Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2021 Jul 16;77(Pt 8):809–813. doi: 10.1107/S2056989021007167

Crystal structures of two polymorphs of tixocortol pivalate

Yoann Rousselin a, Sylvie Yolka b, Alexandre Clavel b,*
PMCID: PMC8340970  PMID: 34422306

Two ortho­rhom­bic polymorphs of the anti-inflammatory corticosteroid tixocortol pivalate have been identified. The two structures are characterized by layers of mol­ecules connected by strong O—H⋯O hydrogen bonds.

Keywords: tixocortol, pivalone, crystal structure, polymorphs

Abstract

Two polymorphs, (I) and (II), of (S)-{2-[(8S,9S,10R,11S,13S,14S,17R)-11,17-dihy­droxy-10,13-dimethyl-3-oxo-2,6,7,8,9,11,12,14,15,16-deca­hydro-1H-cyclo­penta­[a]phenanthren-17-yl]-2-oxoeth­yl} 2,2-di­methyl­propane­thio­ate, C26H38O5S, have been identified. They are ortho­rhom­bic, non-centrosymmetric (P212121). The structures display layers of mol­ecules conected via O—H⋯O hydrogen bonds along the b-axis direction in polymorph (I) and along the c-axis direction in polymorph (II). The structure of (II) exhibits disorder of the main mol­ecule.

Chemical context  

Tixocortol pivalate, also named Pivalone®, is a corticosteroid with local and topical anti-inflammatory activity (Davies et al., 1981; Jezequel et al., 1979; Liddle et al., 1960; Maza­uric & Alligier, 1978; Nugent et al., 1963; Uphill, 1981) equal to that of hydro­cortisone. As a corticosteroid, Tixocortol pivalate is used topically to relieve contact allergies and is also frequently recommended as a screening test for class A corticosteroids (Bircher et al., 1995; Burden & Beck, 1992; Lauerma, 1991; Bouley, 2013). Surprisingly, the structure of tixocortol pivalate has never been determined. It was therefore of inter­est to obtain two polymorphs, (I) and (II), of the title compound prepared by total enantio-selective synthesis. graphic file with name e-77-00809-scheme1.jpg

Structural commentary  

The presence of two polymorphs was confirmed by powder X-ray diffraction (PXRD) and the structures were determined by single crystal X-ray diffraction (SCXRD). The absolute configuration of its seven asymmetric carbons was established. Both polymorphs of the title compound consist of a (S)-{2-[(8S,9S,10R,11S,13S,14S,17R)-11,17-dihy­droxy-10,13-dimeth­yl-3-oxo-2,6,7,8,9,11,12,14,15,16-deca­hydro-1H-cyclo­penta­[a]phenanthren-17-yl]-2-oxoeth­yl} 2,2-di­methyl­propane­thio­ate mol­ecule in the asymmetric unit (Figs. 1 and 2). The general shape of the mol­ecule is strongly influenced by the conformation of one five-membered ring and three six-membered rings. In both polymorphs (Table 1), the five-membered ring (C8–C12) adopts an envelope form, both central six-membered rings (C9/C14–C17/C10 and C16/C18–C21/C17) adopt chair conformations and the six-membered ring with the double bond (C18/C19/C23–C26) adopts a half-chair conformation (Cremer & Pople, 1975). The superposition of the mol­ecules, with the Automatic Mol­ecule Overlay feature of Mercury (Macrae et al., 2020), results in an r.m.s.d. of 0.829 and a maximum deviation of 2.545 Å if no flexibility is allowed and in values of 0.336 and 0.856, respectively, if flexibility is allowed. The main difference is on the dimethyl-sulfanyl-propanone group whose position is imposed by crystal packing.

Figure 1.

Figure 1

ORTEP view of polymorph (I). Displacement ellipsoids are drawn at the 50% probability level.

Figure 2.

Figure 2

ORTEP view of polymorph (II). Displacement ellipsoids are drawn at the 30% probability level. The minor component of the disorder is omitted for clarity.

Table 1. Ring puckering parameters.

Compound PL358 (I) SY20C174 (II)
C8–C12 Q2 = 0.4847 (18) Å Q2 = 0.441 (5) Å
Envelope conformation φ2 = 39.4 (2)° φ2 = 41.4 (6)°
C9/C14–C17/C10 Q = 0.5519 (17) Å | Θ = 9.45 (18) ° | φ2 = 53.2 (11)° Q = 0.556 (4) Å | Θ = 13.4 (4) ° | φ2 = 37 (2)°
Chair conformation Q2 = 0.0908 (17) Å | Q3 = 54.4444 (17) Å | φ2 = 53.2 (11)° Q2 = 0.128 (4) Å | Q3 = 0.541 (4) Å | φ2 = 37 (2)°
C16/C18–C21/C17 Q = 0.5450 (17) Å | Θ = 175.11 (18) ° | φ2 = 170 (2)° Q = 0.538 (4) Å | Θ = 173.2 (4) ° | φ2 = 196 (4)°
Chair conformation Q2 = 0.0457 (17) Å | Q3 = −0.5431 (17) Å | φ2 = 170 (2)° Q2 = 0.0065 (4) Å | Q3 = −0.534 (4) Å | φ2 = 196 (4)°
C18/C19/C23–C26 Q = 0.4724 (18) Å | Θ = 52.7 (2) ° | φ2 = 266.8 (3)° Q = 0.454 (4) Å | Θ = 55.6 (5) ° | φ2 = 281.9 (7)°
Half-chair conformation Q2 = 0.3756 (18) Å | Q3 = 0.2865 (18) Å | φ2 = 266.8 (3)° Q2 = 0.375 (4) Å | Q3 = 0.256 (4) Å | φ2 = 281.9 (7)°

Supra­molecular features  

The crystal packing in both structures is stabilized by one O—H⋯O hydrogen bond (Figs. 3 and 4, Tables 2 and 3) producing layers along (010) for polymorph (I) (PL358) and along (001) for polymorph (II) (SY20C174). The geometry of these inter­actions indicates that these are strong hydrogen bonds.

Figure 3.

Figure 3

View of the hydrogen bond-network in polymorph (I).

Figure 4.

Figure 4

View of the hydrogen-bond network in polymorph (II).

Table 2. Hydrogen-bond geometry (Å, °) for PL358 (I) .

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O5i 0.84 2.07 2.9021 (17) 169

Symmetry code: (i) -x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}.

Table 3. Hydrogen-bond geometry (Å, °) for SY20C174 (II) .

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O5i 0.84 1.96 2.802 (4) 175

Symmetry code: (i) -x+{\script{1\over 2}}, -y+1, z+{\script{1\over 2}}.

Morphology prediction  

In both polymorphs, it was observed that the same type of hydrogen bonds plays a dominant role in the formation of hydrogen-bonded networks. However, the arrangements of mol­ecules in the crystal packing of polymorphs (I) and (II) are different. The different arrangements can also be seen in the external shape and size of the crystals. The theoretical crystal habits of polymorphs (I) and (II) were predicted based on the BFDH model with Mercury (Fig. 5). The morphologies of Pivalone polymorphs (I) and (II) display significant differences in their main crystal dimension.

Figure 5.

Figure 5

View of the crystal morphology of polymorph (I) (top) and (II) (bottom).

Synthesis and crystallization  

Tixocortol pivalate (Fig. 6) has been produced as follows (Bouley, 2013): in a dry inerted flask, cesium thio­pivalate (620 g, 2.48 mol) and tetra­hydro­furan (1460 mL) are stirred at room temperature. A hydro­cortisone mesylate (995 g, 2.26 mol) solution in THF (4600 mL) is added in 1 h below 293 K. After 16 h of stirring, the reaction mixture is cooled below 283 K and water (12320 mL) is added. After addition, the reaction mixture is stirred for approximately 2 h. The precipitate is filtered and washed with water (10 × 820 mL). After drying under vacuum at 323 K for one night, the product is isolated as a white powder (yield 93%, purity by HPLC 98.5%).

Figure 6.

Figure 6

Reaction scheme for the synthesis of tixocortol pivalate.

Powder X-ray diffraction (PXRD)  

Analyses were performed at room temperature from 2θ = 3 to 50° with an increasing step size of 0.02° and a count time of 120 s. The X-ray powder diffraction patterns were registered in transmission mode unless mentioned otherwise. The samples (few milligrams) are introduced without being crushed in 1 mm diameter glass capillaries to avoid preferential orientation. The capillaries are sealed to avoid contact with air. The analysis is performed in transmission mode by using a focusing X-ray mirror with divergence slits and anti-scatter slits (aperture 0.5°), on an Empyrean diffractometer from PANalytical Company (PANalytical, 2011) equipped with a copper anti­cathode tube (wavelength λ Kα1 = 1.54060 Å/Kα2 = 1.54443 Å) and with a PIXcel 1D detector with anti-scatter slits of 7.5 mm. The calibration of the analytical instrument is checked before each analytical batch according to quality systems.

Unit-cell parameters were obtained using indexing methods included in ITO (Visser, 1969) or DICVOL (Boultif & Louër, 2004). Le Bail (Le Bail, 1988) refinement was performed by using JANA2006 (Petříček et al., 2014) with the most plausible unit cell. The cell parameters found at room temperature were compared to those found from single crystal at different temperatures (Table 4). The cell parameters at low temperature and at ambient temperature found from single crystal and from powder diffraction are similar, confirming that no phase change occurs with different temperatures. The simulated PXRD patterns were calculated (Palmer, 2015) from SCXRD with cell parameters obtained at room temperature (Fig. 7).

Table 4. Cell parameters determined from SCXRD and PXRD at different temperatures.

Compound PL358 PL358 PL358 SY20C174 SY20C174 SY20C174
XRD measurement SCXRD SCXRD PXRD SCXRD SCXRD PXRD
Temperature 110 K 295 K 295 K 100 K 298 K 295 K
Space group P212121 P212121 P212121 P212121 P212121 P212121
a 6.4201 (2) 6.467 (5) 6.4775 (2) 6.0146 (2) 6.157 (9) 6.1573 (2)
b 17.6239 (7) 17.887 (12) 17.9583 (7) 19.2817 (7) 19.46 (3) 19.4684 (7)
c 20.8997 (8) 20.897 (15) 20.9335 (7) 20.9887 (7) 20.92 (3) 20.8859 (9)
Volume 2364.7 (1) 2417 (5) 2435.1 (1) 2434.1 (1) 2508 (11) 2503.7 (2)

Figure 7.

Figure 7

PXRD patterns of polymorphs (I) and (II) and their simulated patterns from the SCXRD study at room temperature.

Structure solution and refinement  

Crystal data, data collection and structure refinement details are summarized in Table 5. The dimethyl-sulfanyl-propanone group was found to be disordered over two positions 77 (1)%/23 (1)% in polymotph (II). The SAME (Sheldrick, 2015b ) restraint was employed for the minor disordered part to maintain a reasonable model. All non-hydrogen atoms were refined anisotropically, except the minor disorder component. Hydrogen-atom positions were calculated geometrically and refined using the riding model. All H atoms, on carbon atoms, were placed at calculated positions using a riding model with C—H = 0.95 Å (aromatic), 0.99 Å (methyl­ene) or 1 Å (methine) with U iso(H) = 1.2U eq(C). H atoms on oxygen atoms were located in difference-Fourier maps. Their positional parameters were refined as an idealized OH group (AFIX 147), (Sheldrick, 2015b ) with U iso(H) = 1.5U eq(O). The TWIN/BASF instruction was used to refine the Flack parameter.

Table 5. Experimental details.

  PL358 (I) SY20C174 (II)
Crystal data
Chemical formula C26H38O5S C26H38O5S
M r 462.62 462.62
Crystal system, space group Orthorhombic, P212121 Orthorhombic, P212121
Temperature (K) 110 100
a, b, c (Å) 6.4201 (2), 17.6239 (7), 20.8997 (8) 6.0146 (2), 19.2817 (7), 20.9887 (7)
V3) 2364.74 (15) 2434.10 (14)
Z 4 4
Radiation type Mo Kα Cu Kα
μ (mm−1) 0.17 1.46
Crystal size (mm) 0.46 × 0.25 × 0.24 0.18 × 0.06 × 0.05
 
Data collection
Diffractometer Nonius Kappa APEXII Bruker D8 Venture
Absorption correction Multi-scan (SADABS; Krause et al., 2015) Multi-scan (SADABS; Krause et al., 2015)
T min, T max 0.912, 0.958 0.707, 0.862
No. of measured, independent and observed [I > 2σ(I)] reflections 74424, 5424, 5180 30900, 4303, 3803
R int 0.034 0.102
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.028, 0.072, 1.04 0.055, 0.130, 1.07
No. of reflections 5424 4303
No. of parameters 296 329
No. of restraints 0 16
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.26, −0.23 0.26, −0.39
Absolute structure Flack x determined using 2176 quotients [(I +)−(I )]/[(I +)+(I )] (Parsons et al., 2013) Flack x obtained from refinement
Absolute structure parameter 0.027 (13) 0.11 (4)

Computer programs: APEX3 and SAINT (Bruker, 2016), SHELXT (Sheldrick, 2015a ), SHELXL (Sheldrick, 2015b ) and OLEX2 (Dolomanov et al., 2009).

Supplementary Material

Crystal structure: contains datablock(s) PL358, SY20C174, New_Global_Publ_Block. DOI: 10.1107/S2056989021007167/dj2019sup1.cif

e-77-00809-sup1.cif (2.5MB, cif)

Structure factors: contains datablock(s) PL358. DOI: 10.1107/S2056989021007167/dj2019PL358sup2.hkl

e-77-00809-PL358sup2.hkl (297.4KB, hkl)

Supporting information file. DOI: 10.1107/S2056989021007167/dj2019PL358sup4.cdx

Structure factors: contains datablock(s) SY20C174. DOI: 10.1107/S2056989021007167/dj2019SY20C174sup3.hkl

Supporting information file. DOI: 10.1107/S2056989021007167/dj2019SY20C174sup5.cdx

CCDC references: 2095871, 2095870

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The Ministère de l’Enseignement Supérieur et de la Recherche, the Centre National de la Recherche Scientifique (CNRS) and the Conseil Régional de Bourgogne Franche-Comté are gratefully acknowledged. This work is supported by the Université de Bourgogne and the Conseil Régional de Bourgogne Franche-Comté through the Plan d’Actions Régional pour l’Innovation (PARI) and the European Union through the PO FEDER-FSE Bourgogne 2014/2020 programs. The X-ray analyses were recorded in the ‘Pôle Chimie Moléculaire’, the technological platform for chemical analysis and molecular synthesis (http://www.wpcm.fr), which relies on the Institute of the Molecular Chemistry of the University of Burgundy (ICMUB) and SATT Sayens™, a Burgundy University private subsidiary.

supplementary crystallographic information

(S)-{2-[(8S,9S,10R,11S,13S,14S,17R)-11,17-Dihydroxy-10,13-dimethyl-3-oxo-2,6,7,8,9,11,12,14,15,16-decahydro-1H-cyclopenta[a]phenanthren-17-yl]-2-oxoethyl} 2,2-dimethylpropanethioate (PL358) . Crystal data

C26H38O5S Dx = 1.299 Mg m3
Mr = 462.62 Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121 Cell parameters from 9539 reflections
a = 6.4201 (2) Å θ = 2.3–27.4°
b = 17.6239 (7) Å µ = 0.17 mm1
c = 20.8997 (8) Å T = 110 K
V = 2364.74 (15) Å3 Prism, clear light colourless
Z = 4 0.46 × 0.25 × 0.24 mm
F(000) = 1000

(S)-{2-[(8S,9S,10R,11S,13S,14S,17R)-11,17-Dihydroxy-10,13-dimethyl-3-oxo-2,6,7,8,9,11,12,14,15,16-decahydro-1H-cyclopenta[a]phenanthren-17-yl]-2-oxoethyl} 2,2-dimethylpropanethioate (PL358) . Data collection

Nonius Kappa APEXII diffractometer 5424 independent reflections
Radiation source: X-ray tube, Siemens KFF Mo 2K-180 5180 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.034
Detector resolution: 512 x 512 pixels mm-1 θmax = 27.5°, θmin = 3.0°
φ and ω scans' h = −8→8
Absorption correction: multi-scan (SADABS; Krause et al., 2015) k = −22→22
Tmin = 0.912, Tmax = 0.958 l = −27→27
74424 measured reflections

(S)-{2-[(8S,9S,10R,11S,13S,14S,17R)-11,17-Dihydroxy-10,13-dimethyl-3-oxo-2,6,7,8,9,11,12,14,15,16-decahydro-1H-cyclopenta[a]phenanthren-17-yl]-2-oxoethyl} 2,2-dimethylpropanethioate (PL358) . Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.028 w = 1/[σ2(Fo2) + (0.0409P)2 + 0.6195P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.072 (Δ/σ)max < 0.001
S = 1.04 Δρmax = 0.26 e Å3
5424 reflections Δρmin = −0.22 e Å3
296 parameters Absolute structure: Flack x determined using 2176 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
0 restraints Absolute structure parameter: 0.027 (13)
Primary atom site location: dual

(S)-{2-[(8S,9S,10R,11S,13S,14S,17R)-11,17-Dihydroxy-10,13-dimethyl-3-oxo-2,6,7,8,9,11,12,14,15,16-decahydro-1H-cyclopenta[a]phenanthren-17-yl]-2-oxoethyl} 2,2-dimethylpropanethioate (PL358) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

(S)-{2-[(8S,9S,10R,11S,13S,14S,17R)-11,17-Dihydroxy-10,13-dimethyl-3-oxo-2,6,7,8,9,11,12,14,15,16-decahydro-1H-cyclopenta[a]phenanthren-17-yl]-2-oxoethyl} 2,2-dimethylpropanethioate (PL358) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.57981 (8) 0.59132 (2) 0.30170 (2) 0.02260 (11)
O3 0.6410 (2) 0.35175 (7) 0.23101 (6) 0.0154 (2)
H3 0.671037 0.360570 0.192609 0.023*
O5 0.2936 (2) −0.10124 (7) 0.40054 (6) 0.0186 (3)
O2 0.9568 (2) 0.49062 (7) 0.30543 (6) 0.0219 (3)
O4 0.6656 (3) 0.25785 (7) 0.46752 (6) 0.0243 (3)
H4 0.576170 0.276912 0.492065 0.036*
O1 0.4852 (3) 0.52261 (8) 0.40864 (7) 0.0352 (4)
C10 0.8689 (2) 0.24334 (9) 0.30097 (7) 0.0105 (3)
H10 0.757227 0.229873 0.269614 0.013*
C16 0.6649 (2) 0.16686 (9) 0.37858 (7) 0.0101 (3)
H16 0.572073 0.153973 0.341722 0.012*
C24 0.4122 (3) −0.04919 (9) 0.41447 (8) 0.0133 (3)
C22 0.7966 (3) 0.09961 (10) 0.48265 (8) 0.0139 (3)
H22A 0.939136 0.110305 0.468479 0.021*
H22B 0.793474 0.050904 0.505250 0.021*
H22C 0.749690 0.139990 0.511490 0.021*
C7 0.8049 (3) 0.45608 (10) 0.28770 (8) 0.0152 (3)
C18 0.6505 (2) 0.09589 (9) 0.42376 (7) 0.0101 (3)
C17 0.8818 (2) 0.17768 (9) 0.34806 (7) 0.0108 (3)
H17 0.986748 0.189289 0.382019 0.013*
C23 0.6075 (3) −0.03662 (9) 0.37971 (8) 0.0133 (3)
H23 0.657156 −0.075699 0.352367 0.016*
C26 0.4233 (3) 0.08633 (9) 0.44563 (7) 0.0116 (3)
H26A 0.395372 0.122300 0.480995 0.014*
H26B 0.329792 0.099703 0.409691 0.014*
C21 0.9454 (3) 0.10574 (9) 0.31190 (8) 0.0140 (3)
H21A 0.855784 0.100246 0.273627 0.017*
H21B 1.091004 0.111287 0.297053 0.017*
C20 0.9280 (3) 0.03384 (9) 0.35248 (8) 0.0138 (3)
H20A 0.950163 −0.011075 0.324867 0.017*
H20B 1.038671 0.034177 0.385458 0.017*
C9 0.8031 (3) 0.31896 (9) 0.33168 (7) 0.0110 (3)
C11 1.0623 (3) 0.26354 (9) 0.26139 (8) 0.0142 (3)
H11A 1.076384 0.229298 0.224088 0.017*
H11B 1.190147 0.260105 0.287716 0.017*
C1 0.4236 (3) 0.65833 (11) 0.41260 (8) 0.0219 (4)
C19 0.7196 (2) 0.02742 (9) 0.38462 (8) 0.0112 (3)
C15 0.5701 (3) 0.24038 (9) 0.40657 (8) 0.0142 (3)
H15 0.418893 0.230653 0.414522 0.017*
C5 0.4924 (3) 0.58328 (10) 0.38238 (9) 0.0184 (3)
C14 0.5861 (3) 0.30893 (9) 0.36064 (8) 0.0134 (3)
H14A 0.483971 0.302354 0.325584 0.016*
H14B 0.548391 0.355646 0.384264 0.016*
C25 0.3715 (3) 0.00567 (9) 0.46830 (8) 0.0138 (3)
H25A 0.458872 −0.007601 0.505705 0.017*
H25B 0.223523 0.002816 0.481369 0.017*
C8 0.8139 (3) 0.37093 (9) 0.27071 (8) 0.0126 (3)
C13 0.9608 (3) 0.34721 (9) 0.38172 (8) 0.0155 (3)
H13A 0.975665 0.309141 0.415590 0.023*
H13B 0.911232 0.394965 0.400299 0.023*
H13C 1.096090 0.355534 0.361145 0.023*
C12 1.0227 (3) 0.34651 (10) 0.23951 (8) 0.0155 (3)
H12A 1.137374 0.379980 0.253852 0.019*
H12B 1.012823 0.349257 0.192295 0.019*
C6 0.5917 (3) 0.49264 (10) 0.28061 (9) 0.0205 (4)
H6A 0.491554 0.464500 0.307701 0.025*
H6B 0.546071 0.487033 0.235619 0.025*
C4 0.5645 (4) 0.72401 (12) 0.39145 (14) 0.0431 (6)
H4A 0.708534 0.713275 0.404017 0.065*
H4B 0.518021 0.771070 0.411956 0.065*
H4C 0.556793 0.729660 0.344859 0.065*
C3 0.2026 (4) 0.67460 (16) 0.38883 (13) 0.0430 (6)
H3A 0.203839 0.679901 0.342158 0.065*
H3B 0.151797 0.721734 0.408214 0.065*
H3C 0.110650 0.632594 0.400915 0.065*
C2 0.4239 (6) 0.64969 (16) 0.48501 (10) 0.0564 (9)
H2A 0.332983 0.607392 0.497155 0.085*
H2B 0.372756 0.696584 0.504713 0.085*
H2C 0.565977 0.639511 0.499814 0.085*

(S)-{2-[(8S,9S,10R,11S,13S,14S,17R)-11,17-Dihydroxy-10,13-dimethyl-3-oxo-2,6,7,8,9,11,12,14,15,16-decahydro-1H-cyclopenta[a]phenanthren-17-yl]-2-oxoethyl} 2,2-dimethylpropanethioate (PL358) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0352 (3) 0.01312 (19) 0.0195 (2) 0.00396 (19) 0.01024 (19) 0.00171 (16)
O3 0.0179 (6) 0.0176 (6) 0.0106 (5) −0.0006 (5) −0.0030 (5) 0.0007 (4)
O5 0.0195 (6) 0.0148 (6) 0.0216 (6) −0.0049 (5) 0.0009 (5) −0.0018 (5)
O2 0.0258 (7) 0.0141 (6) 0.0257 (7) −0.0061 (5) −0.0009 (6) 0.0018 (5)
O4 0.0479 (9) 0.0151 (6) 0.0100 (6) 0.0015 (6) 0.0044 (6) −0.0025 (5)
O1 0.0617 (11) 0.0218 (7) 0.0221 (7) 0.0018 (7) 0.0063 (7) 0.0068 (6)
C10 0.0096 (7) 0.0121 (7) 0.0099 (7) 0.0001 (6) 0.0002 (6) −0.0007 (6)
C16 0.0111 (7) 0.0097 (7) 0.0093 (6) 0.0006 (6) 0.0011 (6) −0.0002 (6)
C24 0.0172 (8) 0.0099 (7) 0.0128 (7) 0.0012 (6) −0.0020 (7) 0.0024 (6)
C22 0.0157 (8) 0.0138 (8) 0.0122 (7) 0.0002 (6) −0.0027 (6) −0.0015 (6)
C7 0.0225 (9) 0.0147 (8) 0.0082 (7) 0.0000 (7) 0.0026 (7) 0.0028 (6)
C18 0.0114 (7) 0.0095 (7) 0.0094 (7) −0.0004 (6) −0.0006 (5) −0.0010 (6)
C17 0.0107 (7) 0.0106 (7) 0.0111 (7) 0.0006 (6) 0.0007 (6) −0.0006 (6)
C23 0.0156 (8) 0.0113 (7) 0.0132 (7) 0.0012 (6) 0.0003 (6) −0.0023 (6)
C26 0.0128 (7) 0.0108 (7) 0.0111 (7) −0.0001 (6) 0.0012 (6) −0.0009 (6)
C21 0.0142 (7) 0.0125 (7) 0.0154 (7) 0.0012 (6) 0.0045 (6) −0.0003 (6)
C20 0.0127 (7) 0.0111 (7) 0.0177 (8) 0.0018 (6) 0.0032 (7) −0.0018 (6)
C9 0.0125 (7) 0.0104 (7) 0.0102 (7) −0.0005 (6) −0.0004 (6) 0.0007 (6)
C11 0.0128 (7) 0.0149 (7) 0.0149 (7) −0.0006 (7) 0.0030 (6) 0.0006 (6)
C1 0.0255 (9) 0.0243 (9) 0.0158 (8) 0.0083 (8) −0.0004 (8) −0.0027 (7)
C19 0.0124 (7) 0.0119 (7) 0.0092 (7) 0.0028 (6) −0.0014 (6) 0.0004 (6)
C15 0.0167 (8) 0.0116 (7) 0.0142 (7) 0.0013 (6) 0.0045 (7) −0.0001 (6)
C5 0.0209 (8) 0.0195 (8) 0.0146 (7) 0.0021 (7) −0.0015 (7) 0.0016 (7)
C14 0.0141 (7) 0.0111 (7) 0.0151 (7) 0.0019 (6) 0.0024 (6) 0.0010 (6)
C25 0.0154 (8) 0.0140 (8) 0.0119 (7) −0.0013 (6) 0.0028 (6) 0.0000 (6)
C8 0.0140 (8) 0.0126 (7) 0.0110 (7) −0.0012 (6) −0.0016 (6) 0.0007 (6)
C13 0.0195 (8) 0.0138 (7) 0.0133 (7) −0.0007 (7) −0.0046 (7) −0.0013 (6)
C12 0.0170 (8) 0.0150 (8) 0.0143 (8) −0.0013 (7) 0.0035 (6) 0.0012 (6)
C6 0.0276 (9) 0.0137 (8) 0.0203 (8) 0.0030 (7) −0.0007 (8) −0.0039 (6)
C4 0.0458 (14) 0.0216 (10) 0.0621 (16) 0.0019 (10) 0.0085 (14) −0.0157 (10)
C3 0.0298 (12) 0.0568 (16) 0.0424 (13) 0.0196 (11) −0.0046 (11) −0.0140 (12)
C2 0.105 (3) 0.0496 (15) 0.0150 (9) 0.0370 (18) −0.0069 (13) −0.0052 (9)

(S)-{2-[(8S,9S,10R,11S,13S,14S,17R)-11,17-Dihydroxy-10,13-dimethyl-3-oxo-2,6,7,8,9,11,12,14,15,16-decahydro-1H-cyclopenta[a]phenanthren-17-yl]-2-oxoethyl} 2,2-dimethylpropanethioate (PL358) . Geometric parameters (Å, º)

S1—C5 1.7827 (18) C20—H20A 0.9900
S1—C6 1.7957 (18) C20—H20B 0.9900
O3—H3 0.8400 C20—C19 1.501 (2)
O3—C8 1.426 (2) C9—C14 1.529 (2)
O5—C24 1.227 (2) C9—C8 1.571 (2)
O2—C7 1.208 (2) C9—C13 1.538 (2)
O4—H4 0.8400 C11—H11A 0.9900
O4—C15 1.447 (2) C11—H11B 0.9900
O1—C5 1.203 (2) C11—C12 1.553 (2)
C10—H10 1.0000 C1—C5 1.531 (3)
C10—C17 1.521 (2) C1—C4 1.534 (3)
C10—C9 1.538 (2) C1—C3 1.531 (3)
C10—C11 1.534 (2) C1—C2 1.521 (3)
C16—H16 1.0000 C15—H15 1.0000
C16—C18 1.570 (2) C15—C14 1.546 (2)
C16—C17 1.543 (2) C14—H14A 0.9900
C16—C15 1.546 (2) C14—H14B 0.9900
C24—C23 1.466 (2) C25—H25A 0.9900
C24—C25 1.506 (2) C25—H25B 0.9900
C22—H22A 0.9800 C8—C12 1.552 (2)
C22—H22B 0.9800 C13—H13A 0.9800
C22—H22C 0.9800 C13—H13B 0.9800
C22—C18 1.549 (2) C13—H13C 0.9800
C7—C8 1.543 (2) C12—H12A 0.9900
C7—C6 1.520 (3) C12—H12B 0.9900
C18—C26 1.538 (2) C6—H6A 0.9900
C18—C19 1.524 (2) C6—H6B 0.9900
C17—H17 1.0000 C4—H4A 0.9800
C17—C21 1.531 (2) C4—H4B 0.9800
C23—H23 0.9500 C4—H4C 0.9800
C23—C19 1.342 (2) C3—H3A 0.9800
C26—H26A 0.9900 C3—H3B 0.9800
C26—H26B 0.9900 C3—H3C 0.9800
C26—C25 1.535 (2) C2—H2A 0.9800
C21—H21A 0.9900 C2—H2B 0.9800
C21—H21B 0.9900 C2—H2C 0.9800
C21—C20 1.529 (2)
C5—S1—C6 99.71 (9) C5—C1—C4 111.30 (16)
C8—O3—H3 109.5 C3—C1—C5 107.18 (17)
C15—O4—H4 109.5 C3—C1—C4 108.15 (19)
C17—C10—H10 106.4 C2—C1—C5 108.89 (16)
C17—C10—C9 113.83 (13) C2—C1—C4 111.2 (2)
C17—C10—C11 118.79 (13) C2—C1—C3 110.0 (2)
C9—C10—H10 106.4 C23—C19—C18 123.42 (15)
C11—C10—H10 106.4 C23—C19—C20 120.46 (15)
C11—C10—C9 104.26 (13) C20—C19—C18 116.09 (13)
C18—C16—H16 104.3 O4—C15—C16 110.17 (13)
C17—C16—H16 104.3 O4—C15—H15 107.5
C17—C16—C18 113.58 (13) O4—C15—C14 110.62 (13)
C17—C16—C15 114.07 (13) C16—C15—H15 107.5
C15—C16—H16 104.3 C16—C15—C14 113.19 (13)
C15—C16—C18 114.64 (12) C14—C15—H15 107.5
O5—C24—C23 121.75 (15) O1—C5—S1 120.96 (15)
O5—C24—C25 123.32 (16) O1—C5—C1 124.65 (17)
C23—C24—C25 114.93 (14) C1—C5—S1 114.36 (13)
H22A—C22—H22B 109.5 C9—C14—C15 113.34 (13)
H22A—C22—H22C 109.5 C9—C14—H14A 108.9
H22B—C22—H22C 109.5 C9—C14—H14B 108.9
C18—C22—H22A 109.5 C15—C14—H14A 108.9
C18—C22—H22B 109.5 C15—C14—H14B 108.9
C18—C22—H22C 109.5 H14A—C14—H14B 107.7
O2—C7—C8 122.04 (17) C24—C25—C26 109.05 (13)
O2—C7—C6 122.91 (16) C24—C25—H25A 109.9
C6—C7—C8 115.05 (15) C24—C25—H25B 109.9
C22—C18—C16 114.12 (13) C26—C25—H25A 109.9
C26—C18—C16 108.77 (12) C26—C25—H25B 109.9
C26—C18—C22 110.05 (12) H25A—C25—H25B 108.3
C19—C18—C16 106.91 (12) O3—C8—C7 109.59 (14)
C19—C18—C22 106.50 (13) O3—C8—C9 107.43 (13)
C19—C18—C26 110.42 (13) O3—C8—C12 111.23 (13)
C10—C17—C16 108.20 (12) C7—C8—C9 112.25 (13)
C10—C17—H17 109.9 C7—C8—C12 113.50 (14)
C10—C17—C21 108.97 (13) C12—C8—C9 102.54 (13)
C16—C17—H17 109.9 C9—C13—H13A 109.5
C21—C17—C16 110.02 (13) C9—C13—H13B 109.5
C21—C17—H17 109.9 C9—C13—H13C 109.5
C24—C23—H23 118.4 H13A—C13—H13B 109.5
C19—C23—C24 123.21 (15) H13A—C13—H13C 109.5
C19—C23—H23 118.4 H13B—C13—H13C 109.5
C18—C26—H26A 108.9 C11—C12—H12A 110.5
C18—C26—H26B 108.9 C11—C12—H12B 110.5
H26A—C26—H26B 107.7 C8—C12—C11 106.20 (13)
C25—C26—C18 113.48 (13) C8—C12—H12A 110.5
C25—C26—H26A 108.9 C8—C12—H12B 110.5
C25—C26—H26B 108.9 H12A—C12—H12B 108.7
C17—C21—H21A 109.0 S1—C6—H6A 108.5
C17—C21—H21B 109.0 S1—C6—H6B 108.5
H21A—C21—H21B 107.8 C7—C6—S1 115.15 (13)
C20—C21—C17 113.14 (13) C7—C6—H6A 108.5
C20—C21—H21A 109.0 C7—C6—H6B 108.5
C20—C21—H21B 109.0 H6A—C6—H6B 107.5
C21—C20—H20A 109.2 C1—C4—H4A 109.5
C21—C20—H20B 109.2 C1—C4—H4B 109.5
H20A—C20—H20B 107.9 C1—C4—H4C 109.5
C19—C20—C21 112.07 (14) H4A—C4—H4B 109.5
C19—C20—H20A 109.2 H4A—C4—H4C 109.5
C19—C20—H20B 109.2 H4B—C4—H4C 109.5
C10—C9—C8 98.89 (12) C1—C3—H3A 109.5
C10—C9—C13 112.53 (13) C1—C3—H3B 109.5
C14—C9—C10 108.37 (13) C1—C3—H3C 109.5
C14—C9—C8 115.37 (13) H3A—C3—H3B 109.5
C14—C9—C13 111.59 (13) H3A—C3—H3C 109.5
C13—C9—C8 109.50 (13) H3B—C3—H3C 109.5
C10—C11—H11A 110.9 C1—C2—H2A 109.5
C10—C11—H11B 110.9 C1—C2—H2B 109.5
C10—C11—C12 104.17 (13) C1—C2—H2C 109.5
H11A—C11—H11B 108.9 H2A—C2—H2B 109.5
C12—C11—H11A 110.9 H2A—C2—H2C 109.5
C12—C11—H11B 110.9 H2B—C2—H2C 109.5
O3—C8—C12—C11 −88.38 (16) C26—C18—C19—C23 −10.2 (2)
O5—C24—C23—C19 166.22 (16) C26—C18—C19—C20 171.80 (13)
O5—C24—C25—C26 −136.63 (16) C21—C20—C19—C18 −52.86 (18)
O2—C7—C8—O3 −159.55 (15) C21—C20—C19—C23 129.03 (16)
O2—C7—C8—C9 81.2 (2) C9—C10—C17—C16 59.62 (17)
O2—C7—C8—C12 −34.5 (2) C9—C10—C17—C21 179.23 (13)
O2—C7—C6—S1 −0.9 (2) C9—C10—C11—C12 −31.87 (16)
O4—C15—C14—C9 76.44 (17) C9—C8—C12—C11 26.18 (16)
C10—C17—C21—C20 −170.47 (13) C11—C10—C17—C16 −177.02 (13)
C10—C9—C14—C15 52.98 (17) C11—C10—C17—C21 −57.42 (18)
C10—C9—C8—O3 72.69 (15) C11—C10—C9—C14 168.13 (13)
C10—C9—C8—C7 −166.78 (14) C11—C10—C9—C8 47.53 (15)
C10—C9—C8—C12 −44.62 (14) C11—C10—C9—C13 −67.98 (16)
C10—C11—C12—C8 2.91 (17) C19—C18—C26—C25 41.50 (17)
C16—C18—C26—C25 158.52 (13) C15—C16—C18—C22 −71.13 (17)
C16—C18—C19—C23 −128.32 (16) C15—C16—C18—C26 52.16 (17)
C16—C18—C19—C20 53.64 (17) C15—C16—C18—C19 171.40 (13)
C16—C17—C21—C20 −51.99 (18) C15—C16—C17—C10 −51.38 (17)
C16—C15—C14—C9 −47.76 (19) C15—C16—C17—C21 −170.32 (13)
C24—C23—C19—C18 −3.6 (3) C5—S1—C6—C7 −95.53 (14)
C24—C23—C19—C20 174.33 (15) C14—C9—C8—O3 −42.61 (18)
C22—C18—C26—C25 −75.79 (17) C14—C9—C8—C7 77.93 (18)
C22—C18—C19—C23 109.31 (17) C14—C9—C8—C12 −159.91 (14)
C22—C18—C19—C20 −68.74 (17) C25—C24—C23—C19 −14.5 (2)
C7—C8—C12—C11 147.50 (14) C8—C7—C6—S1 178.95 (12)
C18—C16—C17—C10 174.74 (12) C8—C9—C14—C15 162.72 (13)
C18—C16—C17—C21 55.80 (16) C13—C9—C14—C15 −71.47 (17)
C18—C16—C15—O4 55.85 (18) C13—C9—C8—O3 −169.48 (13)
C18—C16—C15—C14 −179.71 (13) C13—C9—C8—C7 −48.95 (18)
C18—C26—C25—C24 −59.02 (17) C13—C9—C8—C12 73.22 (15)
C17—C10—C9—C14 −60.92 (16) C6—S1—C5—O1 9.35 (19)
C17—C10—C9—C8 178.48 (13) C6—S1—C5—C1 −168.80 (14)
C17—C10—C9—C13 62.97 (17) C6—C7—C8—O3 20.62 (19)
C17—C10—C11—C12 −159.84 (14) C6—C7—C8—C9 −98.66 (17)
C17—C16—C18—C22 62.48 (17) C6—C7—C8—C12 145.63 (15)
C17—C16—C18—C26 −174.24 (12) C4—C1—C5—S1 −38.1 (2)
C17—C16—C18—C19 −55.00 (16) C4—C1—C5—O1 143.8 (2)
C17—C16—C15—O4 −77.53 (16) C3—C1—C5—S1 79.96 (19)
C17—C16—C15—C14 46.91 (19) C3—C1—C5—O1 −98.1 (2)
C17—C21—C20—C19 50.36 (19) C2—C1—C5—S1 −161.1 (2)
C23—C24—C25—C26 44.08 (19) C2—C1—C5—O1 20.9 (3)

(S)-{2-[(8S,9S,10R,11S,13S,14S,17R)-11,17-Dihydroxy-10,13-dimethyl-3-oxo-2,6,7,8,9,11,12,14,15,16-decahydro-1H-cyclopenta[a]phenanthren-17-yl]-2-oxoethyl} 2,2-dimethylpropanethioate (PL358) . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O3—H3···O5i 0.84 2.07 2.9021 (17) 169

Symmetry code: (i) −x+1, y+1/2, −z+1/2.

(S)-{2-[(8S,9S,10R,11S,13S,14S,17R)-11,17-Dihydroxy-10,13-dimethyl-3-oxo-2,6,7,8,9,11,12,14,15,16-decahydro-1H-cyclopenta[a]phenanthren-17-yl]-2-oxoethyl} 2,2-dimethylpropanethioate (SY20C174) . Crystal data

C26H38O5S Dx = 1.262 Mg m3
Mr = 462.62 Cu Kα radiation, λ = 1.54178 Å
Orthorhombic, P212121 Cell parameters from 6178 reflections
a = 6.0146 (2) Å θ = 3.1–66.5°
b = 19.2817 (7) Å µ = 1.46 mm1
c = 20.9887 (7) Å T = 100 K
V = 2434.10 (14) Å3 Plate, clear light colourless
Z = 4 0.18 × 0.06 × 0.05 mm
F(000) = 1000

(S)-{2-[(8S,9S,10R,11S,13S,14S,17R)-11,17-Dihydroxy-10,13-dimethyl-3-oxo-2,6,7,8,9,11,12,14,15,16-decahydro-1H-cyclopenta[a]phenanthren-17-yl]-2-oxoethyl} 2,2-dimethylpropanethioate (SY20C174) . Data collection

Bruker D8 Venture diffractometer 4303 independent reflections
Radiation source: sealed X-ray tube, high brilliance microfocus sealed tube, Cu 3803 reflections with I > 2σ(I)
QUAZAR MX multilayer optics monochromator Rint = 0.102
Detector resolution: 1024 x 1024 pixels mm-1 θmax = 66.7°, θmin = 3.1°
φ and ω scans' h = −7→6
Absorption correction: multi-scan (SADABS; Krause et al., 2015) k = −22→22
Tmin = 0.707, Tmax = 0.862 l = −24→25
30900 measured reflections

(S)-{2-[(8S,9S,10R,11S,13S,14S,17R)-11,17-Dihydroxy-10,13-dimethyl-3-oxo-2,6,7,8,9,11,12,14,15,16-decahydro-1H-cyclopenta[a]phenanthren-17-yl]-2-oxoethyl} 2,2-dimethylpropanethioate (SY20C174) . Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.055 w = 1/[σ2(Fo2) + (0.052P)2 + 1.3292P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.130 (Δ/σ)max < 0.001
S = 1.07 Δρmax = 0.26 e Å3
4303 reflections Δρmin = −0.39 e Å3
329 parameters Absolute structure: Flack x obtained from refinement
16 restraints Absolute structure parameter: 0.11 (4)
Primary atom site location: dual

(S)-{2-[(8S,9S,10R,11S,13S,14S,17R)-11,17-Dihydroxy-10,13-dimethyl-3-oxo-2,6,7,8,9,11,12,14,15,16-decahydro-1H-cyclopenta[a]phenanthren-17-yl]-2-oxoethyl} 2,2-dimethylpropanethioate (SY20C174) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refined as a 2-component inversion twin.

(S)-{2-[(8S,9S,10R,11S,13S,14S,17R)-11,17-Dihydroxy-10,13-dimethyl-3-oxo-2,6,7,8,9,11,12,14,15,16-decahydro-1H-cyclopenta[a]phenanthren-17-yl]-2-oxoethyl} 2,2-dimethylpropanethioate (SY20C174) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
O2 0.5899 (6) 0.4360 (2) 0.72379 (16) 0.0542 (10)
O3 0.2156 (5) 0.50617 (16) 0.61339 (15) 0.0390 (7)
H3 0.209393 0.545661 0.630189 0.059*
O4 0.4523 (5) 0.28363 (14) 0.49153 (14) 0.0367 (7)
H4 0.369010 0.253012 0.507049 0.055*
O5 0.2955 (7) 0.36601 (17) 0.17678 (14) 0.0487 (9)
C19 0.5824 (7) 0.4099 (2) 0.3207 (2) 0.0332 (9)
C23 0.5075 (8) 0.4126 (2) 0.2605 (2) 0.0384 (10)
H23 0.550048 0.451088 0.235126 0.046*
C10 0.5508 (7) 0.4744 (2) 0.5179 (2) 0.0324 (9)
H10 0.415291 0.501122 0.505311 0.039*
C26 0.2974 (7) 0.3182 (2) 0.34159 (18) 0.0312 (9)
H26A 0.270014 0.275824 0.366990 0.037*
H26B 0.167597 0.349225 0.347184 0.037*
C21 0.7010 (7) 0.4915 (2) 0.4084 (2) 0.0346 (9)
H21A 0.832545 0.517167 0.424124 0.042*
H21B 0.578497 0.525229 0.402795 0.042*
C18 0.5052 (7) 0.3548 (2) 0.36772 (19) 0.0288 (9)
C24 0.3664 (8) 0.3607 (2) 0.2319 (2) 0.0406 (11)
C15 0.3269 (7) 0.34602 (19) 0.48133 (19) 0.0296 (9)
H15 0.180184 0.332125 0.462922 0.036*
C8 0.4270 (8) 0.4760 (2) 0.6258 (2) 0.0386 (10)
C17 0.6327 (7) 0.4380 (2) 0.4582 (2) 0.0292 (9)
H17 0.763081 0.408045 0.468950 0.035*
C9 0.4772 (7) 0.4237 (2) 0.5707 (2) 0.0322 (10)
C22 0.6971 (8) 0.3019 (2) 0.3744 (2) 0.0345 (9)
H22A 0.751711 0.289182 0.331957 0.052*
H22B 0.642942 0.260357 0.396306 0.052*
H22C 0.818350 0.322694 0.399048 0.052*
C11 0.7052 (8) 0.5257 (2) 0.5512 (2) 0.0387 (10)
H11A 0.698529 0.571722 0.530401 0.046*
H11B 0.860739 0.508887 0.550330 0.046*
C20 0.7564 (7) 0.4589 (2) 0.3438 (2) 0.0378 (11)
H20A 0.775716 0.496321 0.311979 0.045*
H20B 0.899444 0.433782 0.347301 0.045*
C12 0.6174 (8) 0.5295 (3) 0.6202 (2) 0.0448 (12)
H12A 0.561469 0.576745 0.629549 0.054*
H12B 0.737654 0.518446 0.650724 0.054*
C6 0.2076 (9) 0.4088 (2) 0.7138 (2) 0.0441 (11)
H6AA 0.196918 0.361138 0.696528 0.053* 0.770 (4)
H6AB 0.082226 0.435978 0.696182 0.053* 0.770 (4)
H6BC 0.120508 0.394023 0.676151 0.053* 0.230 (4)
H6BD 0.119404 0.443918 0.737153 0.053* 0.230 (4)
C13 0.6669 (8) 0.3752 (2) 0.5918 (2) 0.0381 (10)
H13A 0.721108 0.348936 0.554993 0.057*
H13B 0.611557 0.343021 0.624265 0.057*
H13C 0.788640 0.402879 0.609613 0.057*
C25 0.3151 (8) 0.2983 (2) 0.27161 (19) 0.0373 (10)
H25A 0.433983 0.263261 0.266140 0.045*
H25B 0.173190 0.277449 0.257299 0.045*
C14 0.2796 (7) 0.3837 (2) 0.54478 (19) 0.0303 (9)
H14A 0.154299 0.416247 0.538403 0.036*
H14B 0.232769 0.349021 0.576884 0.036*
C7 0.4242 (9) 0.4410 (2) 0.6919 (2) 0.0421 (11)
C16 0.4439 (7) 0.39282 (19) 0.43159 (19) 0.0270 (9)
H16 0.326901 0.426958 0.418849 0.032*
S1 0.1815 (3) 0.40537 (8) 0.79935 (7) 0.0450 (5) 0.770 (4)
O1 0.3483 (7) 0.2850 (2) 0.76836 (19) 0.0451 (11) 0.770 (4)
C1 0.3521 (12) 0.3028 (4) 0.8813 (3) 0.0361 (18) 0.770 (4)
C2 0.6090 (12) 0.3076 (8) 0.8878 (8) 0.039 (3) 0.770 (4)
H2A 0.652836 0.294448 0.931111 0.058* 0.770 (4)
H2B 0.657117 0.355274 0.879249 0.058* 0.770 (4)
H2C 0.679074 0.276143 0.857122 0.058* 0.770 (4)
C4 0.272 (2) 0.2291 (5) 0.8928 (5) 0.058 (3) 0.770 (4)
H4A 0.339000 0.198135 0.861101 0.087* 0.770 (4)
H4B 0.110117 0.227401 0.889187 0.087* 0.770 (4)
H4C 0.316890 0.214251 0.935628 0.087* 0.770 (4)
C3 0.2438 (11) 0.3521 (3) 0.9302 (3) 0.0404 (15) 0.770 (4)
H3A 0.278848 0.336261 0.973456 0.061* 0.770 (4)
H3B 0.082257 0.352166 0.924197 0.061* 0.770 (4)
H3C 0.301585 0.399154 0.924132 0.061* 0.770 (4)
C5 0.3022 (10) 0.3230 (3) 0.8119 (3) 0.0332 (12) 0.770 (4)
S1A 0.2553 (10) 0.3349 (3) 0.7649 (3) 0.055 (2)* 0.230 (4)
O1A 0.297 (2) 0.4314 (7) 0.8496 (6) 0.042 (4)* 0.230 (4)
C1A 0.355 (4) 0.3187 (10) 0.8972 (9) 0.023 (7)* 0.230 (4)
C2A 0.615 (5) 0.309 (3) 0.899 (3) 0.06 (2)* 0.230 (4)
H2AA 0.683993 0.351239 0.915726 0.089* 0.230 (4)
H2AB 0.669427 0.300462 0.855557 0.089* 0.230 (4)
H2AC 0.652259 0.269623 0.926175 0.089* 0.230 (4)
C3A 0.283 (5) 0.3463 (15) 0.9609 (11) 0.056 (8)* 0.230 (4)
H3AA 0.340463 0.316272 0.994771 0.084* 0.230 (4)
H3AB 0.120195 0.347280 0.962866 0.084* 0.230 (4)
H3AC 0.341046 0.393392 0.966587 0.084* 0.230 (4)
C4A 0.260 (6) 0.2455 (13) 0.8820 (15) 0.038 (8)* 0.230 (4)
H4AA 0.330574 0.227462 0.843296 0.058* 0.230 (4)
H4AB 0.099349 0.248796 0.875531 0.058* 0.230 (4)
H4AC 0.291241 0.214194 0.917714 0.058* 0.230 (4)
C5A 0.310 (3) 0.3695 (9) 0.8412 (8) 0.041 (5)* 0.230 (4)

(S)-{2-[(8S,9S,10R,11S,13S,14S,17R)-11,17-Dihydroxy-10,13-dimethyl-3-oxo-2,6,7,8,9,11,12,14,15,16-decahydro-1H-cyclopenta[a]phenanthren-17-yl]-2-oxoethyl} 2,2-dimethylpropanethioate (SY20C174) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O2 0.057 (2) 0.066 (2) 0.0398 (19) −0.0032 (19) −0.0148 (17) −0.0134 (17)
O3 0.0435 (18) 0.0303 (16) 0.0434 (18) 0.0078 (14) −0.0008 (14) −0.0107 (13)
O4 0.056 (2) 0.0208 (14) 0.0328 (16) −0.0010 (14) 0.0056 (15) 0.0014 (12)
O5 0.077 (2) 0.0398 (18) 0.0297 (17) 0.0135 (18) −0.0042 (17) 0.0032 (13)
C19 0.034 (2) 0.031 (2) 0.035 (2) 0.0098 (18) 0.0098 (18) 0.0075 (18)
C23 0.049 (3) 0.030 (2) 0.036 (2) 0.009 (2) 0.011 (2) 0.008 (2)
C10 0.029 (2) 0.025 (2) 0.043 (2) 0.0000 (17) −0.0052 (19) −0.0017 (19)
C26 0.033 (2) 0.030 (2) 0.031 (2) −0.0031 (18) 0.0027 (19) 0.0025 (17)
C21 0.031 (2) 0.026 (2) 0.047 (3) −0.0033 (18) 0.000 (2) 0.0037 (18)
C18 0.032 (2) 0.026 (2) 0.029 (2) 0.0006 (17) 0.0017 (17) 0.0055 (17)
C24 0.053 (3) 0.038 (2) 0.031 (2) 0.017 (2) 0.007 (2) 0.0035 (19)
C15 0.036 (2) 0.022 (2) 0.030 (2) −0.0032 (18) −0.0003 (18) −0.0013 (16)
C8 0.040 (2) 0.032 (2) 0.044 (3) 0.005 (2) −0.005 (2) −0.009 (2)
C17 0.026 (2) 0.0237 (19) 0.038 (2) 0.0022 (16) −0.0028 (17) 0.0020 (17)
C9 0.033 (2) 0.027 (2) 0.037 (2) 0.0015 (17) −0.0020 (18) −0.0033 (18)
C22 0.042 (2) 0.028 (2) 0.033 (2) 0.003 (2) 0.004 (2) 0.0018 (17)
C11 0.036 (2) 0.030 (2) 0.050 (3) −0.0019 (19) −0.007 (2) −0.006 (2)
C20 0.036 (2) 0.031 (2) 0.047 (3) −0.0004 (18) 0.008 (2) 0.010 (2)
C12 0.046 (3) 0.037 (2) 0.051 (3) −0.001 (2) −0.007 (2) −0.015 (2)
C6 0.058 (3) 0.041 (3) 0.033 (2) 0.012 (2) −0.002 (2) 0.000 (2)
C13 0.043 (3) 0.034 (2) 0.037 (2) 0.005 (2) −0.006 (2) −0.0056 (19)
C25 0.044 (2) 0.036 (2) 0.032 (2) 0.004 (2) −0.002 (2) 0.0002 (18)
C14 0.032 (2) 0.025 (2) 0.034 (2) −0.0018 (17) 0.0041 (17) 0.0008 (17)
C7 0.052 (3) 0.038 (2) 0.037 (3) 0.004 (2) −0.004 (2) −0.016 (2)
C16 0.026 (2) 0.0223 (19) 0.033 (2) 0.0016 (16) −0.0008 (17) 0.0049 (16)
S1 0.0628 (10) 0.0413 (9) 0.0309 (8) 0.0206 (8) 0.0025 (7) −0.0008 (6)
O1 0.052 (3) 0.042 (2) 0.042 (2) 0.007 (2) −0.015 (2) −0.013 (2)
C1 0.041 (4) 0.031 (4) 0.036 (4) 0.008 (3) −0.001 (3) −0.008 (3)
C2 0.033 (5) 0.044 (6) 0.039 (5) 0.005 (3) −0.007 (3) −0.007 (4)
C4 0.071 (6) 0.037 (4) 0.066 (6) 0.001 (4) −0.013 (5) 0.012 (4)
C3 0.041 (4) 0.043 (4) 0.037 (4) 0.006 (3) −0.001 (3) −0.001 (3)
C5 0.032 (3) 0.030 (3) 0.037 (3) 0.001 (2) 0.000 (2) −0.004 (3)

(S)-{2-[(8S,9S,10R,11S,13S,14S,17R)-11,17-Dihydroxy-10,13-dimethyl-3-oxo-2,6,7,8,9,11,12,14,15,16-decahydro-1H-cyclopenta[a]phenanthren-17-yl]-2-oxoethyl} 2,2-dimethylpropanethioate (SY20C174) . Geometric parameters (Å, º)

O2—C7 1.204 (6) C6—H6AA 0.9900
O3—H3 0.8400 C6—H6AB 0.9900
O3—C8 1.422 (6) C6—H6BC 0.9900
O4—H4 0.8400 C6—H6BD 0.9900
O4—C15 1.436 (5) C6—C7 1.514 (7)
O5—C24 1.238 (5) C6—S1 1.804 (4)
C19—C23 1.341 (6) C6—S1A 1.807 (5)
C19—C18 1.523 (6) C13—H13A 0.9800
C19—C20 1.491 (6) C13—H13B 0.9800
C23—H23 0.9500 C13—H13C 0.9800
C23—C24 1.443 (7) C25—H25A 0.9900
C10—H10 1.0000 C25—H25B 0.9900
C10—C17 1.519 (6) C14—H14A 0.9900
C10—C9 1.542 (6) C14—H14B 0.9900
C10—C11 1.525 (6) C16—H16 1.0000
C26—H26A 0.9900 S1—C5 1.767 (6)
C26—H26B 0.9900 O1—C5 1.203 (6)
C26—C18 1.536 (6) C1—C2 1.554 (9)
C26—C25 1.522 (5) C1—C4 1.519 (11)
C21—H21A 0.9900 C1—C3 1.543 (9)
C21—H21B 0.9900 C1—C5 1.538 (9)
C21—C17 1.524 (6) C2—H2A 0.9800
C21—C20 1.531 (6) C2—H2B 0.9800
C18—C22 1.547 (6) C2—H2C 0.9800
C18—C16 1.572 (6) C4—H4A 0.9800
C24—C25 1.495 (6) C4—H4B 0.9800
C15—H15 1.0000 C4—H4C 0.9800
C15—C14 1.543 (6) C3—H3A 0.9800
C15—C16 1.549 (5) C3—H3B 0.9800
C8—C9 1.565 (6) C3—H3C 0.9800
C8—C12 1.547 (7) S1A—C5A 1.767 (16)
C8—C7 1.543 (7) O1A—C5A 1.209 (17)
C17—H17 1.0000 C1A—C2A 1.57 (2)
C17—C16 1.536 (6) C1A—C3A 1.50 (2)
C9—C13 1.540 (6) C1A—C4A 1.55 (2)
C9—C14 1.518 (6) C1A—C5A 1.553 (19)
C22—H22A 0.9800 C2A—H2AA 0.9800
C22—H22B 0.9800 C2A—H2AB 0.9800
C22—H22C 0.9800 C2A—H2AC 0.9800
C11—H11A 0.9900 C3A—H3AA 0.9800
C11—H11B 0.9900 C3A—H3AB 0.9800
C11—C12 1.544 (7) C3A—H3AC 0.9800
C20—H20A 0.9900 C4A—H4AA 0.9800
C20—H20B 0.9900 C4A—H4AB 0.9800
C12—H12A 0.9900 C4A—H4AC 0.9800
C12—H12B 0.9900
C8—O3—H3 109.5 C7—C6—S1 113.1 (4)
C15—O4—H4 109.5 C7—C6—S1A 111.5 (4)
C23—C19—C18 122.2 (4) S1—C6—H6AA 109.0
C23—C19—C20 121.2 (4) S1—C6—H6AB 109.0
C20—C19—C18 116.4 (4) S1A—C6—H6BC 109.3
C19—C23—H23 117.9 S1A—C6—H6BD 109.3
C19—C23—C24 124.3 (4) C9—C13—H13A 109.5
C24—C23—H23 117.9 C9—C13—H13B 109.5
C17—C10—H10 106.5 C9—C13—H13C 109.5
C17—C10—C9 113.1 (3) H13A—C13—H13B 109.5
C17—C10—C11 118.6 (4) H13A—C13—H13C 109.5
C9—C10—H10 106.5 H13B—C13—H13C 109.5
C11—C10—H10 106.5 C26—C25—H25A 109.6
C11—C10—C9 104.9 (4) C26—C25—H25B 109.6
H26A—C26—H26B 107.7 C24—C25—C26 110.4 (4)
C18—C26—H26A 108.8 C24—C25—H25A 109.6
C18—C26—H26B 108.8 C24—C25—H25B 109.6
C25—C26—H26A 108.8 H25A—C25—H25B 108.1
C25—C26—H26B 108.8 C15—C14—H14A 108.8
C25—C26—C18 113.8 (4) C15—C14—H14B 108.8
H21A—C21—H21B 107.8 C9—C14—C15 113.8 (3)
C17—C21—H21A 109.0 C9—C14—H14A 108.8
C17—C21—H21B 109.0 C9—C14—H14B 108.8
C17—C21—C20 112.8 (3) H14A—C14—H14B 107.7
C20—C21—H21A 109.0 O2—C7—C8 121.7 (5)
C20—C21—H21B 109.0 O2—C7—C6 120.7 (5)
C19—C18—C26 109.7 (3) C6—C7—C8 117.5 (4)
C19—C18—C22 106.9 (3) C18—C16—H16 104.1
C19—C18—C16 107.4 (3) C15—C16—C18 114.2 (3)
C26—C18—C22 109.7 (3) C15—C16—H16 104.1
C26—C18—C16 109.1 (3) C17—C16—C18 113.6 (3)
C22—C18—C16 113.9 (3) C17—C16—C15 114.9 (3)
O5—C24—C23 122.3 (4) C17—C16—H16 104.1
O5—C24—C25 121.1 (5) C5—S1—C6 98.4 (2)
C23—C24—C25 116.6 (4) C4—C1—C2 110.8 (8)
O4—C15—H15 107.3 C4—C1—C3 109.7 (6)
O4—C15—C14 111.2 (3) C4—C1—C5 109.0 (7)
O4—C15—C16 110.5 (3) C3—C1—C2 109.0 (9)
C14—C15—H15 107.3 C5—C1—C2 105.2 (7)
C14—C15—C16 113.0 (3) C5—C1—C3 113.1 (5)
C16—C15—H15 107.3 C1—C2—H2A 109.5
O3—C8—C9 107.5 (3) C1—C2—H2B 109.5
O3—C8—C12 112.0 (4) C1—C2—H2C 109.5
O3—C8—C7 109.5 (4) H2A—C2—H2B 109.5
C12—C8—C9 103.3 (4) H2A—C2—H2C 109.5
C7—C8—C9 112.7 (4) H2B—C2—H2C 109.5
C7—C8—C12 111.7 (4) C1—C4—H4A 109.5
C10—C17—C21 109.9 (3) C1—C4—H4B 109.5
C10—C17—H17 109.5 C1—C4—H4C 109.5
C10—C17—C16 108.8 (3) H4A—C4—H4B 109.5
C21—C17—H17 109.5 H4A—C4—H4C 109.5
C21—C17—C16 109.5 (3) H4B—C4—H4C 109.5
C16—C17—H17 109.5 C1—C3—H3A 109.5
C10—C9—C8 100.3 (3) C1—C3—H3B 109.5
C13—C9—C10 112.3 (4) C1—C3—H3C 109.5
C13—C9—C8 108.7 (3) H3A—C3—H3B 109.5
C14—C9—C10 106.9 (3) H3A—C3—H3C 109.5
C14—C9—C8 116.2 (4) H3B—C3—H3C 109.5
C14—C9—C13 112.0 (3) O1—C5—S1 121.9 (4)
C18—C22—H22A 109.5 O1—C5—C1 121.4 (5)
C18—C22—H22B 109.5 C1—C5—S1 116.6 (4)
C18—C22—H22C 109.5 C5A—S1A—C6 105.7 (6)
H22A—C22—H22B 109.5 C3A—C1A—C2A 108 (3)
H22A—C22—H22C 109.5 C3A—C1A—C4A 113.4 (19)
H22B—C22—H22C 109.5 C3A—C1A—C5A 113.4 (17)
C10—C11—H11A 110.8 C4A—C1A—C2A 105 (3)
C10—C11—H11B 110.8 C5A—C1A—C2A 105 (2)
C10—C11—C12 104.6 (4) C5A—C1A—C4A 110.7 (17)
H11A—C11—H11B 108.9 C1A—C2A—H2AA 109.5
C12—C11—H11A 110.8 C1A—C2A—H2AB 109.5
C12—C11—H11B 110.8 C1A—C2A—H2AC 109.5
C19—C20—C21 113.3 (4) H2AA—C2A—H2AB 109.5
C19—C20—H20A 108.9 H2AA—C2A—H2AC 109.5
C19—C20—H20B 108.9 H2AB—C2A—H2AC 109.5
C21—C20—H20A 108.9 C1A—C3A—H3AA 109.5
C21—C20—H20B 108.9 C1A—C3A—H3AB 109.5
H20A—C20—H20B 107.7 C1A—C3A—H3AC 109.5
C8—C12—H12A 110.3 H3AA—C3A—H3AB 109.5
C8—C12—H12B 110.3 H3AA—C3A—H3AC 109.5
C11—C12—C8 107.0 (4) H3AB—C3A—H3AC 109.5
C11—C12—H12A 110.3 C1A—C4A—H4AA 109.5
C11—C12—H12B 110.3 C1A—C4A—H4AB 109.5
H12A—C12—H12B 108.6 C1A—C4A—H4AC 109.5
H6AA—C6—H6AB 107.8 H4AA—C4A—H4AB 109.5
H6BC—C6—H6BD 108.0 H4AA—C4A—H4AC 109.5
C7—C6—H6AA 109.0 H4AB—C4A—H4AC 109.5
C7—C6—H6AB 109.0 O1A—C5A—S1A 119.5 (13)
C7—C6—H6BC 109.3 O1A—C5A—C1A 121.7 (15)
C7—C6—H6BD 109.3 C1A—C5A—S1A 118.6 (12)
O3—C8—C9—C10 78.4 (4) C11—C10—C9—C13 −71.3 (4)
O3—C8—C9—C13 −163.7 (4) C11—C10—C9—C14 165.5 (3)
O3—C8—C9—C14 −36.2 (5) C20—C19—C23—C24 169.9 (4)
O3—C8—C12—C11 −92.8 (4) C20—C19—C18—C26 169.2 (4)
O3—C8—C7—O2 −150.6 (4) C20—C19—C18—C22 −72.0 (4)
O3—C8—C7—C6 33.2 (5) C20—C19—C18—C16 50.7 (5)
O4—C15—C14—C9 77.5 (4) C20—C21—C17—C10 −172.5 (3)
O4—C15—C16—C18 51.7 (4) C20—C21—C17—C16 −53.0 (5)
O4—C15—C16—C17 −82.2 (4) C12—C8—C9—C10 −40.1 (4)
O5—C24—C25—C26 −147.6 (4) C12—C8—C9—C13 77.8 (4)
C19—C23—C24—O5 177.9 (4) C12—C8—C9—C14 −154.8 (4)
C19—C23—C24—C25 −4.1 (7) C12—C8—C7—O2 −25.9 (6)
C19—C18—C16—C15 170.8 (3) C12—C8—C7—C6 157.8 (4)
C19—C18—C16—C17 −54.7 (4) C6—S1—C5—O1 −8.4 (6)
C23—C19—C18—C26 −14.2 (5) C6—S1—C5—C1 169.9 (5)
C23—C19—C18—C22 104.7 (5) C6—S1A—C5A—O1A 4 (2)
C23—C19—C18—C16 −132.7 (4) C6—S1A—C5A—C1A 179.1 (15)
C23—C19—C20—C21 133.4 (4) C13—C9—C14—C15 −67.5 (5)
C23—C24—C25—C26 34.4 (6) C25—C26—C18—C19 45.3 (5)
C10—C17—C16—C18 177.5 (3) C25—C26—C18—C22 −71.9 (4)
C10—C17—C16—C15 −48.4 (4) C25—C26—C18—C16 162.7 (3)
C10—C9—C14—C15 55.9 (4) C14—C15—C16—C18 177.0 (3)
C10—C11—C12—C8 4.4 (5) C14—C15—C16—C17 43.2 (5)
C26—C18—C16—C15 52.0 (4) C7—C8—C9—C10 −160.8 (4)
C26—C18—C16—C17 −173.5 (3) C7—C8—C9—C13 −42.9 (5)
C21—C17—C16—C18 57.3 (4) C7—C8—C9—C14 84.5 (5)
C21—C17—C16—C15 −168.5 (3) C7—C8—C12—C11 143.9 (4)
C18—C19—C23—C24 −6.6 (7) C7—C6—S1—C5 −90.2 (4)
C18—C19—C20—C21 −49.9 (5) C7—C6—S1A—C5A 81.0 (8)
C18—C26—C25—C24 −56.1 (5) C16—C15—C14—C9 −47.5 (5)
C8—C9—C14—C15 166.8 (3) S1—C6—C7—O2 30.1 (6)
C17—C10—C9—C8 174.8 (3) S1—C6—C7—C8 −153.6 (3)
C17—C10—C9—C13 59.5 (5) C2—C1—C5—S1 −106.9 (8)
C17—C10—C9—C14 −63.7 (4) C2—C1—C5—O1 71.4 (10)
C17—C10—C11—C12 −158.0 (4) C4—C1—C5—S1 134.2 (6)
C17—C21—C20—C19 49.7 (5) C4—C1—C5—O1 −47.5 (9)
C9—C10—C17—C21 179.7 (3) C3—C1—C5—S1 11.9 (7)
C9—C10—C17—C16 59.8 (4) C3—C1—C5—O1 −169.8 (6)
C9—C10—C11—C12 −30.4 (4) S1A—C6—C7—O2 −27.2 (6)
C9—C8—C12—C11 22.6 (5) S1A—C6—C7—C8 149.1 (4)
C9—C8—C7—O2 89.9 (5) C2A—C1A—C5A—S1A 92 (3)
C9—C8—C7—C6 −86.4 (5) C2A—C1A—C5A—O1A −93 (3)
C22—C18—C16—C15 −70.9 (4) C3A—C1A—C5A—S1A −149.7 (18)
C22—C18—C16—C17 63.5 (4) C3A—C1A—C5A—O1A 25 (3)
C11—C10—C17—C21 −56.7 (5) C4A—C1A—C5A—S1A −21 (2)
C11—C10—C17—C16 −176.6 (4) C4A—C1A—C5A—O1A 154 (2)
C11—C10—C9—C8 44.0 (4)

(S)-{2-[(8S,9S,10R,11S,13S,14S,17R)-11,17-Dihydroxy-10,13-dimethyl-3-oxo-2,6,7,8,9,11,12,14,15,16-decahydro-1H-cyclopenta[a]phenanthren-17-yl]-2-oxoethyl} 2,2-dimethylpropanethioate (SY20C174) . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O3—H3···O5i 0.84 1.96 2.802 (4) 175

Symmetry code: (i) −x+1/2, −y+1, z+1/2.

References

  1. Bircher, A. J., Thürlimann, W., Hunziker, T., Pasche-Koo, F., Hunziker, N., Perrenoud, D., Elsner, P. & Schultheiss, R. (1995). Dermatology, 191, 109–114. [DOI] [PubMed]
  2. Bouley, E. (2013). Patent EP 2853528.
  3. Boultif, A. & Louër, D. (2004). J. Appl. Cryst. 37, 724–731.
  4. Bruker (2016). APEX3 and SAINT. Bruker AXS, Inc., Madison, Wisconsin, USA.
  5. Burden, A. D. & Beck, M. H. (1992). Br. J. Dermatol. 127, 497–500. [DOI] [PubMed]
  6. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  7. Davies, J. E., Kellet, D. N., Staniforth, M. V., Torossian, R. & Grouhel, A. (1981). Arzneimittelforschung, 31, 453–459. [PubMed]
  8. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  9. Jezequel, J., Becuwe, B., Daniel, C. & Geraudel, O. (1979). J. Fr. Otorhinolaryngol. Audiophonol. Chir. Maxillofac. 28, 65–6, 68. [PubMed]
  10. Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. [DOI] [PMC free article] [PubMed]
  11. Lauerma, A. I. (1991). Contact Dermatitis, 24, 123–130. [DOI] [PubMed]
  12. Le Bail, A., Duroy, H. & Fourquet, J. L. (1988). Mater. Res. Bull. 23, 447–452.
  13. Liddle, G. W. (1960). J. Clin. Endocrinol. Metab. 20, 1539–1560. [DOI] [PubMed]
  14. Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. [DOI] [PMC free article] [PubMed]
  15. Mazauric, F. X. & Alligier, B. (1978). J. Fr. Otorhinolaryngol. Audiophonol. Chir. Maxillofac. 27, 721–723. [PubMed]
  16. Nugent, C. A., Macdiarmid, W. D., Nelson, A. R. & Tyler, F. H. (1963). J. Clin. Endocrinol. Metab. 23, 684–693. [DOI] [PubMed]
  17. Palmer, D. C. (2015). Z. Kristallogr. Cryst. Mater. 230, 9–10.
  18. PANalytical (2011). X’Pert Data Collector and X’Pert HighScore Plus. PANalytical BV, Almelo, The Netherlands.
  19. Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. [DOI] [PMC free article] [PubMed]
  20. Petříček, V., Dušek, M. & Palatinus, L. (2014). Z. Kristallogr. 229, 345–352.
  21. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  22. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  23. Uphill, P. F. (1981). Arzneimittelforschung, 31, 459–462.
  24. Visser, J. W. (1969). J. Appl. Cryst. 2, 89–95.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) PL358, SY20C174, New_Global_Publ_Block. DOI: 10.1107/S2056989021007167/dj2019sup1.cif

e-77-00809-sup1.cif (2.5MB, cif)

Structure factors: contains datablock(s) PL358. DOI: 10.1107/S2056989021007167/dj2019PL358sup2.hkl

e-77-00809-PL358sup2.hkl (297.4KB, hkl)

Supporting information file. DOI: 10.1107/S2056989021007167/dj2019PL358sup4.cdx

Structure factors: contains datablock(s) SY20C174. DOI: 10.1107/S2056989021007167/dj2019SY20C174sup3.hkl

Supporting information file. DOI: 10.1107/S2056989021007167/dj2019SY20C174sup5.cdx

CCDC references: 2095871, 2095870

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES