Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2021 Jul 30;77(Pt 8):853–856. doi: 10.1107/S205698902100760X

Synthesis and crystallographic studies of 2-(di­phenyl­phosphino­thio­yl)-2-(3-oxobut-1-en-yl)ferrocene

Uchchhal Bandyopadhyay a, Basker Sundararaju b, Rinaldo Poli a, Eric Manoury a, Jean-Claude Daran a,*
PMCID: PMC8340968  PMID: 34422314

The title mol­ecule is built up from a ferrocene unit disubstituted by an S-protected di­phenyl­phosphine group and by a methyl­vinyl­ketone chain. In the crystal, weak C—H⋯O and C—H⋯S inter­actions build a two-dimensional network.

Keywords: crystal structure, organometallic chemistry, 2-(di­phenyl­phosphino­thio­yl)ferrocene chemistry, aldol/elimination reaction

Abstract

As a follow-up to our research on the chemistry of disubstituted ferrocene derivatives, the synthesis and the structure of the title compound, 2-(di­phenyl­phosphino­thio­yl)-2-(3-oxobut-1-en-yl)ferrocene, [Fe(C5H5)(C21H18OPS)], are described. The mol­ecule is built up from a ferrocene unit disubstituted by an S-protected di­phenyl­phosphine group and by a methyl­vinyl­ketone chain. The crystal structure features weak C—H⋯O and C—H⋯S inter­actions, which build a two-dimensional network. This structure is compared to that of the related disubstituted di­phenyl­phosphino ferrocene.

Chemical context  

Over the last few years, our team has developed several bidentate phosphine-containing planar chiral ferrocene ligands and tested them in various asymmetric catalytic reactions (Manoury & Poli, 2011). In particular, some P,O ligands were synthesized from 2-(di­phenyl­phosphino­thio­yl)ferro­cenecarboxaldehyde (Mateus et al., 2006). This compound can be easily obtained as a racemic mixture or as each pure enanti­omer and bears a versatile aldehyde function, which can be used to obtain more complex mol­ecules. In this context, we were delighted to report a new and efficient aldol/elimination reaction of the aldehyde group to yield the corresponding ene-one under mild conditions (see Scheme) using a weak base (pKa of 2-picolyl amine is 8.60; Miletti et al., 2010). graphic file with name e-77-00853-scheme1.jpg

Similar compounds have been synthesized but using the Wittig reaction, which requires the synthesis of a specific phospho­nium reagent and the use of a strong base, such as n-butyl­lithium (Ye et al., 2017; Schaarschmidt et al., 2014; Štěpnička et al. 2008) or sodium hydride (Stepnicka et al., 2008). Indeed, the aldol/elimination sequence has been used to functionalize ferrocenecarboxaldehyde, which is a much less crowded analog of 2-(di­phenyl­phosphino­thio­yl)ferro­cene­carboxaldehyde but with a much stronger base such as NaOH, KOH or tBuOK (see, for instance, Achelle et al., 2012; Romanov et al., 2015; Li et al., 2020; Wieczorek et al., 2016).

Structural commentary  

The mol­ecule is built up from a ferrocene unit disubstituted by an S-protected di­phenyl­phosphine group and by a methyl­vinyl­ketone chain (Fig. 1). As is usually observed for thio­phenyl­phosphine ferrocenyl derivatives, the P atom is roughly in the plane of the Cp ring, deviating from the mean plane by −0.034 (5) Å, whereas the S atom is offset from this plane by 1.159 (6) Å. The two Cp rings have a staggered conformation with a twist angle of ca 37.1°. The O atom is trans to the ferrocene unit with respect to the C=C double bond. The torsion angle of the C2—C21—C22—C23 chain is 172.4 (4)° and the plane containing the double bond is twisted with respect to the Cp ring by 22.8 (2)°. This mol­ecule has a planar chirality related to the occurrence of two different substituents on the Cp ring; however, as the space group is centrosymmetric, the two enanti­omers R/S are present in equal numbers within the crystal. Two intra­molecular C—H⋯S inter­actions occur (Table 1).

Figure 1.

Figure 1

Mol­ecular structure of the title compound with the atom-labeling scheme. Ellipsoids are drawn at the 50% probability level and the H atoms are represented as small circle of arbitrary radii.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C22—H22⋯O1i 0.95 2.63 3.548 (4) 164
C112—H112⋯S1ii 0.95 2.83 3.576 (3) 136
C116—H116⋯S1 0.95 2.89 3.374 (3) 113
C21—H21⋯S1 0.95 2.87 3.604 (3) 135

Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) x-1, y, z.

Supra­molecular features  

The packing of the structure is stabilized by weak C—H⋯O and C—H⋯S inter­actions (Table 1). The C—H⋯O inter­action results in the formation of a pseudo-dimer through an Inline graphic (8) graph-set motif (Etter et al., 1990; Bernstein et al., 1995) (Fig. 2). The C—H⋯S inter­cations build up a chain parallel to the b axis and these chains are further associated by the C—H⋯O inter­actions of the pseudo-dimer, building a ribbon parallel to the (0 Inline graphic 1) plane (Fig. 3).

Figure 2.

Figure 2

Partial packing view showing the formation of the Inline graphic (8) pseudo-ring arranged around the (1/2, 1, 1/2) inversion center.

Figure 3.

Figure 3

Partial packing view showing the formation of the ribbon parallel to the (0 Inline graphic 1) plane.

Database survey  

A search of the Cambridge Structural Database (CSD version 5.42, update 2020.3; Groom et al., 2016) does not reveal any structures with ferrocenyl disubstituted by a thiodi­phenyl­phosphine and a vinyl; however, a search using a fragment containing a ferrocenyl disubsituted by an unprotected phosphine and a vinyl substituent (Fig. 4) reveals 15 hits of which seven can be compared with the title compound, having only different substituents R 1 and R 2 (Fig. 4). A comparison of C—C and C—P distances and dihedral angles between the Cp ring and vinyl mean plane are shown in Fig. 5. Clearly the substit­uent on the phosphine has some influence on the C—P bond lengths, which range from 1.795 (3) Å for the title compound to 1.827 Å for the [η5-1-di­cyclo­hexyl­phosphino-2-(2-phenyl­ethen­yl)cyclo­penta­dien­yl](η5-cyclo­penta­dien­yl)iron com­pound (Schaarschmidt et al., 2014) in which the phosphine bears two cyclo­hexyl substituents that are rather bulky. The occurrence of the S atom attached to the phosphine in the title compound may explain why the shortest value observed for the title compound. There is no significant difference in the C—C bonds within the vinyl moiety, showing that these values are not affected by the substituent, whereas the discrepancy observed for the dihedral angles between the vinyl unit and the Cp rings (6.4 to 22.8°) is related to the nature of the R 1 and R 2 substituents on the vinyl unit. The largest value of 22.8°, observed for the title compound, is related to the weak C21—H21⋯S1 inter­action.

Figure 4.

Figure 4

The model used for the CCDC search.

Figure 5.

Figure 5

Comparison of bond distances (Å) and dihedral angles between the substituted Cp ring (Cp1) and the vinyl mean plane (°) for closely related compounds (CIVHAR: Stepnicka et al., 2008; BETBOU: Kehr et al., 2017; KOB***: Schaarschmidt et al., 2014; WIXYAD: Iftime et al., 2000).

Synthesis and crystallization  

To a solution of 2-(di­phenyl­phosphino­thio­yl)ferrocene­carboxaldehyde (220 mg, 0.51 mmol) in acetone (40 mL) was added 2-picolyl­amine (0.2 mL, 1.53 mmol). The reaction mixture was refluxed for 24–36h with TLC monitoring of the consumption of aldehyde. After complete consumption, the reaction mixture was evaporated in vacuo and extracted with di­chloro­methane and washed with three portions of water. The combined organic layers were dried over Na2SO4, filtered and evaporated to dryness. The crude material was purified by silica gel column chromatography with a hexa­ne–ether mixture (1/1, v/v) to obtain the product as a red solid (0.13 g, 55%). Monocrystals suitable for X-ray diffraction analysis were obtained by slow diffusion of pentane into a di­chloro­methane solution of 4-(2-thiodi­phenyl­phosphinoferrocen­yl)-but-3-ene-one.

1H NMR (ppm, CD2Cl2): δ 8.46 (1H, d, J = 16.3Hz, vin­yl); 7.90–7.80 (m, 1H, Ph); 7.65–7.15 (9H, m, Ph); 6.28 (1H, d, J = 16.3Hz, vin­yl); 5.01 (1H, m, subst. Cp); 4.65 (1H, m, subst. Cp); 4.39 (5H, s, subst. Cp); 4.07 (1H, m, subst. Cp); 3.87 (3H, s, CH3).

13C NMR (ppm, CD2Cl2): δ 198. 16 (s, C=O); 143.46 (s, vin­yl); 134.93 (δ, J CP = 87.4Hz, quat Ph); 133.01 (δ, J CP = 86.6Hz, quat Ph); 132.03 (δ, J CP = 11.0Hz, CH Ph); 131.69 (δ, J CP = 10.7Hz, CH Ph); 131.54 (δ, J CP = 3.0Hz, CH Ph para); 131.39 (δ, J CP = 3.0Hz, CH Ph para); 128.40 (δ, J CP = 12.5Hz, CH Ph); 128.19 (δ, J CP = 12.4Hz, CH Ph); 126.89 (s, vin­yl); 83.06 (δ, J CP = 10.7Hz, quat Cp); 77.44 (δ, J CP = 11.9Hz, subst Cp); 77.00 (δ, J CP = 93.2Hz, quat Cp); 71.87 (s, Cp); 71.85 (δ, J CP = 10.3Hz, subst Cp); 69.90 (δ, J CP = 8.4Hz, subst Cp); 25.87 (s, CH3).

31P NMR (δ, ppm, CD2Cl2): δ 41.01.

HRMS (DCI, CH4): 471.0638 (100%, calculated for C26H24FeOPS [M] 471.0635).

M.p.: 441 K (dec).

IR (ATR mode, diamond crystal): νmax(solid)/cm−1: 1630 (s), 1607 (s), 1677 (w), 1364 (m), 1335 (m), 1264 (s), 1226 (m), 1165 (s), 1099 (s), 1055 (m), 987 (s), 863 (w), 832 (m), 822 (s), 760 (s), 7478 (m), 712 (s), 698 (s), 690 (s), 660 (s), 640 (s), 614 (sm), 583 (m), 534 (s).

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. All H atoms attached to C atoms were fixed geometrically and treated as riding with C—H = 0.95 Å (aromatic) or 0.98 Å (meth­yl) with U iso(H) = 1.2U eq(CH aromatic) or U iso(H) = 1.5U eq(CH3). In the final difference-Fourier map, there is a large residual density, 1.43 e Å−3 in the vicinity (1.20 Å) of the H24A atom of the terminal methyl group; it is roughly located in the (100) plane; no chemically logical explanation could be found to explain this residual density.

Table 2. Experimental details.

Crystal data
Chemical formula [Fe(C5H5)(C21H18OPS)]
M r 470.32
Crystal system, space group Monoclinic, P21/c
Temperature (K) 110
a, b, c (Å) 7.3643 (9), 17.909 (2), 16.710 (2)
β (°) 95.230 (4)
V3) 2194.8 (5)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.87
Crystal size (mm) 0.1 × 0.07 × 0.01
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015)
T min, T max 0.673, 0.730
No. of measured, independent and observed [I > 2σ(I)] reflections 43009, 5657, 3907
R int 0.113
(sin θ/λ)max−1) 0.688
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.053, 0.144, 1.03
No. of reflections 5657
No. of parameters 272
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.43, −0.50

Computer programs: APEX2 and SAINT (Bruker, 2015), SHELXT (Sheldrick, 2015a ), SHELXL2018 (Sheldrick, 2015b ), ORTEPIII (Burnett & Johnson, 1996); ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2020).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S205698902100760X/zl5019sup1.cif

e-77-00853-sup1.cif (1.2MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S205698902100760X/zl5019Isup2.hkl

e-77-00853-Isup2.hkl (310.1KB, hkl)

CCDC reference: 2099273

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Crystal data

[Fe(C5H5)(C21H18OPS)] F(000) = 976
Mr = 470.32 Dx = 1.425 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 7.3643 (9) Å Cell parameters from 4518 reflections
b = 17.909 (2) Å θ = 2.7–24.2°
c = 16.710 (2) Å µ = 0.87 mm1
β = 95.230 (4)° T = 110 K
V = 2194.8 (5) Å3 Platelet, orange yellow
Z = 4 0.1 × 0.07 × 0.01 mm

Data collection

Bruker APEXII CCD diffractometer 5657 independent reflections
Radiation source: micro-focus sealed tube 3907 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.113
φ and ω scans θmax = 29.3°, θmin = 3.7°
Absorption correction: multi-scan (SADABS; Krause et al., 2015) h = −10→10
Tmin = 0.673, Tmax = 0.730 k = −24→24
43009 measured reflections l = −22→20

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.144 H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0664P)2 + 1.8414P] where P = (Fo2 + 2Fc2)/3
5657 reflections (Δ/σ)max = 0.001
272 parameters Δρmax = 1.43 e Å3
0 restraints Δρmin = −0.50 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Fe1 0.39674 (5) 0.81999 (2) 0.74273 (2) 0.01578 (14)
S1 0.61309 (10) 0.63480 (5) 0.64301 (5) 0.0248 (2)
P1 0.35129 (10) 0.65181 (4) 0.64545 (5) 0.01527 (18)
O1 0.7131 (3) 0.95064 (13) 0.44772 (14) 0.0292 (5)
C1 0.2847 (4) 0.74695 (16) 0.65962 (17) 0.0147 (6)
C2 0.3485 (4) 0.81389 (16) 0.62101 (17) 0.0151 (6)
C3 0.2527 (4) 0.87556 (17) 0.65055 (18) 0.0183 (6)
H3 0.267892 0.926260 0.635831 0.022*
C4 0.1317 (4) 0.84957 (18) 0.70518 (19) 0.0196 (6)
H4 0.051683 0.879705 0.732889 0.024*
C5 0.1495 (4) 0.77100 (17) 0.71171 (18) 0.0181 (6)
H5 0.084008 0.739506 0.744651 0.022*
C6 0.6382 (4) 0.8733 (2) 0.7754 (2) 0.0296 (8)
H6 0.699427 0.906469 0.742541 0.036*
C7 0.6625 (5) 0.7957 (2) 0.7792 (2) 0.0344 (9)
H7 0.742647 0.767350 0.749659 0.041*
C8 0.5462 (5) 0.7670 (2) 0.8349 (2) 0.0336 (9)
H8 0.534168 0.716032 0.849153 0.040*
C9 0.4507 (5) 0.8281 (2) 0.86554 (19) 0.0287 (8)
H9 0.363864 0.825418 0.904144 0.034*
C10 0.5090 (4) 0.89381 (19) 0.8279 (2) 0.0259 (7)
H10 0.467609 0.943108 0.836689 0.031*
C21 0.4977 (4) 0.81952 (17) 0.56951 (17) 0.0182 (6)
H21 0.573671 0.777207 0.564631 0.022*
C22 0.5325 (4) 0.88155 (17) 0.52879 (17) 0.0192 (6)
H22 0.446573 0.921101 0.528844 0.023*
C23 0.6929 (4) 0.89337 (17) 0.48403 (18) 0.0202 (6)
C24 0.8396 (5) 0.8344 (2) 0.4856 (2) 0.0289 (8)
H24A 0.918833 0.844327 0.442775 0.043*
H24B 0.783093 0.785139 0.477308 0.043*
H24C 0.912153 0.835465 0.537758 0.043*
C111 0.2541 (4) 0.60087 (16) 0.72528 (17) 0.0157 (6)
C112 0.0667 (4) 0.58941 (18) 0.72292 (18) 0.0207 (7)
H112 −0.010291 0.605709 0.677569 0.025*
C113 −0.0085 (4) 0.55449 (18) 0.78603 (19) 0.0246 (7)
H113 −0.136781 0.547765 0.784222 0.029*
C114 0.1032 (5) 0.52926 (19) 0.8520 (2) 0.0265 (7)
H114 0.051826 0.505580 0.895551 0.032*
C115 0.2907 (5) 0.53900 (19) 0.8537 (2) 0.0267 (7)
H115 0.367996 0.520842 0.898038 0.032*
C116 0.3662 (4) 0.57508 (17) 0.79095 (18) 0.0202 (6)
H116 0.494365 0.582127 0.792935 0.024*
C121 0.2198 (4) 0.62196 (17) 0.55413 (17) 0.0172 (6)
C122 0.0639 (5) 0.65958 (19) 0.5239 (2) 0.0258 (7)
H122 0.025180 0.702742 0.550738 0.031*
C123 −0.0366 (5) 0.63428 (19) 0.4543 (2) 0.0294 (8)
H123 −0.143308 0.660150 0.433628 0.035*
C124 0.0204 (5) 0.57107 (19) 0.41551 (19) 0.0257 (7)
H124 −0.046804 0.553753 0.367907 0.031*
C125 0.1738 (5) 0.53371 (18) 0.4459 (2) 0.0253 (7)
H125 0.211159 0.490163 0.419431 0.030*
C126 0.2746 (4) 0.55824 (17) 0.51434 (19) 0.0211 (7)
H126 0.381137 0.531932 0.534462 0.025*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Fe1 0.0149 (2) 0.0185 (2) 0.0138 (2) 0.00177 (17) 0.00064 (16) −0.00037 (17)
S1 0.0137 (4) 0.0228 (4) 0.0384 (5) 0.0056 (3) 0.0057 (3) 0.0026 (3)
P1 0.0126 (4) 0.0148 (4) 0.0185 (4) 0.0030 (3) 0.0017 (3) 0.0020 (3)
O1 0.0346 (13) 0.0265 (13) 0.0273 (13) −0.0097 (11) 0.0069 (10) 0.0070 (10)
C1 0.0107 (13) 0.0166 (15) 0.0165 (14) 0.0022 (11) 0.0000 (11) 0.0008 (11)
C2 0.0122 (13) 0.0180 (15) 0.0145 (14) 0.0019 (11) −0.0022 (11) 0.0008 (11)
C3 0.0205 (15) 0.0158 (15) 0.0179 (15) 0.0014 (12) −0.0017 (12) 0.0000 (12)
C4 0.0136 (14) 0.0210 (16) 0.0243 (16) 0.0060 (12) 0.0023 (12) −0.0021 (13)
C5 0.0092 (13) 0.0238 (17) 0.0217 (15) 0.0022 (12) 0.0033 (11) 0.0012 (12)
C6 0.0207 (17) 0.043 (2) 0.0235 (17) −0.0084 (15) −0.0076 (13) 0.0031 (15)
C7 0.0179 (16) 0.055 (3) 0.0286 (19) 0.0117 (16) −0.0066 (14) −0.0145 (17)
C8 0.043 (2) 0.0265 (19) 0.0271 (18) −0.0002 (16) −0.0214 (16) 0.0042 (15)
C9 0.0310 (18) 0.040 (2) 0.0150 (16) −0.0072 (16) 0.0017 (13) −0.0031 (14)
C10 0.0279 (17) 0.0236 (18) 0.0247 (17) −0.0024 (14) −0.0059 (13) −0.0083 (14)
C21 0.0204 (15) 0.0175 (15) 0.0164 (15) 0.0020 (12) 0.0003 (12) −0.0009 (12)
C22 0.0209 (15) 0.0192 (16) 0.0174 (15) 0.0015 (12) 0.0014 (12) −0.0006 (12)
C23 0.0218 (16) 0.0196 (16) 0.0188 (15) 0.0001 (13) −0.0008 (12) −0.0028 (12)
C24 0.0243 (17) 0.030 (2) 0.0331 (19) 0.0044 (14) 0.0069 (14) 0.0034 (15)
C111 0.0158 (14) 0.0145 (14) 0.0168 (14) 0.0003 (11) 0.0008 (11) 0.0007 (11)
C112 0.0160 (14) 0.0256 (17) 0.0196 (15) −0.0015 (13) −0.0038 (12) 0.0041 (13)
C113 0.0203 (16) 0.0262 (18) 0.0273 (18) −0.0057 (13) 0.0024 (13) 0.0008 (14)
C114 0.0316 (18) 0.0254 (18) 0.0229 (17) −0.0034 (14) 0.0046 (14) 0.0056 (14)
C115 0.0310 (18) 0.0242 (18) 0.0237 (17) 0.0003 (14) −0.0049 (14) 0.0095 (14)
C116 0.0187 (15) 0.0168 (16) 0.0241 (16) 0.0009 (12) −0.0030 (12) 0.0018 (12)
C121 0.0188 (14) 0.0190 (15) 0.0143 (14) 0.0019 (12) 0.0037 (11) 0.0008 (12)
C122 0.0301 (18) 0.0209 (17) 0.0254 (17) 0.0101 (14) −0.0032 (14) −0.0046 (13)
C123 0.036 (2) 0.0261 (18) 0.0241 (17) 0.0089 (15) −0.0073 (14) −0.0014 (14)
C124 0.0356 (19) 0.0241 (17) 0.0172 (16) −0.0054 (15) 0.0020 (13) −0.0005 (13)
C125 0.0314 (18) 0.0191 (16) 0.0271 (18) −0.0006 (14) 0.0112 (14) −0.0053 (13)
C126 0.0215 (15) 0.0183 (16) 0.0245 (16) 0.0023 (13) 0.0072 (12) −0.0015 (13)

Geometric parameters (Å, º)

Fe1—C1 2.028 (3) C9—H9 0.9500
Fe1—C2 2.035 (3) C10—H10 0.9500
Fe1—C7 2.043 (3) C21—C22 1.340 (4)
Fe1—C8 2.043 (3) C21—H21 0.9500
Fe1—C5 2.045 (3) C22—C23 1.470 (4)
Fe1—C3 2.047 (3) C22—H22 0.9500
Fe1—C6 2.048 (3) C23—C24 1.509 (4)
Fe1—C10 2.059 (3) C24—H24A 0.9800
Fe1—C9 2.060 (3) C24—H24B 0.9800
Fe1—C4 2.064 (3) C24—H24C 0.9800
S1—P1 1.9560 (11) C111—C116 1.391 (4)
P1—C1 1.795 (3) C111—C112 1.392 (4)
P1—C121 1.812 (3) C112—C113 1.384 (4)
P1—C111 1.816 (3) C112—H112 0.9500
O1—C23 1.208 (4) C113—C114 1.390 (5)
C1—C5 1.446 (4) C113—H113 0.9500
C1—C2 1.459 (4) C114—C115 1.390 (5)
C2—C3 1.423 (4) C114—H114 0.9500
C2—C21 1.459 (4) C115—C116 1.389 (4)
C3—C4 1.412 (4) C115—H115 0.9500
C3—H3 0.9500 C116—H116 0.9500
C4—C5 1.417 (4) C121—C122 1.386 (4)
C4—H4 0.9500 C121—C126 1.399 (4)
C5—H5 0.9500 C122—C123 1.396 (4)
C6—C10 1.401 (5) C122—H122 0.9500
C6—C7 1.401 (5) C123—C124 1.389 (5)
C6—H6 0.9500 C123—H123 0.9500
C7—C8 1.417 (6) C124—C125 1.370 (5)
C7—H7 0.9500 C124—H124 0.9500
C8—C9 1.421 (5) C125—C126 1.377 (5)
C8—H8 0.9500 C125—H125 0.9500
C9—C10 1.420 (5) C126—H126 0.9500
C1—Fe1—C2 42.10 (11) C10—C6—C7 108.8 (3)
C1—Fe1—C7 112.69 (13) C10—C6—Fe1 70.49 (19)
C2—Fe1—C7 111.19 (13) C7—C6—Fe1 69.8 (2)
C1—Fe1—C8 111.98 (13) C10—C6—H6 125.6
C2—Fe1—C8 139.56 (14) C7—C6—H6 125.6
C7—Fe1—C8 40.60 (16) Fe1—C6—H6 125.7
C1—Fe1—C5 41.60 (11) C6—C7—C8 107.9 (3)
C2—Fe1—C5 69.73 (12) C6—C7—Fe1 70.16 (19)
C7—Fe1—C5 142.26 (15) C8—C7—Fe1 69.70 (19)
C8—Fe1—C5 113.44 (14) C6—C7—H7 126.1
C1—Fe1—C3 69.37 (12) C8—C7—H7 126.1
C2—Fe1—C3 40.80 (11) Fe1—C7—H7 125.7
C7—Fe1—C3 138.11 (14) C7—C8—C9 107.9 (3)
C8—Fe1—C3 178.29 (14) C7—C8—Fe1 69.70 (19)
C5—Fe1—C3 68.27 (12) C9—C8—Fe1 70.38 (19)
C1—Fe1—C6 140.55 (13) C7—C8—H8 126.1
C2—Fe1—C6 111.05 (13) C9—C8—H8 126.1
C7—Fe1—C6 40.06 (15) Fe1—C8—H8 125.4
C8—Fe1—C6 67.70 (15) C10—C9—C8 107.4 (3)
C5—Fe1—C6 177.42 (14) C10—C9—Fe1 69.82 (18)
C3—Fe1—C6 110.59 (14) C8—C9—Fe1 69.10 (18)
C1—Fe1—C10 179.48 (13) C10—C9—H9 126.3
C2—Fe1—C10 138.35 (13) C8—C9—H9 126.3
C7—Fe1—C10 67.51 (14) Fe1—C9—H9 126.3
C8—Fe1—C10 67.83 (14) C6—C10—C9 108.1 (3)
C5—Fe1—C10 137.97 (13) C6—C10—Fe1 69.62 (19)
C3—Fe1—C10 110.83 (13) C9—C10—Fe1 69.85 (18)
C6—Fe1—C10 39.90 (14) C6—C10—H10 126.0
C1—Fe1—C9 139.22 (13) C9—C10—H10 126.0
C2—Fe1—C9 178.56 (13) Fe1—C10—H10 126.1
C7—Fe1—C9 68.00 (14) C22—C21—C2 123.1 (3)
C8—Fe1—C9 40.52 (15) C22—C21—H21 118.4
C5—Fe1—C9 111.67 (13) C2—C21—H21 118.4
C3—Fe1—C9 139.05 (13) C21—C22—C23 125.3 (3)
C6—Fe1—C9 67.54 (14) C21—C22—H22 117.3
C10—Fe1—C9 40.33 (14) C23—C22—H22 117.3
C1—Fe1—C4 69.08 (12) O1—C23—C22 121.3 (3)
C2—Fe1—C4 68.66 (12) O1—C23—C24 118.8 (3)
C7—Fe1—C4 177.37 (15) C22—C23—C24 119.8 (3)
C8—Fe1—C4 141.06 (15) C23—C24—H24A 109.5
C5—Fe1—C4 40.33 (12) C23—C24—H24B 109.5
C3—Fe1—C4 40.17 (12) H24A—C24—H24B 109.5
C6—Fe1—C4 137.36 (14) C23—C24—H24C 109.5
C10—Fe1—C4 110.75 (13) H24A—C24—H24C 109.5
C9—Fe1—C4 112.09 (13) H24B—C24—H24C 109.5
C1—P1—C121 105.06 (14) C116—C111—C112 119.3 (3)
C1—P1—C111 104.43 (13) C116—C111—P1 120.1 (2)
C121—P1—C111 104.73 (14) C112—C111—P1 120.6 (2)
C1—P1—S1 115.62 (10) C113—C112—C111 120.6 (3)
C121—P1—S1 112.86 (10) C113—C112—H112 119.7
C111—P1—S1 113.10 (10) C111—C112—H112 119.7
C5—C1—C2 106.8 (2) C112—C113—C114 120.2 (3)
C5—C1—P1 125.0 (2) C112—C113—H113 119.9
C2—C1—P1 128.2 (2) C114—C113—H113 119.9
C5—C1—Fe1 69.82 (17) C113—C114—C115 119.4 (3)
C2—C1—Fe1 69.23 (16) C113—C114—H114 120.3
P1—C1—Fe1 127.14 (15) C115—C114—H114 120.3
C3—C2—C21 125.1 (3) C116—C115—C114 120.6 (3)
C3—C2—C1 107.1 (2) C116—C115—H115 119.7
C21—C2—C1 127.4 (3) C114—C115—H115 119.7
C3—C2—Fe1 70.03 (16) C115—C116—C111 120.0 (3)
C21—C2—Fe1 120.9 (2) C115—C116—H116 120.0
C1—C2—Fe1 68.67 (16) C111—C116—H116 120.0
C4—C3—C2 109.3 (3) C122—C121—C126 119.3 (3)
C4—C3—Fe1 70.58 (17) C122—C121—P1 121.6 (2)
C2—C3—Fe1 69.17 (16) C126—C121—P1 119.1 (2)
C4—C3—H3 125.3 C121—C122—C123 120.3 (3)
C2—C3—H3 125.3 C121—C122—H122 119.9
Fe1—C3—H3 126.5 C123—C122—H122 119.9
C3—C4—C5 108.5 (3) C124—C123—C122 119.6 (3)
C3—C4—Fe1 69.25 (17) C124—C123—H123 120.2
C5—C4—Fe1 69.09 (16) C122—C123—H123 120.2
C3—C4—H4 125.7 C125—C124—C123 119.9 (3)
C5—C4—H4 125.7 C125—C124—H124 120.0
Fe1—C4—H4 127.5 C123—C124—H124 120.0
C4—C5—C1 108.3 (3) C124—C125—C126 121.1 (3)
C4—C5—Fe1 70.58 (17) C124—C125—H125 119.5
C1—C5—Fe1 68.58 (16) C126—C125—H125 119.5
C4—C5—H5 125.9 C125—C126—C121 119.9 (3)
C1—C5—H5 125.9 C125—C126—H126 120.1
Fe1—C5—H5 126.5 C121—C126—H126 120.1

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C22—H22···O1i 0.95 2.63 3.548 (4) 164
C112—H112···S1ii 0.95 2.83 3.576 (3) 136
C116—H116···S1 0.95 2.89 3.374 (3) 113
C21—H21···S1 0.95 2.87 3.604 (3) 135

Symmetry codes: (i) −x+1, −y+2, −z+1; (ii) x−1, y, z.

Funding Statement

This work was funded by Indo-French Centre for the Promotion of Advanced Research grant 5805.

References

  1. Achelle, S., Barsella, A., Baudequin, C., Caro, B. & Robin-le Guen, F. (2012). J. Org. Chem. 77, 4087–4096. [DOI] [PubMed]
  2. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  3. Bruker (2015). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
  5. Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. [DOI] [PubMed]
  6. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  7. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  8. Iftime, G., Balavoine, G. G. A., Daran, J.-C., Lacroix, P. G. & Manoury, E. (2000). C. R. Acad. Sci. Ser. IIc Chim. 3, 139–146.
  9. Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. [DOI] [PMC free article] [PubMed]
  10. Li, Y., Tang, B., Dong, S., Gao, W., Jiang, W. & Chen, Y. (2020). Chemistry Select, 5, 2746–2752.
  11. Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. [DOI] [PMC free article] [PubMed]
  12. Manoury, E. & Poli, R. (2011). Phosphine-Containing Planar Chiral Ferrocenes: Synthesis, Coordination Chemistry and Applications to Asymmetric Catalysis. In Catalysis by Metal Complexes (CMCO), Vol. 37 (Phosphorus Chemistry: Catalysis and Material Science Applications), edited by M. Peruzzini & L. Gonsalvi, pp. 121–149. Germany: Springer Verlag
  13. Mateus, N., Routaboul, L., Daran, J.-C. & Manoury, E. (2006). J. Organomet. Chem. 691, 2297–2310.
  14. Milletti, F., Storchi, L., Goracci, L., Bendels, S., Wagner, B., Kansy, M. & Cruciani, G. (2010). Eur. J. Med. Chem. 45, 4270–4279. [DOI] [PubMed]
  15. Romanov, A. S., Shapovalov, A. V., Angles, G. F., Timofeeva, T. V., Corsini, M., Fusi, S. & Fabrizi de Biani, F. (2015). CrystEngComm, 17, 7564–7573.
  16. Schaarschmidt, D., Hildebrandt, A., Bock, S. & Lang, H. (2014). J. Organomet. Chem. 751, 742–753.
  17. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  18. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  19. Štěpnička, P., Lamač, M. & Císařová, I. (2008). J. Organomet. Chem. 693, 446–456.
  20. Wieczorek, A., Błauż, A., Zakrzewski, J., Rychlik, B. & Plażuk, D. (2016). ACS Med. Chem. Lett. 7, 612–617. [DOI] [PMC free article] [PubMed]
  21. Ye, K.-Y., Wang, X., Daniliuc, C. G., Kehr, G. & Erker, G. (2017). Eur. J. Inorg. Chem. pp. 368–371.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S205698902100760X/zl5019sup1.cif

e-77-00853-sup1.cif (1.2MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S205698902100760X/zl5019Isup2.hkl

e-77-00853-Isup2.hkl (310.1KB, hkl)

CCDC reference: 2099273

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES