantly distorted tetra­hedral geometry requires sufficient steric hindrance between the ligands. The methyl groups of the 6,6′-dimethyl-2,2′-bipyridyl (C12H12N2; dmbpy) ligand create a large steric hindrance upon coordination, and, consequently, a common strategy to form distorted tetra­hedral complexes is to use dmbpy or its derivatives as ligands (McKenzie et al., 1971; Burke et al., 1980). Previously, compounds with distorted tetra­hedral [Cu(dmbpy)2]+ cations have been reported, namely [Cu(dmbpy)2]X (X = [BF4], [ClO4], [PF­6]), [Cu(dmbpy)2][C16H9O8]·H2O (C16H9O8 = 2′,3,3′-tri­carb­oxy­biphenyl-2-carboxyl­ate) and [Cu(dmbpy)2]X 2 (X = [BF4], [ClO4]). (Burke et al., 1980; Cui et al., 2005; Itoh et al., 2005; Mei et al., 2011; Bozic-Weber et al., 2012; Li et al., 2017) Here, we report two structures with [MF6]2− (M = Zr, Hf), which are the first known distorted tetra­hedral copper compounds with bivalent anions. graphic file with name e-77-00819-scheme1.jpg

Structural commentary  

Compound (I) has the formula [Cu(dmbpy)2]2[ZrF6]·1.134H2O and crystallizes in the triclinic space group P Inline graphic (Fig. 1). The structure of compound (I) features isolated tetra­hedral [Cu(dmbpy)2]+ cations and octa­hedral ZrF6 2− anions (Zr site symmetry Inline graphic ). The coordination geometry of Cu1 and its donor N atoms deviates from an ideal tetra­hedron, as demonstrated by the 83.33 (10)° angle between the least squares planes containing Cu1 and each ligand (Table 1). To qu­antify the deviation from Td symmetry in [Cu(dmbpy)2]+ cations, the τ4’ parameter is employed and it gives a value of 0.66 for compound (I) (Okuniewski et al., 2015). The distorted tetra­hedral geometry of [Cu(dmbpy)2]+ in compound (I) is consistent with other reported compounds containing [Cu(dmbpy)2]+ cations (Burke et al., 1980; Cui et al., 2005; Mei et al., 2011; Bozic-Weber et al., 2012). Moreover, the dmbpy ligands in (I) are non-planar and are slightly twisted on the 2,2′ carbon bond to give a dihedral angle of 8.68 (10)° between the N1/C1–C5 and N2/C6–C10 rings and 7.44 (11)° between the N3/C13–C17 and N4/C18–C22 rings. The distorted tetra­hedral environment and non-planar ligand geometry give the [Cu(dmbpy)2]+ cations a C 2 symmetry, and enanti­omeric Δ- and Λ-[Cu(dmbpy)2]+ pairs are related across inversion centers. The octa­hedral coordination environment of Zr1 is slightly distorted, with Zr1—F bond lengths ranging from 1.9955 (13) to 2.0183 (12) Å (Table 1). The minor distortion of the ZrF6 2− anion may arise due to hydrogen-bonding inter­actions between water mol­ecules of crystallization and fluorine atoms on the trans position of the ZrF6 2− anions [see O1—H1B⋯F2 (Table 2)].

Figure 1.

Figure 1

The mol­ecular structure of (I) showing 50% displacement ellipsoids. Symmetry code: (i) −x, 2 − y, 2 − z.

Table 1. Selected geometric parameters (Å, °) for (I) .

Cu1—N1 2.0208 (16) Zr1—F1 2.0113 (15)
Cu1—N2 2.0348 (17) Zr1—F2 2.0183 (12)
Cu1—N3 2.0123 (17) Zr1—F3 1.9955 (13)
Cu1—N4 2.0616 (18)    
       
N1—Cu1—N2 81.40 (7) N3—Cu1—N1 136.29 (7)
N1—Cu1—N4 116.24 (7) N3—Cu1—N2 126.16 (7)
N2—Cu1—N4 120.45 (7) N3—Cu1—N4 81.05 (7)

Table 2. Hydrogen-bond geometry (Å, °) for (I) .

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1B⋯F2 0.87 1.47 2.337 (4) 177

Compound (II) has the formula [Cu(dmbpy)2]2[HfF6]·0.671H2O and crystallizes in the triclinic space group P Inline graphic (Fig. 2). Compound (II) is isostructural to compound (I), therefore, the [Cu(dmbpy)2]+ cations also have C 2 symmetry, with the angle between the least squares planes containing Cu1 and each ligand being 84.14 (8)° (Table 3) and the τ4’ parameter being 0.66, and the dmbpy ligands are slightly twisted on the 2,2′ carbon bond to give an angle of 9.69 (7)° between the N1/C1–C5 and N2/C6–C10 rings and 7.97 (8)° between the N3/C13–C17 and N4/C18–C22 rings. Moreover, the octa­hedral coordination environment of Hf1 is also slightly distorted, with Hf1—F bond lengths ranging from 1.9945 (10) to 2.0111 (11) Å. Like in compound (I), hydrogen-bonding inter­actions are present between the water mol­ecule of crystallization and fluorine atoms on the trans position of HfF6 2− anions, but the geometry of the hydrogen bond is slightly different from that in compound (I) [see O1—H1B⋯F2 (Table 4)].

Figure 2.

Figure 2

The mol­ecular structure of (II) showing 50% displacement ellipsoids. Symmetry code: (i) (i) −x, 2 − y, 2 − z.

Table 3. Selected geometric parameters (Å, °) for (II) .

Cu1—N1 2.0229 (12) Hf1—F1 2.0111 (11)
Cu1—N2 2.0414 (12) Hf1—F2 2.0033 (9)
Cu1—N3 2.0121 (12) Hf1—F3 1.9945 (10)
Cu1—N4 2.0659 (13)    
       
N1—Cu1—N2 81.22 (5) N3—Cu1—N1 136.20 (5)
N1—Cu1—N4 116.52 (5) N3—Cu1—N2 126.39 (5)
N2—Cu1—N4 120.35 (5) N3—Cu1—N4 80.94 (5)

Table 4. Hydrogen-bond geometry (Å, °) for (II) .

D—H⋯A D—H H⋯A DA D—H⋯A
O1B—H1B⋯F2 0.87 1.50 2.328 (4) 156

Supra­molecular features  

In the extended structures of compounds (I) and (II), the [Cu(dmbpy)2]+ cations and octa­hedral MF6 2− anions are closely packed via Coulombic inter­actions (Fig. 3). The Δ/Λ-[Cu(dmbpy)2]+ cations stack into racemic pairs along the c-axis direction via a heterochiral face-to-face π–π inter­action between the N1/C1–C5 and N2/C6–C10 rings with an inter­planar angle of 0°, inter­planar distances of 3.347 and 3.355 Å, and centroid–centroid distances (d py–py) of 3.6967 (12) and 3.7016 (8) Å, for compounds (I) and (II), respectively (Tables 5 and 6). Next, Δ/Λ-[Cu(dmbpy)2]+ pairs pack into racemic chains along the c-axis direction with heterochiral parallel displaced π–π inter­actions between the N3/C13–C17 and N4/C18–C22 rings with an inter­planar angle of 0°, inter­planar distances of 3.708 and 3.678 Å, and centroid–centroid distances (d py–py) of 5.3726 (13) and 5.3777 (11) Å, for compounds (I) and (II), respectively. The MF6 2− anions with hydrogen-bonded water mol­ecules are inter­laced between the racemic chains to form the extended three-dimensional structure. Compared to other mol­ecular compounds with MF6 2− anions in an extended and complicated hydrogen network (Gautier et al., 2012; Nisbet et al., 2020, 2021), the MF6 2− anions in (I) and (II) experience less distortion because the hydrogen-bonding contacts are less extensive and only occur along the same axis due to the site symmetry of hydrogen-bonding inter­actions (Kunz & Brown, 1995; Halasyamani, 2004).

Figure 3.

Figure 3

The packing for (I) viewed (a) down [100] and (b) down [001], with the copper and zirconium coordination environments represented by yellow/orange and green polyhedra, respectively.

Table 5. Aromatic π–π stacking inter­actions (Å, °) in (I).

Description type d py–py inter­planar angle inter­planar distance
Heterochiral face-to-face 3.6967 (12) 0 3.347
Heterochiral parallel displaced 5.3726 (13) 0 3.708

Table 6. Aromatic π–π stacking inter­actions (Å, °) in (II).

Description type d py–py inter­planar angle inter­planar distance
Heterochiral face-to-face 3.7016 (8) 0 3.355
Heterochiral parallel displaced 5.3777 (11) 0 3.678

Database survey  

A survey of compounds related to compounds (I) and (II) reported in the Cambridge Structural Database (CSD version 2020.1 from April 2020; Groom et al., 2016) produced four other compounds based on [Cu(dmbpy)2]+ complexes: [Cu(dmbpy)2][BF­4] (CSD refcode: MPYRCU; Burke et al., 1980), [Cu(dmbpy)2][PF­6] (REFSUS; Bozic-Weber et al., 2012), [Cu(dmbpy)2][ClO­4] (FAXLAS; Cui et al., 2005), and [Cu(dmbpy)2][C16H9O8]·H2O (C16H9O8 = 2′,3,3′-tri­carb­oxy­biphenyl-2-carboxyl­ate) (ABIYER; Mei et al., 2011). All these structures have distorted tetra­hedral [Cu(dmbpy)2]+ cations with C 2 symmetry, with a range of the angle between the least-squares planes containing the metal ion and each ligand being from 75.06 to 86.74°. Moreover, τ4’ parameters for these structures range from 0.70 to 0.74, whereas for both compound (I) and (II) the parameter is 0.66 (Okuniewski et al., 2015).

Unlike compound (I) and (II), which have bivalent anions MF6 2−, the compounds reported in the CSD are charge-balanced by monovalent anions and display two different types of packing architectures distinct from those of the title compounds: [Cu(dmbpy)2][BF­4], [Cu(dmbpy)2][PF­6], and [Cu(dmbpy)2][ClO­4] are isostructural, crystallizing in space group P21/c. Compared to compounds (I) and (II), the ratio of cations-to-anions is smaller in these monovalent-anion compounds. Instead of racemic chains, homochiral chains are observed with homochiral displaced π–π inter­actions between the ligands with an inter­planar angle of around 30°. No local or extended hydrogen-bond networks are observed because these structures do not contain water mol­ecules of crystallization.

Another type of packing architecture is found in [Cu(dmbpy)2][C16H9O8]·H2O, which crystallizes in space group P Inline graphic . Unlike the aforementioned five compounds with [Cu(dmbpy)2]+ cations, π–π inter­actions in the compound [Cu(dmbpy)2][C16H9O8]·H2O are dominant between [Cu(dmbpy)2]+ cations and [C16H9O8] anions instead of between [Cu(dmbpy)2]+ cations. In this compound, the [Cu(dmbpy)2]+ cations and [C16H9O8] anions are packed into charge-neutral chains via Coulombic inter­actions and π–π inter­actions along c axis and inversion centers are present between the chains. Additionally, the [C16H9O8] anions and free water mol­ecules generate a three-dimensional network via O—H⋯O hydrogen bonding inter­actions, resulting in a different architecture.

Synthesis and crystallization  

The compounds reported here were synthesized by the hydro­thermal pouch method (Harrison et al., 1993). In each reaction, reagents were heat-sealed in Teflon pouches. Groups of six pouches were then placed into a 125 ml Parr autoclave with 45 ml of distilled water as backfill. The autoclave was heated at a rate of 5 K min−1 to 423 K and held at 423 K for 24 h. The autoclaves were allowed to cool to room temperature at a rate of 6 K h−1. Orangish red solid products were recovered by vacuum filtration with a moderate yield. Compound (I) was synthesized in a pouch containing 0.4195 mmol of CuO, 0.4195 mmol of ZrO2, 0.835 mmol of 6,6′-dimethyl-2,2′-bipyridyl, 0.15 ml (4.14 mmol) of HF (aq) (48%), and 0.1 ml (5.5 mmol) of deionized H2O. Compound (II) was synthesized in a pouch containing 0.4195 mmol of CuO, 0.4195 mmol of HfO2, 0.835 mmol of 6,6′-dimethyl-2,2′-bipyridyl, 0.05 ml (1.38 mmol) of HF (aq) (48%), and 0.2 ml (11 mmol) of deionized H2O.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 7. Hydrogen-atom positions were assigned from difference map peaks with the exception of the C—H hydrogen atoms of dmbpy, which were constrained to ride at distances of 0.95 Å from the associated C atoms with U iso(H) = 1.2U eq(C) within OLEX2 (Dolomanov et al., 2009). The water occupancies in both structures are refined freely. Four reflections showing very poor agreement were omitted from the final refinement for compound (I).

Table 7. Experimental details.

  (I) (II)
Crystal data
Chemical formula [Cu(C12H12N2)2]2[ZrF6]·1.134H2O [Cu(C12H12N2)2]2[HfF6]·0.671H2O
M r 1089.61 1168.58
Crystal system, space group Triclinic, P\overline{1} Triclinic, P\overline{1}
Temperature (K) 100 100
a, b, c (Å) 8.6219 (3), 10.8064 (3), 12.9992 (4) 8.5737 (1), 10.7967 (2), 13.0183 (2)
α, β, γ (°) 103.078 (2), 104.013 (3), 98.863 (2) 103.273 (1), 103.662 (1), 98.785 (1)
V3) 1116.33 (6) 1112.07 (3)
Z 1 1
Radiation type Mo Kα Mo Kα
μ (mm−1) 1.25 3.35
Crystal size (mm) 0.98 × 0.13 × 0.05 0.3 × 0.17 × 0.08
 
Data collection
Diffractometer Rigaku Saturn724+ (2x2 bin mode) Rigaku Saturn724+ (2x2 bin mode)
Absorption correction Gaussian (CrysAlis PRO; Rigaku OD, 2020) Gaussian (CrysAlis PRO; Rigaku OD, 2020)
T min, T max 0.376, 1.000 0.433, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 16573, 5673, 4588 40796, 8003, 7235
R int 0.039 0.032
(sin θ/λ)max−1) 0.722 0.784
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.035, 0.088, 1.07 0.023, 0.056, 1.08
No. of reflections 5673 8003
No. of parameters 312 312
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.59, −0.54 0.48, −0.73

Computer programs: CrysAlis PRO (Rigaku OD, 2020), SHELXT2014/5 (Sheldrick, 2015a ), SHELXL (Sheldrick, 2015b ), and OLEX2 (Dolomanov et al., 2009).

Supplementary Material

Crystal structure: contains datablock(s) I, II. DOI: 10.1107/S2056989021007295/hb7977sup1.cif

e-77-00819-sup1.cif (1.7MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989021007295/hb7977Isup2.hkl

e-77-00819-Isup2.hkl (451.1KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989021007295/hb7977IIsup3.hkl

e-77-00819-IIsup3.hkl (635.4KB, hkl)

CCDC references: 2096336, 2096335

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

Single-crystal X-ray diffraction data were acquired at IMSERC at Northwestern University, which has received support from the Soft and Hybrid Nanotechnology Experimental (SHyNE) Resource (NSF ECCS-1542205), the State of Illinois, and the Inter­national Institute for Nanotechnology (IIN). We thank Ms Charlotte Stern for helpful discussions.

supplementary crystallographic information

Bis[bis(6,6'-dimethyl-2,2'-bipyridine)copper(I)] hexafluoridozirconate(IV) 1.134-hydrate (I). Crystal data

[Cu(C12H12N2)2]2[ZrF6]·1.134H2O Z = 1
Mr = 1089.61 F(000) = 555
Triclinic, P1 Dx = 1.621 Mg m3
a = 8.6219 (3) Å Mo Kα radiation, λ = 0.71073 Å
b = 10.8064 (3) Å Cell parameters from 10429 reflections
c = 12.9992 (4) Å θ = 2.2–30.6°
α = 103.078 (2)° µ = 1.25 mm1
β = 104.013 (3)° T = 100 K
γ = 98.863 (2)° Needle, clear orangish red
V = 1116.33 (6) Å3 0.98 × 0.13 × 0.05 mm

Bis[bis(6,6'-dimethyl-2,2'-bipyridine)copper(I)] hexafluoridozirconate(IV) 1.134-hydrate (I). Data collection

Rigaku Saturn724+ (2x2 bin mode) diffractometer 5673 independent reflections
Radiation source: Rotating Anode, Rotating Anode 4588 reflections with I > 2σ(I)
Confocal monochromator Rint = 0.039
Detector resolution: 28.5714 pixels mm-1 θmax = 30.9°, θmin = 2.0°
profile data from ω–scans h = −11→11
Absorption correction: gaussian (CrysAlisPro; Rigaku OD, 2020) k = −14→15
Tmin = 0.376, Tmax = 1.000 l = −16→18
16573 measured reflections

Bis[bis(6,6'-dimethyl-2,2'-bipyridine)copper(I)] hexafluoridozirconate(IV) 1.134-hydrate (I). Refinement

Refinement on F2 Primary atom site location: dual
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.035 H-atom parameters constrained
wR(F2) = 0.088 w = 1/[σ2(Fo2) + (0.0397P)2 + 0.3898P] where P = (Fo2 + 2Fc2)/3
S = 1.07 (Δ/σ)max = 0.001
5673 reflections Δρmax = 0.59 e Å3
312 parameters Δρmin = −0.54 e Å3
0 restraints

Bis[bis(6,6'-dimethyl-2,2'-bipyridine)copper(I)] hexafluoridozirconate(IV) 1.134-hydrate (I). Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Bis[bis(6,6'-dimethyl-2,2'-bipyridine)copper(I)] hexafluoridozirconate(IV) 1.134-hydrate (I). Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Cu1 0.30548 (3) 0.35420 (2) 0.69756 (2) 0.02018 (8)
N1 0.4953 (2) 0.36543 (16) 0.82845 (13) 0.0174 (3)
C1 0.5623 (3) 0.26739 (19) 0.85293 (17) 0.0207 (4)
N2 0.3424 (2) 0.54652 (16) 0.77601 (14) 0.0195 (3)
C2 0.7120 (3) 0.2905 (2) 0.93235 (17) 0.0212 (4)
H2 0.756689 0.219858 0.948974 0.025*
N3 0.0873 (2) 0.23159 (15) 0.61598 (14) 0.0190 (3)
C3 0.7947 (3) 0.4174 (2) 0.98671 (17) 0.0230 (4)
H3 0.898128 0.435022 1.040244 0.028*
N4 0.3423 (2) 0.29725 (16) 0.54450 (14) 0.0211 (4)
C4 0.7257 (2) 0.5187 (2) 0.96256 (17) 0.0210 (4)
H4 0.780962 0.606656 0.999235 0.025*
C5 0.5745 (2) 0.48980 (18) 0.88392 (16) 0.0160 (4)
C6 0.4869 (2) 0.59134 (18) 0.85644 (16) 0.0166 (4)
C7 0.5450 (3) 0.72317 (19) 0.91116 (17) 0.0202 (4)
H7 0.649798 0.753655 0.964086 0.024*
C8 0.4472 (3) 0.8091 (2) 0.88699 (18) 0.0237 (4)
H8 0.484553 0.899537 0.923175 0.028*
C9 0.2955 (3) 0.7627 (2) 0.81024 (19) 0.0251 (4)
H9 0.224458 0.819860 0.796195 0.030*
C10 0.2476 (3) 0.6306 (2) 0.75341 (19) 0.0247 (4)
C11 0.4653 (3) 0.1315 (2) 0.7923 (2) 0.0325 (5)
H11A 0.374488 0.110516 0.822909 0.049*
H11B 0.536537 0.069734 0.800414 0.049*
H11C 0.421624 0.125560 0.713932 0.049*
C12 0.0897 (3) 0.5747 (3) 0.6624 (3) 0.0505 (8)
H12A 0.113803 0.542757 0.592501 0.076*
H12B 0.027094 0.642511 0.656716 0.076*
H12C 0.025358 0.502569 0.678793 0.076*
C13 −0.0357 (3) 0.20374 (19) 0.65956 (18) 0.0222 (4)
C14 −0.1902 (3) 0.1331 (2) 0.5926 (2) 0.0299 (5)
H14 −0.276649 0.114742 0.624100 0.036*
C15 −0.2168 (3) 0.0899 (2) 0.4802 (2) 0.0331 (6)
H15 −0.322268 0.042926 0.433723 0.040*
C16 −0.0896 (3) 0.1152 (2) 0.43557 (19) 0.0286 (5)
H16 −0.105281 0.084169 0.358515 0.034*
C17 0.0622 (3) 0.18722 (18) 0.50567 (17) 0.0209 (4)
C18 0.2076 (3) 0.2182 (2) 0.46677 (17) 0.0228 (4)
C19 0.2083 (3) 0.1682 (2) 0.35859 (18) 0.0297 (5)
H19 0.112010 0.114338 0.304771 0.036*
C20 0.3513 (4) 0.1981 (2) 0.3308 (2) 0.0356 (6)
H20 0.354850 0.164937 0.257431 0.043*
C21 0.4888 (3) 0.2767 (2) 0.4105 (2) 0.0344 (5)
H21 0.588640 0.296366 0.392590 0.041*
C22 0.4816 (3) 0.3270 (2) 0.51691 (19) 0.0260 (5)
C23 0.0017 (3) 0.2514 (2) 0.78169 (19) 0.0308 (5)
H23A 0.106137 0.232552 0.816790 0.046*
H23B −0.085860 0.207350 0.805470 0.046*
H23C 0.009325 0.345593 0.803131 0.046*
C24 0.6265 (3) 0.4151 (2) 0.6065 (2) 0.0325 (5)
H24A 0.593595 0.492033 0.643469 0.049*
H24B 0.713290 0.442318 0.574399 0.049*
H24C 0.667181 0.368394 0.660221 0.049*
Zr1 0.000000 1.000000 1.000000 0.02476 (9)
F1 0.09081 (18) 0.99518 (14) 0.87082 (13) 0.0384 (3)
F2 −0.05473 (16) 0.80350 (12) 0.95926 (12) 0.0322 (3)
F3 0.22027 (15) 1.00042 (12) 1.09456 (13) 0.0346 (3)
O1 −0.1062 (4) 0.6247 (3) 0.8061 (3) 0.0369 (11) 0.567 (6)
H1A −0.045474 0.641036 0.764081 0.055* 0.567 (6)
H1B −0.087438 0.692874 0.861724 0.055* 0.567 (6)

Bis[bis(6,6'-dimethyl-2,2'-bipyridine)copper(I)] hexafluoridozirconate(IV) 1.134-hydrate (I). Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cu1 0.02111 (14) 0.01747 (13) 0.01614 (13) 0.00081 (10) −0.00092 (10) 0.00225 (9)
N1 0.0200 (8) 0.0173 (8) 0.0128 (8) 0.0026 (7) 0.0022 (6) 0.0033 (6)
C1 0.0253 (10) 0.0205 (10) 0.0184 (10) 0.0078 (8) 0.0073 (8) 0.0065 (8)
N2 0.0193 (8) 0.0167 (8) 0.0198 (9) 0.0029 (7) 0.0016 (7) 0.0051 (6)
C2 0.0232 (10) 0.0255 (10) 0.0205 (10) 0.0114 (8) 0.0095 (8) 0.0100 (8)
N3 0.0226 (9) 0.0142 (8) 0.0175 (8) 0.0038 (7) 0.0022 (7) 0.0029 (6)
C3 0.0168 (9) 0.0325 (11) 0.0204 (10) 0.0052 (8) 0.0036 (8) 0.0109 (9)
N4 0.0251 (9) 0.0206 (8) 0.0191 (9) 0.0049 (7) 0.0066 (7) 0.0082 (7)
C4 0.0180 (10) 0.0206 (10) 0.0203 (10) 0.0007 (8) 0.0023 (8) 0.0039 (8)
C5 0.0165 (9) 0.0167 (9) 0.0148 (9) 0.0033 (7) 0.0051 (7) 0.0040 (7)
C6 0.0169 (9) 0.0174 (9) 0.0160 (9) 0.0031 (7) 0.0058 (7) 0.0048 (7)
C7 0.0211 (10) 0.0188 (9) 0.0194 (10) 0.0008 (8) 0.0064 (8) 0.0043 (8)
C8 0.0334 (12) 0.0168 (9) 0.0224 (11) 0.0039 (9) 0.0123 (9) 0.0048 (8)
C9 0.0289 (11) 0.0222 (10) 0.0311 (12) 0.0102 (9) 0.0128 (9) 0.0131 (9)
C10 0.0223 (10) 0.0231 (10) 0.0293 (12) 0.0045 (8) 0.0037 (9) 0.0125 (9)
C11 0.0456 (14) 0.0190 (10) 0.0265 (12) 0.0104 (10) −0.0010 (10) 0.0033 (9)
C12 0.0333 (14) 0.0281 (13) 0.073 (2) 0.0029 (11) −0.0190 (14) 0.0192 (13)
C13 0.0230 (10) 0.0173 (9) 0.0245 (11) 0.0053 (8) 0.0055 (8) 0.0031 (8)
C14 0.0234 (11) 0.0204 (10) 0.0428 (14) 0.0019 (9) 0.0087 (10) 0.0057 (10)
C15 0.0247 (12) 0.0217 (11) 0.0382 (14) 0.0006 (9) −0.0059 (10) −0.0017 (10)
C16 0.0335 (12) 0.0195 (10) 0.0227 (11) 0.0050 (9) −0.0054 (9) 0.0007 (8)
C17 0.0276 (11) 0.0148 (9) 0.0170 (10) 0.0062 (8) −0.0007 (8) 0.0044 (7)
C18 0.0315 (11) 0.0196 (10) 0.0166 (10) 0.0070 (9) 0.0021 (8) 0.0077 (8)
C19 0.0473 (14) 0.0226 (11) 0.0180 (11) 0.0090 (10) 0.0056 (10) 0.0065 (9)
C20 0.0602 (17) 0.0319 (12) 0.0245 (12) 0.0163 (12) 0.0222 (12) 0.0118 (10)
C21 0.0465 (15) 0.0345 (13) 0.0357 (14) 0.0170 (11) 0.0239 (12) 0.0178 (11)
C22 0.0304 (11) 0.0239 (10) 0.0310 (12) 0.0107 (9) 0.0132 (9) 0.0137 (9)
C23 0.0309 (12) 0.0341 (12) 0.0278 (12) 0.0045 (10) 0.0122 (10) 0.0068 (10)
C24 0.0258 (12) 0.0367 (13) 0.0384 (14) 0.0034 (10) 0.0134 (10) 0.0147 (11)
Zr1 0.01462 (14) 0.02394 (15) 0.03837 (19) 0.00405 (11) 0.00458 (12) 0.01715 (13)
F1 0.0390 (8) 0.0355 (8) 0.0507 (9) 0.0129 (6) 0.0198 (7) 0.0209 (7)
F2 0.0256 (7) 0.0188 (6) 0.0479 (9) 0.0022 (5) 0.0034 (6) 0.0104 (6)
F3 0.0207 (6) 0.0230 (6) 0.0511 (9) 0.0052 (5) −0.0042 (6) 0.0081 (6)
O1 0.041 (2) 0.0389 (19) 0.0244 (17) 0.0009 (14) 0.0117 (14) 0.0001 (13)

Bis[bis(6,6'-dimethyl-2,2'-bipyridine)copper(I)] hexafluoridozirconate(IV) 1.134-hydrate (I). Geometric parameters (Å, º)

Cu1—N1 2.0208 (16) C12—H12B 0.9800
Cu1—N2 2.0348 (17) C12—H12C 0.9800
Cu1—N3 2.0123 (17) C13—C14 1.392 (3)
Cu1—N4 2.0616 (18) C13—C23 1.490 (3)
N1—C1 1.346 (3) C14—H14 0.9500
N1—C5 1.354 (2) C14—C15 1.379 (4)
C1—C2 1.390 (3) C15—H15 0.9500
C1—C11 1.502 (3) C15—C16 1.379 (4)
N2—C6 1.355 (2) C16—H16 0.9500
N2—C10 1.346 (3) C16—C17 1.392 (3)
C2—H2 0.9500 C17—C18 1.481 (3)
C2—C3 1.380 (3) C18—C19 1.390 (3)
N3—C13 1.344 (3) C19—H19 0.9500
N3—C17 1.356 (3) C19—C20 1.379 (4)
C3—H3 0.9500 C20—H20 0.9500
C3—C4 1.385 (3) C20—C21 1.377 (4)
N4—C18 1.355 (3) C21—H21 0.9500
N4—C22 1.347 (3) C21—C22 1.388 (3)
C4—H4 0.9500 C22—C24 1.500 (3)
C4—C5 1.388 (3) C23—H23A 0.9800
C5—C6 1.485 (3) C23—H23B 0.9800
C6—C7 1.391 (3) C23—H23C 0.9800
C7—H7 0.9500 C24—H24A 0.9800
C7—C8 1.384 (3) C24—H24B 0.9800
C8—H8 0.9500 C24—H24C 0.9800
C8—C9 1.378 (3) Zr1—F1 2.0113 (15)
C9—H9 0.9500 Zr1—F1i 2.0113 (15)
C9—C10 1.396 (3) Zr1—F2i 2.0183 (12)
C10—C12 1.503 (3) Zr1—F2 2.0183 (12)
C11—H11A 0.9800 Zr1—F3 1.9955 (13)
C11—H11B 0.9800 Zr1—F3i 1.9955 (13)
C11—H11C 0.9800 O1—H1A 0.8699
C12—H12A 0.9800 O1—H1B 0.8703
N1—Cu1—N2 81.40 (7) H12B—C12—H12C 109.5
N1—Cu1—N4 116.24 (7) N3—C13—C14 120.9 (2)
N2—Cu1—N4 120.45 (7) N3—C13—C23 116.93 (18)
N3—Cu1—N1 136.29 (7) C14—C13—C23 122.2 (2)
N3—Cu1—N2 126.16 (7) C13—C14—H14 120.2
N3—Cu1—N4 81.05 (7) C15—C14—C13 119.6 (2)
C1—N1—Cu1 127.37 (14) C15—C14—H14 120.2
C1—N1—C5 119.06 (17) C14—C15—H15 120.2
C5—N1—Cu1 112.61 (13) C14—C15—C16 119.7 (2)
N1—C1—C2 121.76 (18) C16—C15—H15 120.2
N1—C1—C11 116.67 (19) C15—C16—H16 120.7
C2—C1—C11 121.55 (19) C15—C16—C17 118.7 (2)
C6—N2—Cu1 112.50 (13) C17—C16—H16 120.7
C10—N2—Cu1 128.32 (14) N3—C17—C16 121.5 (2)
C10—N2—C6 119.07 (17) N3—C17—C18 115.35 (18)
C1—C2—H2 120.5 C16—C17—C18 123.1 (2)
C3—C2—C1 119.10 (19) N4—C18—C17 115.47 (18)
C3—C2—H2 120.5 N4—C18—C19 121.7 (2)
C13—N3—Cu1 125.56 (14) C19—C18—C17 122.8 (2)
C13—N3—C17 119.66 (18) C18—C19—H19 120.6
C17—N3—Cu1 114.36 (14) C20—C19—C18 118.8 (2)
C2—C3—H3 120.3 C20—C19—H19 120.6
C2—C3—C4 119.43 (19) C19—C20—H20 120.3
C4—C3—H3 120.3 C21—C20—C19 119.4 (2)
C18—N4—Cu1 113.01 (14) C21—C20—H20 120.3
C22—N4—Cu1 127.62 (15) C20—C21—H21 120.0
C22—N4—C18 119.34 (19) C20—C21—C22 119.9 (2)
C3—C4—H4 120.5 C22—C21—H21 120.0
C3—C4—C5 118.94 (18) N4—C22—C21 120.8 (2)
C5—C4—H4 120.5 N4—C22—C24 116.8 (2)
N1—C5—C4 121.67 (18) C21—C22—C24 122.3 (2)
N1—C5—C6 115.42 (17) C13—C23—H23A 109.5
C4—C5—C6 122.90 (17) C13—C23—H23B 109.5
N2—C6—C5 115.28 (16) C13—C23—H23C 109.5
N2—C6—C7 121.72 (18) H23A—C23—H23B 109.5
C7—C6—C5 122.97 (18) H23A—C23—H23C 109.5
C6—C7—H7 120.6 H23B—C23—H23C 109.5
C8—C7—C6 118.70 (19) C22—C24—H24A 109.5
C8—C7—H7 120.6 C22—C24—H24B 109.5
C7—C8—H8 120.1 C22—C24—H24C 109.5
C9—C8—C7 119.71 (19) H24A—C24—H24B 109.5
C9—C8—H8 120.1 H24A—C24—H24C 109.5
C8—C9—H9 120.5 H24B—C24—H24C 109.5
C8—C9—C10 119.0 (2) F1i—Zr1—F1 180.00 (9)
C10—C9—H9 120.5 F1—Zr1—F2i 89.69 (6)
N2—C10—C9 121.56 (19) F1—Zr1—F2 90.31 (6)
N2—C10—C12 116.3 (2) F1i—Zr1—F2 89.69 (6)
C9—C10—C12 122.1 (2) F1i—Zr1—F2i 90.31 (6)
C1—C11—H11A 109.5 F2—Zr1—F2i 180.0
C1—C11—H11B 109.5 F3i—Zr1—F1 89.90 (6)
C1—C11—H11C 109.5 F3—Zr1—F1i 89.90 (6)
H11A—C11—H11B 109.5 F3—Zr1—F1 90.10 (6)
H11A—C11—H11C 109.5 F3i—Zr1—F1i 90.10 (6)
H11B—C11—H11C 109.5 F3i—Zr1—F2i 89.43 (5)
C10—C12—H12A 109.5 F3—Zr1—F2 89.43 (5)
C10—C12—H12B 109.5 F3—Zr1—F2i 90.57 (5)
C10—C12—H12C 109.5 F3i—Zr1—F2 90.57 (5)
H12A—C12—H12B 109.5 F3i—Zr1—F3 180.0
H12A—C12—H12C 109.5 H1A—O1—H1B 109.5
Cu1—N1—C1—C2 166.88 (15) C5—N1—C1—C2 −1.0 (3)
Cu1—N1—C1—C11 −14.7 (3) C5—N1—C1—C11 177.37 (19)
Cu1—N1—C5—C4 −167.35 (15) C5—C6—C7—C8 −173.85 (19)
Cu1—N1—C5—C6 14.0 (2) C6—N2—C10—C9 0.5 (3)
Cu1—N2—C6—C5 −9.8 (2) C6—N2—C10—C12 179.4 (2)
Cu1—N2—C6—C7 172.18 (15) C6—C7—C8—C9 0.2 (3)
Cu1—N2—C10—C9 −175.40 (16) C7—C8—C9—C10 −3.8 (3)
Cu1—N2—C10—C12 3.4 (3) C8—C9—C10—N2 3.6 (3)
Cu1—N3—C13—C14 170.26 (16) C8—C9—C10—C12 −175.2 (2)
Cu1—N3—C13—C23 −10.0 (3) C10—N2—C6—C5 173.65 (18)
Cu1—N3—C17—C16 −171.70 (16) C10—N2—C6—C7 −4.4 (3)
Cu1—N3—C17—C18 9.7 (2) C11—C1—C2—C3 −179.0 (2)
Cu1—N4—C18—C17 −0.4 (2) C13—N3—C17—C16 1.3 (3)
Cu1—N4—C18—C19 −179.26 (16) C13—N3—C17—C18 −177.34 (18)
Cu1—N4—C22—C21 177.41 (16) C13—C14—C15—C16 1.1 (4)
Cu1—N4—C22—C24 −1.9 (3) C14—C15—C16—C17 −1.7 (3)
N1—C1—C2—C3 −0.7 (3) C15—C16—C17—N3 0.5 (3)
N1—C5—C6—N2 −2.7 (3) C15—C16—C17—C18 179.0 (2)
N1—C5—C6—C7 175.24 (18) C16—C17—C18—N4 175.31 (19)
C1—N1—C5—C4 2.3 (3) C16—C17—C18—C19 −5.9 (3)
C1—N1—C5—C6 −176.43 (18) C17—N3—C13—C14 −1.9 (3)
C1—C2—C3—C4 1.2 (3) C17—N3—C13—C23 177.87 (19)
N2—C6—C7—C8 4.0 (3) C17—C18—C19—C20 −177.4 (2)
C2—C3—C4—C5 0.0 (3) C18—N4—C22—C21 −0.7 (3)
N3—C13—C14—C15 0.7 (3) C18—N4—C22—C24 179.95 (19)
N3—C17—C18—N4 −6.1 (3) C18—C19—C20—C21 −0.2 (3)
N3—C17—C18—C19 172.72 (19) C19—C20—C21—C22 −1.4 (4)
C3—C4—C5—N1 −1.7 (3) C20—C21—C22—N4 1.8 (3)
C3—C4—C5—C6 176.86 (19) C20—C21—C22—C24 −178.8 (2)
N4—C18—C19—C20 1.3 (3) C22—N4—C18—C17 177.93 (18)
C4—C5—C6—N2 178.58 (18) C22—N4—C18—C19 −0.9 (3)
C4—C5—C6—C7 −3.4 (3) C23—C13—C14—C15 −179.0 (2)

Symmetry code: (i) −x, −y+2, −z+2.

Bis[bis(6,6'-dimethyl-2,2'-bipyridine)copper(I)] hexafluoridozirconate(IV) 1.134-hydrate (I). Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O1—H1B···F2 0.87 1.47 2.337 (4) 177

Bis[bis(6,6'-dimethyl-2,2'-bipyridine)copper(I)] hexafluoridohafnate(IV) 0.671-hydrate (II). Crystal data

[Cu(C12H12N2)2]2[HfF6]·0.671H2O Z = 1
Mr = 1168.58 F(000) = 583
Triclinic, P1 Dx = 1.745 Mg m3
a = 8.5737 (1) Å Mo Kα radiation, λ = 0.71073 Å
b = 10.7967 (2) Å Cell parameters from 31642 reflections
c = 13.0183 (2) Å θ = 2.2–33.9°
α = 103.273 (1)° µ = 3.35 mm1
β = 103.662 (1)° T = 100 K
γ = 98.785 (1)° Plate, clear orangish red
V = 1112.07 (3) Å3 0.3 × 0.17 × 0.08 mm

Bis[bis(6,6'-dimethyl-2,2'-bipyridine)copper(I)] hexafluoridohafnate(IV) 0.671-hydrate (II). Data collection

Rigaku Saturn724+ (2x2 bin mode) diffractometer 8003 independent reflections
Radiation source: Rotating Anode, Rotating Anode 7235 reflections with I > 2σ(I)
Confocal monochromator Rint = 0.032
Detector resolution: 28.5714 pixels mm-1 θmax = 33.9°, θmin = 2.0°
profile data from ω–scans h = −13→13
Absorption correction: gaussian (CrysAlisPro; Rigaku OD, 2020) k = −16→16
Tmin = 0.433, Tmax = 1.000 l = −19→19
40796 measured reflections

Bis[bis(6,6'-dimethyl-2,2'-bipyridine)copper(I)] hexafluoridohafnate(IV) 0.671-hydrate (II). Refinement

Refinement on F2 Primary atom site location: dual
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.023 H-atom parameters constrained
wR(F2) = 0.056 w = 1/[σ2(Fo2) + (0.029P)2 + 0.1688P] where P = (Fo2 + 2Fc2)/3
S = 1.08 (Δ/σ)max = 0.002
8003 reflections Δρmax = 0.48 e Å3
312 parameters Δρmin = −0.73 e Å3
0 restraints

Bis[bis(6,6'-dimethyl-2,2'-bipyridine)copper(I)] hexafluoridohafnate(IV) 0.671-hydrate (II). Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Bis[bis(6,6'-dimethyl-2,2'-bipyridine)copper(I)] hexafluoridohafnate(IV) 0.671-hydrate (II). Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Cu1 0.30255 (2) 0.35382 (2) 0.69812 (2) 0.01849 (4)
N1 0.49323 (15) 0.36487 (11) 0.82812 (9) 0.0157 (2)
C1 0.55897 (18) 0.26589 (14) 0.85279 (11) 0.0184 (3)
N2 0.33991 (15) 0.54691 (12) 0.77752 (10) 0.0187 (2)
C2 0.70930 (18) 0.28901 (15) 0.93195 (12) 0.0200 (3)
H2 0.752847 0.218202 0.949428 0.024*
N3 0.08393 (15) 0.23090 (11) 0.61730 (10) 0.0173 (2)
C3 0.79431 (18) 0.41592 (16) 0.98475 (12) 0.0218 (3)
H3 0.898138 0.433093 1.037654 0.026*
N4 0.33880 (17) 0.29739 (13) 0.54432 (11) 0.0211 (2)
C4 0.72716 (18) 0.51810 (15) 0.96003 (12) 0.0206 (3)
H4 0.784176 0.605989 0.995319 0.025*
C5 0.57452 (16) 0.48929 (13) 0.88246 (11) 0.0157 (2)
C6 0.48691 (17) 0.59126 (13) 0.85563 (11) 0.0159 (2)
C7 0.54737 (18) 0.72313 (14) 0.90906 (12) 0.0196 (3)
H7 0.653940 0.753278 0.959803 0.024*
C8 0.4488 (2) 0.81009 (14) 0.88679 (13) 0.0222 (3)
H8 0.487246 0.900700 0.922570 0.027*
C9 0.2948 (2) 0.76402 (15) 0.81239 (13) 0.0240 (3)
H9 0.223979 0.821769 0.799097 0.029*
C10 0.24454 (19) 0.63174 (15) 0.75708 (14) 0.0247 (3)
C11 0.4606 (2) 0.13042 (15) 0.79400 (14) 0.0287 (3)
H11A 0.374850 0.108709 0.829125 0.043*
H11B 0.533164 0.068661 0.797454 0.043*
H11C 0.409525 0.125179 0.716942 0.043*
C12 0.0821 (3) 0.5765 (2) 0.6712 (2) 0.0523 (7)
H12A 0.100542 0.546189 0.599023 0.078*
H12B 0.017881 0.644134 0.669871 0.078*
H12C 0.021671 0.503124 0.688661 0.078*
C13 −0.03848 (19) 0.20159 (14) 0.66175 (13) 0.0217 (3)
C14 −0.1938 (2) 0.13117 (16) 0.59615 (16) 0.0294 (3)
H14 −0.279577 0.111864 0.628577 0.035*
C15 −0.2222 (2) 0.08956 (17) 0.48344 (16) 0.0331 (4)
H15 −0.328350 0.042958 0.437675 0.040*
C16 −0.0952 (2) 0.11615 (16) 0.43760 (14) 0.0279 (3)
H16 −0.112119 0.086313 0.360420 0.034*
C17 0.05785 (19) 0.18743 (14) 0.50662 (12) 0.0196 (3)
C18 0.2030 (2) 0.21916 (14) 0.46699 (12) 0.0215 (3)
C19 0.2026 (3) 0.16910 (16) 0.35783 (13) 0.0293 (3)
H19 0.105673 0.115925 0.304363 0.035*
C20 0.3465 (3) 0.19880 (19) 0.32964 (15) 0.0370 (4)
H20 0.349867 0.165652 0.256178 0.044*
C21 0.4854 (3) 0.27688 (19) 0.40872 (16) 0.0348 (4)
H21 0.585269 0.296727 0.390165 0.042*
C22 0.4786 (2) 0.32667 (16) 0.51629 (14) 0.0265 (3)
C23 0.0002 (2) 0.24806 (18) 0.78440 (14) 0.0296 (3)
H23A 0.107943 0.232844 0.818103 0.044*
H23B −0.084204 0.200229 0.808740 0.044*
H23C 0.002281 0.341524 0.806634 0.044*
C24 0.6249 (2) 0.41315 (19) 0.60455 (16) 0.0332 (4)
H24A 0.593380 0.490705 0.642476 0.050*
H24B 0.711624 0.439691 0.571619 0.050*
H24C 0.665684 0.365753 0.657414 0.050*
Hf1 0.000000 1.000000 1.000000 0.02373 (3)
F1 0.09274 (14) 0.99551 (11) 0.87132 (10) 0.0369 (2)
F2 −0.05307 (12) 0.80472 (9) 0.95921 (9) 0.0312 (2)
F3 0.22038 (12) 1.00043 (10) 1.09439 (10) 0.0341 (2)
O1 −0.1061 (5) 0.6264 (4) 0.8063 (3) 0.0338 (12) 0.336 (5)
H1A −0.014695 0.600372 0.823726 0.051* 0.336 (5)
H1B −0.097233 0.702606 0.850509 0.051* 0.336 (5)

Bis[bis(6,6'-dimethyl-2,2'-bipyridine)copper(I)] hexafluoridohafnate(IV) 0.671-hydrate (II). Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cu1 0.01904 (8) 0.01683 (8) 0.01581 (8) 0.00282 (6) −0.00052 (6) 0.00350 (6)
N1 0.0167 (5) 0.0146 (5) 0.0154 (5) 0.0047 (4) 0.0031 (4) 0.0040 (4)
C1 0.0211 (6) 0.0187 (6) 0.0178 (6) 0.0077 (5) 0.0063 (5) 0.0067 (5)
N2 0.0177 (5) 0.0158 (5) 0.0213 (6) 0.0045 (4) 0.0018 (4) 0.0058 (4)
C2 0.0208 (6) 0.0249 (7) 0.0215 (7) 0.0115 (5) 0.0098 (5) 0.0119 (5)
N3 0.0197 (5) 0.0142 (5) 0.0161 (5) 0.0046 (4) 0.0013 (4) 0.0035 (4)
C3 0.0148 (6) 0.0293 (7) 0.0227 (7) 0.0063 (5) 0.0039 (5) 0.0105 (6)
N4 0.0247 (6) 0.0214 (6) 0.0215 (6) 0.0094 (5) 0.0074 (5) 0.0106 (5)
C4 0.0159 (6) 0.0207 (7) 0.0214 (7) 0.0025 (5) 0.0015 (5) 0.0032 (5)
C5 0.0144 (6) 0.0165 (6) 0.0169 (6) 0.0044 (4) 0.0051 (5) 0.0044 (5)
C6 0.0159 (6) 0.0154 (6) 0.0180 (6) 0.0043 (4) 0.0063 (5) 0.0054 (5)
C7 0.0200 (6) 0.0163 (6) 0.0220 (7) 0.0022 (5) 0.0071 (5) 0.0041 (5)
C8 0.0320 (8) 0.0141 (6) 0.0246 (7) 0.0061 (5) 0.0142 (6) 0.0061 (5)
C9 0.0280 (7) 0.0199 (7) 0.0328 (8) 0.0125 (6) 0.0136 (6) 0.0145 (6)
C10 0.0219 (7) 0.0203 (7) 0.0332 (8) 0.0067 (5) 0.0037 (6) 0.0125 (6)
C11 0.0364 (9) 0.0170 (7) 0.0280 (8) 0.0082 (6) −0.0004 (7) 0.0053 (6)
C12 0.0307 (10) 0.0317 (10) 0.0783 (16) 0.0056 (8) −0.0207 (10) 0.0220 (10)
C13 0.0216 (7) 0.0166 (6) 0.0263 (7) 0.0054 (5) 0.0059 (6) 0.0049 (5)
C14 0.0206 (7) 0.0206 (7) 0.0439 (10) 0.0028 (6) 0.0077 (7) 0.0053 (7)
C15 0.0228 (7) 0.0220 (8) 0.0402 (10) 0.0018 (6) −0.0064 (7) −0.0012 (7)
C16 0.0306 (8) 0.0215 (7) 0.0219 (7) 0.0053 (6) −0.0062 (6) 0.0012 (6)
C17 0.0249 (7) 0.0149 (6) 0.0167 (6) 0.0070 (5) 0.0000 (5) 0.0041 (5)
C18 0.0308 (8) 0.0182 (6) 0.0162 (6) 0.0092 (6) 0.0036 (6) 0.0071 (5)
C19 0.0483 (10) 0.0248 (8) 0.0169 (7) 0.0136 (7) 0.0084 (7) 0.0073 (6)
C20 0.0652 (13) 0.0345 (9) 0.0250 (8) 0.0232 (9) 0.0248 (9) 0.0139 (7)
C21 0.0474 (11) 0.0339 (9) 0.0380 (10) 0.0185 (8) 0.0264 (9) 0.0177 (8)
C22 0.0308 (8) 0.0270 (8) 0.0318 (8) 0.0131 (6) 0.0155 (7) 0.0162 (6)
C23 0.0297 (8) 0.0349 (9) 0.0272 (8) 0.0077 (7) 0.0141 (7) 0.0077 (7)
C24 0.0258 (8) 0.0366 (9) 0.0427 (10) 0.0071 (7) 0.0154 (7) 0.0154 (8)
Hf1 0.01372 (4) 0.02043 (5) 0.04096 (6) 0.00568 (3) 0.00576 (3) 0.01683 (4)
F1 0.0372 (6) 0.0331 (6) 0.0534 (7) 0.0157 (5) 0.0229 (5) 0.0215 (5)
F2 0.0218 (5) 0.0179 (4) 0.0518 (6) 0.0039 (3) 0.0038 (4) 0.0125 (4)
F3 0.0193 (4) 0.0218 (5) 0.0541 (7) 0.0064 (4) −0.0039 (4) 0.0100 (4)
O1 0.036 (2) 0.035 (2) 0.0227 (19) 0.0034 (16) 0.0075 (15) −0.0029 (15)

Bis[bis(6,6'-dimethyl-2,2'-bipyridine)copper(I)] hexafluoridohafnate(IV) 0.671-hydrate (II). Geometric parameters (Å, º)

Cu1—N1 2.0229 (12) C12—H12B 0.9800
Cu1—N2 2.0414 (12) C12—H12C 0.9800
Cu1—N3 2.0121 (12) C13—C14 1.391 (2)
Cu1—N4 2.0659 (13) C13—C23 1.497 (2)
N1—C1 1.3487 (17) C14—H14 0.9500
N1—C5 1.3548 (18) C14—C15 1.382 (3)
C1—C2 1.393 (2) C15—H15 0.9500
C1—C11 1.497 (2) C15—C16 1.384 (3)
N2—C6 1.3558 (18) C16—H16 0.9500
N2—C10 1.3476 (19) C16—C17 1.392 (2)
C2—H2 0.9500 C17—C18 1.479 (2)
C2—C3 1.381 (2) C18—C19 1.399 (2)
N3—C13 1.344 (2) C19—H19 0.9500
N3—C17 1.3607 (19) C19—C20 1.381 (3)
C3—H3 0.9500 C20—H20 0.9500
C3—C4 1.386 (2) C20—C21 1.380 (3)
N4—C18 1.356 (2) C21—H21 0.9500
N4—C22 1.347 (2) C21—C22 1.399 (2)
C4—H4 0.9500 C22—C24 1.495 (3)
C4—C5 1.3915 (19) C23—H23A 0.9800
C5—C6 1.4845 (19) C23—H23B 0.9800
C6—C7 1.389 (2) C23—H23C 0.9800
C7—H7 0.9500 C24—H24A 0.9800
C7—C8 1.390 (2) C24—H24B 0.9800
C8—H8 0.9500 C24—H24C 0.9800
C8—C9 1.380 (2) Hf1—F1i 2.0111 (11)
C9—H9 0.9500 Hf1—F1 2.0111 (11)
C9—C10 1.392 (2) Hf1—F2i 2.0033 (9)
C10—C12 1.500 (2) Hf1—F2 2.0033 (9)
C11—H11A 0.9800 Hf1—F3i 1.9945 (10)
C11—H11B 0.9800 Hf1—F3 1.9945 (10)
C11—H11C 0.9800 O1—H1A 0.8700
C12—H12A 0.9800 O1—H1B 0.8699
N1—Cu1—N2 81.22 (5) H12B—C12—H12C 109.5
N1—Cu1—N4 116.52 (5) N3—C13—C14 121.15 (15)
N2—Cu1—N4 120.35 (5) N3—C13—C23 116.98 (14)
N3—Cu1—N1 136.20 (5) C14—C13—C23 121.87 (15)
N3—Cu1—N2 126.39 (5) C13—C14—H14 120.3
N3—Cu1—N4 80.94 (5) C15—C14—C13 119.42 (17)
C1—N1—Cu1 127.24 (10) C15—C14—H14 120.3
C1—N1—C5 119.15 (12) C14—C15—H15 120.2
C5—N1—Cu1 112.66 (9) C14—C15—C16 119.63 (15)
N1—C1—C2 121.40 (13) C16—C15—H15 120.2
N1—C1—C11 116.99 (13) C15—C16—H16 120.6
C2—C1—C11 121.58 (13) C15—C16—C17 118.80 (15)
C6—N2—Cu1 112.15 (9) C17—C16—H16 120.6
C10—N2—Cu1 128.64 (10) N3—C17—C16 121.28 (15)
C10—N2—C6 119.08 (13) N3—C17—C18 115.28 (13)
C1—C2—H2 120.3 C16—C17—C18 123.44 (14)
C3—C2—C1 119.31 (13) N4—C18—C17 115.53 (13)
C3—C2—H2 120.3 N4—C18—C19 121.93 (16)
C13—N3—Cu1 125.50 (10) C19—C18—C17 122.51 (15)
C13—N3—C17 119.68 (13) C18—C19—H19 120.8
C17—N3—Cu1 114.43 (10) C20—C19—C18 118.41 (17)
C2—C3—H3 120.2 C20—C19—H19 120.8
C2—C3—C4 119.57 (13) C19—C20—H20 120.2
C4—C3—H3 120.2 C21—C20—C19 119.67 (16)
C18—N4—Cu1 113.01 (10) C21—C20—H20 120.2
C22—N4—Cu1 127.54 (11) C20—C21—H21 120.1
C22—N4—C18 119.43 (14) C20—C21—C22 119.72 (18)
C3—C4—H4 120.7 C22—C21—H21 120.1
C3—C4—C5 118.63 (13) N4—C22—C21 120.82 (17)
C5—C4—H4 120.7 N4—C22—C24 117.38 (15)
N1—C5—C4 121.89 (13) C21—C22—C24 121.80 (16)
N1—C5—C6 115.22 (12) C13—C23—H23A 109.5
C4—C5—C6 122.86 (13) C13—C23—H23B 109.5
N2—C6—C5 115.48 (12) C13—C23—H23C 109.5
N2—C6—C7 121.72 (13) H23A—C23—H23B 109.5
C7—C6—C5 122.77 (13) H23A—C23—H23C 109.5
C6—C7—H7 120.7 H23B—C23—H23C 109.5
C6—C7—C8 118.65 (14) C22—C24—H24A 109.5
C8—C7—H7 120.7 C22—C24—H24B 109.5
C7—C8—H8 120.2 C22—C24—H24C 109.5
C9—C8—C7 119.60 (14) H24A—C24—H24B 109.5
C9—C8—H8 120.2 H24A—C24—H24C 109.5
C8—C9—H9 120.5 H24B—C24—H24C 109.5
C8—C9—C10 119.06 (14) F1i—Hf1—F1 180.00 (7)
C10—C9—H9 120.5 F2i—Hf1—F1 89.79 (5)
N2—C10—C9 121.66 (14) F2—Hf1—F1 90.21 (5)
N2—C10—C12 116.62 (15) F2—Hf1—F1i 89.79 (5)
C9—C10—C12 121.71 (15) F2i—Hf1—F1i 90.21 (5)
C1—C11—H11A 109.5 F2—Hf1—F2i 180.0
C1—C11—H11B 109.5 F3—Hf1—F1 90.15 (5)
C1—C11—H11C 109.5 F3—Hf1—F1i 89.85 (5)
H11A—C11—H11B 109.5 F3i—Hf1—F1i 90.15 (5)
H11A—C11—H11C 109.5 F3i—Hf1—F1 89.85 (5)
H11B—C11—H11C 109.5 F3—Hf1—F2 89.27 (4)
C10—C12—H12A 109.5 F3i—Hf1—F2i 89.26 (4)
C10—C12—H12B 109.5 F3i—Hf1—F2 90.74 (4)
C10—C12—H12C 109.5 F3—Hf1—F2i 90.73 (4)
H12A—C12—H12B 109.5 F3—Hf1—F3i 180.0
H12A—C12—H12C 109.5 H1A—O1—H1B 109.5
Cu1—N1—C1—C2 167.25 (11) C5—N1—C1—C2 −0.7 (2)
Cu1—N1—C1—C11 −14.69 (19) C5—N1—C1—C11 177.33 (13)
Cu1—N1—C5—C4 −167.08 (11) C5—C6—C7—C8 −173.20 (13)
Cu1—N1—C5—C6 14.67 (15) C6—N2—C10—C9 1.4 (2)
Cu1—N2—C6—C5 −11.14 (15) C6—N2—C10—C12 −178.95 (17)
Cu1—N2—C6—C7 171.02 (11) C6—C7—C8—C9 −0.3 (2)
Cu1—N2—C10—C9 −173.90 (12) C7—C8—C9—C10 −3.1 (2)
Cu1—N2—C10—C12 5.7 (2) C8—C9—C10—N2 2.6 (2)
Cu1—N3—C13—C14 170.17 (12) C8—C9—C10—C12 −176.97 (18)
Cu1—N3—C13—C23 −9.84 (19) C10—N2—C6—C5 172.79 (13)
Cu1—N3—C17—C16 −171.27 (11) C10—N2—C6—C7 −5.1 (2)
Cu1—N3—C17—C18 9.88 (15) C11—C1—C2—C3 −179.25 (14)
Cu1—N4—C18—C17 −1.01 (15) C13—N3—C17—C16 2.0 (2)
Cu1—N4—C18—C19 −179.23 (12) C13—N3—C17—C18 −176.87 (12)
Cu1—N4—C22—C21 177.63 (12) C13—C14—C15—C16 1.3 (3)
Cu1—N4—C22—C24 −2.0 (2) C14—C15—C16—C17 −1.6 (2)
N1—C1—C2—C3 −1.3 (2) C15—C16—C17—N3 0.0 (2)
N1—C5—C6—N2 −2.27 (18) C15—C16—C17—C18 178.70 (15)
N1—C5—C6—C7 175.55 (13) C16—C17—C18—N4 175.36 (14)
C1—N1—C5—C4 2.6 (2) C16—C17—C18—C19 −6.4 (2)
C1—N1—C5—C6 −175.69 (12) C17—N3—C13—C14 −2.3 (2)
C1—C2—C3—C4 1.5 (2) C17—N3—C13—C23 177.72 (13)
N2—C6—C7—C8 4.5 (2) C17—C18—C19—C20 −176.75 (14)
C2—C3—C4—C5 0.3 (2) C18—N4—C22—C21 −0.3 (2)
N3—C13—C14—C15 0.6 (2) C18—N4—C22—C24 −179.92 (14)
N3—C17—C18—N4 −5.82 (18) C18—C19—C20—C21 −0.4 (3)
N3—C17—C18—C19 172.39 (13) C19—C20—C21—C22 −0.9 (3)
C3—C4—C5—N1 −2.3 (2) C20—C21—C22—N4 1.3 (3)
C3—C4—C5—C6 175.77 (13) C20—C21—C22—C24 −179.15 (16)
N4—C18—C19—C20 1.4 (2) C22—N4—C18—C17 177.22 (13)
C4—C5—C6—N2 179.49 (13) C22—N4—C18—C19 −1.0 (2)
C4—C5—C6—C7 −2.7 (2) C23—C13—C14—C15 −179.34 (16)

Symmetry code: (i) −x, −y+2, −z+2.

Bis[bis(6,6'-dimethyl-2,2'-bipyridine)copper(I)] hexafluoridohafnate(IV) 0.671-hydrate (II). Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O1B—H1B···F2 0.87 1.50 2.328 (4) 156

Coordination geometry (Å, °) of Cu(dmbpy)2+ cations in (I)

N—Cu—N N—Cu Cu—N N—Cu—N
N1—Cu1—N2 2.0208 (16) 2.0348 (17) 81.40 (7)
N1—Cu1—N3 2.0123 (17) 136.29 (7)
N1—Cu1—N4 2.0616 (18) 116.24 (7)
N2—Cu1—N3 126.17 (7)
N2—Cu1—N4 120.45 (7)
N3—Cu1—N4 81.05 (7)

Bond distances (Å) of ZrF62– in (I)

Zr—F Distance (Å)
Zr—F1 2.0113 (15)
Zr—F2 2.0183 (12)
Zr—F3 1.9955 (13)

Hydrogen-bond geometry (Å, °) for (I)

D—H···A D—H H···A D···A D—H···A
O1—H1B···F2 0.870 (3) 1.4674 (14) 2.337 (3) 177.1 (2)

Coordination geometry (Å, °) of Cu(dmbpy)2+ cations in (II)

N—Cu—N N—Cu Cu—N N—Cu—N
N1—Cu1—N2 2.0229 (12) 2.0414 (12) 81.22 (5)
N1—Cu1—N3 2.0121 (12) 136.20 (5)
N1—Cu1—N4 2.0659 (13) 116.52 (5)
N2—Cu1—N3 126.39 (5)
N2—Cu1—N4 120.35 (5)
N3—Cu1—N4 80.94 (5)

Bond distances (Å) of HfF62– in (II)

Hf—F Distance (Å)
Hf—F1 2.0111 (11)
Hf—F2 2.0033 (9)
Hf—F3 1.9945 (10)

Hydrogen-bond geometry (Å, °) for (II)

D—H···A D—H H···A D···A D—H···A
O1—H1B···F2 0.870 (4) 1.5048 (11) 2.328 (4) 156.4 (3)

Funding Statement

This work was funded by National Science Foundation grant No. DMR-1904701.

References

  1. Adman, E. T., Stenkamp, R. E., Sieker, L. C. & Jensen, L. H. (1978). J. Mol. Biol. 123, 35–47. [DOI] [PubMed]
  2. Bozic-Weber, B., Chaurin, V., Constable, E. C., Housecroft, C. E., Meuwly, M., Neuburger, M., Rudd, J. A., Schönhofer, E. & Siegfried, L. (2012). Dalton Trans. 41, 14157–14169. [DOI] [PubMed]
  3. Burke, P. J., McMillin, D. R. & Robinson, W. R. (1980). Inorg. Chem. 19, 1211–1214.
  4. Colman, P. M., Freeman, H. C., Guss, J. M., Murata, M., Norris, V. A., Ramshaw, J. A. M. & Venkatappa, M. P. (1978). Nature, 272, 319–324.
  5. Cui, G. H., Li, J. R., Gao, D. & Ng, S. W. (2005). Acta Cryst. E61, m72–m73.
  6. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  7. Gautier, R., Norquist, A. J. & Poeppelmeier, K. R. (2012). Cryst. Growth Des. 12, 6267–6271.
  8. Halasyamani, P. S. (2004). Chem. Mater. 16, 3586–3592.
  9. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  10. Harrison, W. T. A., Nenoff, T. M., Gier, T. E. & Stucky, G. D. (1993). Inorg. Chem. 32, 2437–2441.
  11. Itoh, S., Kishikawa, N., Suzuki, T. & Takagi, H. D. (2005). Dalton Trans. pp. 1066–1078. [DOI] [PubMed]
  12. Kunz, M. & Brown, I. D. (1995). J. Solid State Chem. 115, 395–406.
  13. Li, J., Yang, X., Yu, Z., Gurzadyan, G. G., Cheng, M., Zhang, F., Cong, J., Wang, W., Wang, H., Li, X., Kloo, L., Wang, M. & Sun, L. (2017). RSC Adv. 7, 4611–4615.
  14. McKenzie, E. D. (1971). Coord. Chem. Rev. 6, 187–216.
  15. Mei, C., Wang, J. & Shan, W. (2011). Jiegou Huaxue, 30, 1194.
  16. Nisbet, M. L., Pendleton, I. M., Nolis, G. M., Griffith, K. J., Schrier, J., Cabana, J., Norquist, A. J. & Poeppelmeier, K. R. (2020). J. Am. Chem. Soc. 142, 7555–7566. [DOI] [PubMed]
  17. Nisbet, M. L., Wang, Y. & Poeppelmeier, K. R. (2021). Cryst. Growth Des. 21, 552–562.
  18. Okuniewski, A., Rosiak, D., Chojnacki, J. & Becker, B. (2015). Polyhedron, 90, 47–57.
  19. Rigaku OD (2020). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
  20. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  21. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  22. Vallee, B. L. & Williams, R. (1968). PNAS USA 59, 498–505. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, II. DOI: 10.1107/S2056989021007295/hb7977sup1.cif

e-77-00819-sup1.cif (1.7MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989021007295/hb7977Isup2.hkl

e-77-00819-Isup2.hkl (451.1KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989021007295/hb7977IIsup3.hkl

e-77-00819-IIsup3.hkl (635.4KB, hkl)

CCDC references: 2096336, 2096335

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES