Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2021 Jul 9;77(Pt 8):780–784. doi: 10.1107/S2056989021006885

Crystal structures of three N-acyl­hydrazone isomers

H Purandara a,b, Sabine Foro c, B Thimme Gowda a,d,*
PMCID: PMC8340974  PMID: 34422300

The crystal structures of three isomers of (E)-4-chloro-N-{2-[2-(chloro­benzyl­idene)hydrazin­yl]-2-oxoeth­yl}­benzene­sulfonamide, namely, (E)-4-chloro-N-{2-[2-(2-chloro­benzyl­idene)hydrazin­yl]-2-oxoeth­yl}­benzene­sulfonamide (I), (E)-4-chloro-N-{2-[2-(3-chloro­benzyl­idene)hydrazin­yl]-2-oxoeth­yl}­benzene­sulfonamide (II) and (E)-4-chloro-N-{2-[2-(4-chloro­benzyl­idene)hydrazin­yl]-2-oxoeth­yl}­benzene­sulfonamide (III), with the general formula C15H13Cl2N3O3S are described, with the chloro group in ortho, meta and para positions in the benzyl­idene benzene ring. All the three isomeric compounds crystallize in the centrosymmetric triclinic P Inline graphic space group with one mol­ecule each in the asymmetric unit and two mol­ecules in the unit cell. In all the three crystals, the mol­ecules form inversion dimers with Inline graphic (8) ring motifs, which are further augmented by C—H⋯O inter­actions.

Keywords: crystal structure, N-acyl­hydrazone, dihedral angle, inversion dimers, C—H⋯O inter­action

Abstract

The crystal structures of three isomers of (E)-4-chloro-N-{2-[2-(chloro­benzyl­idene)hydrazin­yl]-2-oxoeth­yl}­benzene­sulfonamide, namely, (E)-4-chloro-N-{2-[2-(2-chloro­benzyl­idene)hydrazin­yl]-2-oxoeth­yl}­benzene­sulfonamide (I), (E)-4-chloro-N-{2-[2-(3-chloro­benzyl­idene)hydrazin­yl]-2-oxoeth­yl}­benzene­sul­fon­amide (II) and (E)-4-chloro-N-{2-[2-(4-chloro­benzyl­idene)hydrazin­yl]-2-oxo­eth­yl}­benzene­sulfonamide (III), with the general formula C15H13Cl2N3O3S are described, with the chloro group in ortho, meta and para positions in the benzyl­idene benzene ring. All the three isomeric compounds crystallize in the centrosymmetric triclinic P Inline graphic space group with one mol­ecule each in the asymmetric unit and two mol­ecules in the unit cell. The dihedral angles between the two phenyl rings are 11.09 (14), 53.79 (18) and 72.37 (11)° in (I), (II) and (III), respectively. The central part of the mol­ecule (–C—N—N=C–) is almost linear with C—N—N—C torsion angles of 179.1 (2), −169.5 (3) and 178.5 (2)° for (I), (II) and (III), respectively. In all the three crystals, the mol­ecules form inversion dimers with R 2 2(8) ring motifs, which are further augmented by C—H⋯O inter­actions.

Chemical context  

The properties of mol­ecules in solution and the solid state are strongly influenced by weak non-covalent inter­actions. Weak mol­ecular inter­actions are investigated routinely in the areas of mol­ecular recognition (Brouwer et al., 1999), self-assembly (Seth et al., 2011), supra­molecular chemistry and general host–guest inter­actions (Kim et al., 2000; Sharma et al., 2009). Analysis of inter­molecular inter­actions and estimation of their energies provide greater insights into mol­ecular conformations (Cao et al., 2020; Jablonski, 2020). The nature and site of substituents influence the extent of polarization of electron distribution in covalent compounds. In our previous work (Purandara et al., 2017a ,b ), the presence of the electron-withdrawing nitro group on the benzene ring was found to decrease the electronic density, rendering aromatic C—H protons acidic, whereas a methyl substituent did not activate aromatic protons for participation in inter­molecular C—H⋯O inter­actions. In a continuation of these efforts to study the effect of substituents on weak mol­ecular inter­actions, we report herein the synthesis, characterization and crystal structures of three isomeric mol­ecules. graphic file with name e-77-00780-scheme1.jpg

Structural commentary  

All three isomers (I)–(III) (Figs. 1–3 ) crystallize in the centrosymmetric triclinic system with space group P Inline graphic and with one mol­ecule in the asymmetric unit and two mol­ecules in the unit cell. The conformation of both the sulfonamide and hydrazine N—H bonds are syn with respect to the C=O bonds in all the three compounds. Similarly, the imine C—H bond in the amide part is also syn with respect to the amide N—H bond. All four such bonds in the central part are syn to each other. The C8—O3 and C9—N3 bond lengths of 1.224 (3)–1.236 (3) Å and 1.271 (3)–1.275 (4) Å, respectively, are in the ranges of normal C=O and C=N bond lengths, indicating double-bond character and thus confirming the keto tautomeric form and are comparable with those in related N-acyl­hydrazone structures (Purandara et al., 2017). The delocalization of π-electron density over the C9/N3/N2/C8/O3 fragment is indicated by the shortening of the C8—N2 [1.337 (3)–1.342 (4) Å] distances compared to the normal C—N single bond length of 1.40 Å (Allen et al., 1987). The sulfonamide bonds are synclinal, anti­clinal and anti­periplanar with the S1—N1—C7—C8 torsion angle being 83.6 (3), −107.2 (3) and 171.09 (18)°, in compounds (I), (II) and (III), respectively. The major twist in the mol­ecule occurs about the S1—N1 bond [C1—S1—N1—C7 = 97.6 (2) (I), 65.6 (2) (II) and −80.1 (2)° (III)], giving the mol­ecule an approximate overall L-shape. All the mol­ecules adopt an E configuration around the C9=N3 bond as indicated by the N2—N3—C9—C10 torsion angles of 179.6 (2), 179.1 (3) and 180.0 (2)° for (I), (II) and (III), respectively. The central fragment of the mol­ecule, (C9/N3/N2/C8/O3) is nearly coplanar with the phenyl ring (C10–C15), as indicated by the dihedral angles between their best planes of 4.2 (2) in (I), 11.9 (3) in (II) and 7.0 (3)° in (III). The dihedral angles between the two phenyl rings, C1–C6 and C10–·C15 are 11.1 (1), 53.8 (1) and 72.4 (1)° for (I), (II) and (III), respectively, indicating non-planarity of the three mol­ecules. An intra­molecular hydrogen bond, N1—H1N⋯O3, is observed in (II) and (III), generating an S(5) ring motif.

Figure 1.

Figure 1

Mol­ecular structure of (I), showing the atom labelling and displacement ellipsoids drawn at the 50% probability level.

Figure 2.

Figure 2

The mol­ecular structure of (II), showing the atom labelling and displacement ellipsoids drawn at the 50% probability level. The intra­molecular hydrogen bond is depicted by a dashed line.

Figure 3.

Figure 3

The mol­ecular structure of (III), showing the atom labelling and displacement ellipsoids drawn at the 50% probability level. The intra­molecular hydrogen bond is depicted by a dashed line.

Supra­molecular features  

In the crystal of (I), the carbonyl oxygen (O3) shows bifurcated hydrogen bonding. In one part, the mol­ecules are linked by a pair of N2—H2N⋯O3 hydrogen bonds involving the amide NH atom, forming inversion dimers with an Inline graphic (8) ring motif. In the other part, the mol­ecules are linked by a pair of N1—H1N⋯O3 hydrogen bonds with the sulfonamide NH atom of another mol­ecule, forming rings with an Inline graphic (10) graph-set motif, leading to a layered structure with the mean planes of the layers inclined to the ab plane by 16.1 (5)° (Table 1, Fig. 4). In the crystal of (II), the mol­ecules are linked by two pairs of N—H⋯O hydrogen bonds (N1—H1N⋯O2 and N2—H2N⋯O3), involving both the sulfonyl and carbonyl O atoms with both sulfonamide and amide N—H bonds (N1—H1N and N2—H2N), forming inversion dimers with Inline graphic (8) ring motifs. These inter­actions are further strengthened by C—H⋯O hydrogen bonds. Thus, three-center N1—H1N/C6—H6⋯O1 hydrogen bonds result in mol­ecular chains containing the Inline graphic (7) ring motif (Fig. 5). These rings are extended along the principal diagonal of the ac plane via C7—H7⋯O2 hydrogen bonds, forming Inline graphic (10) ring motifs, and by C15—H15⋯O2 inter­actions. In addition, the crystal structure is reinforced by C—H⋯π(ring) inter­actions (Fig. 5), details of which are summarized in Table 2. In the crystal of (III), the mol­ecules are also linked by two pairs of N—H⋯O hydrogen bonds (N1—H1N⋯O2 and N2—H2N⋯O3), forming inversion dimers with Inline graphic (8) ring motifs. These dimers are connected by inter­molecular C15—H15⋯O1 inter­actions, forming ribbons two mol­ecules wide and extending along the principal diagonal of the ab plane (Table 3, Fig. 6). The presence of the chlorine atom on the phenyl ring (C10–C15) of (I)–(III) makes the aromatic protons acidic, resulting in the formation of C—H⋯O hydrogen bonds with the sulfonyl O atom.

Table 1. Hydrogen-bond geometry (Å, °) for (I) .

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O3i 0.84 (2) 2.01 (2) 2.823 (3) 162 (3)
N2—H2N⋯O3ii 0.85 (2) 2.06 (2) 2.897 (2) 167 (2)
C12—H12⋯O2iii 0.93 2.53 3.439 (3) 166

Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+2, -y+1, -z+1; (iii) x+1, y+1, z.

Figure 4.

Figure 4

A view of a portion of one chain of inversion dimers in (I) connected by N—H⋯O hydrogen bonds (dashed lines) and extending along the a-axis direction.

Figure 5.

Figure 5

A partial packing diagram for (II) with N—H⋯O and C—H⋯O hydrogen bonds depicted, respectively, by light-blue and black dashed lines. The C—H⋯π(ring) inter­actions are depicted by violet dashed lines.

Table 2. Hydrogen-bond geometry (Å, °) for (II) .

Cg is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.84 (2) 2.23 (2) 3.041 (3) 161 (3)
N2—H2N⋯O3ii 0.86 (2) 1.97 (2) 2.828 (3) 171 (3)
C6—H6⋯O1i 0.93 2.53 3.422 (4) 161
C7—H7B⋯O2iii 0.97 2.47 3.434 (4) 172
C15—H15⋯O2iv 0.93 2.58 3.474 (4) 162
C14—H14⋯Cg v 0.93 2.84 3.675 (5) 150

Symmetry codes: (i) -x+1, -y, -z+2; (ii) -x+1, -y, -z+1; (iii) -x, -y, -z+2; (iv) x, y, z-1; (v) -x, -y, -z+1.

Table 3. Hydrogen-bond geometry (Å, °) for (III) .

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O2i 0.82 (2) 2.25 (2) 3.032 (3) 162 (3)
N1—H1N⋯O3 0.82 (2) 2.23 (3) 2.609 (3) 109 (2)
N2—H2N⋯O3ii 0.86 (2) 1.98 (2) 2.829 (3) 170 (3)
C15—H15⋯O1iii 0.93 2.45 3.330 (3) 157

Symmetry codes: (i) -x-1, -y+2, -z; (ii) -x, -y+1, -z; (iii) x+1, y-1, z.

Figure 6.

Figure 6

A portion of one chain in (III) viewed along the a-axis direction with hydrogen bonds depicted as in Fig. 5.

Database survey  

Comparison of structures (I)–(III) with those of related N-acyl­hydrazone derivatives (Purandara et al., 2017, 2018) shows that the site of substitution of an electron-withdrawing group on the aromatic ring plays a major role in stabilizing the crystal packing by linking the mol­ecules through various weak inter­actions.

Synthesis and crystallization  

General procedure for the synthesis of N -(4-chloro­benzene­sulfon­yl) glycine hydrazone derivatives (I)–(III)

A mixture of N-(4-chloro­benzene­sulfon­yl) glycinyl hydrazide (0.01 mol) and the appropriate chloro­benzaldehyde (0.01 mol) in anhydrous methanol (30 mL) and two drops of glacial acetic acid was refluxed for 8 h. After cooling, the precipitate was collected by vacuum filtration, washed with cold methanol and dried. It was recrystallized to constant melting point from methanol. The purity of the compound was checked by TLC and characterized by its IR and NMR spectra. Single crystals suitable for the X-ray diffraction study were grown from DMF solution by slow evaporation of the solvent.

Compound (I): Prism-like yellow single crystals; m.p. 506–507 K; IR (KBr, γ, cm−1): 3190.3 (N—H), 1672.3 (C=O), 1608.6 (C=N), 1334.7 (S=O, asym) and 1159.2 cm−1 (S=O, sym); 1H NMR (400 MHz, DMSO-d 6, δ ppm): 3.64, 4.14 (d, 2H), 7.36–7.45 (m, 2H, Ar-H), 7.47–7.50 (m, 1H, Ar-H), 7.61–7.67 (m, 2H, Ar-H), 7.83–7.95 (m, 3H, Ar-H), 8.12 (s, 1H), 8.13 (s, 1H), 11.64 (s, 1H). 13C NMR (400 MHz, DMSO-d 6, δ ppm): 43.27, 44.49, 126.82, 127.53, 128.54, 129.11, 129.82, 131.25, 133.02, 137.24, 139.19, 139.81, 143.18, 164.23, 169.08.

Compound (II): Prism-like colourless single crystals; m.p. 469–470 K; IR (KBr, γ, cm−1): 3265.5 (N—-H), 1687.7 (C=O), 1589.3 (C=N), 1340.5 (S=O, asym) and 1168.9 cm−1 (S=O, sym); 1H NMR (400 MHz, DMSO-d 6, δ ppm): 3.64, 4.11 (2d, 2H), 7.39–7.44 (m, 2H, Ar-H), 7.54–7.65 (m, 4H, Ar-H), 7.84–7.87 (m, 2H, Ar-H), 7.91, 8.15 (2s, 1H), 8.01, 8.21 (2t, 1H), 11.51, 11.54 (2s, 1H). 13C NMR (400 MHz, DMSO-d 6, δ ppm): 43.24, 44.42, 125.52, 126.14, 128.44, 128.91, 129.47, 130.31, 133.70, 136.05, 137.34, 139.36, 142.18, 145.60, 164.17, 168.96.

Compound (III): Rod-like colourless single crystals; m.p. 473–475 K; IR (KBr, γ, cm−1): 3246.2 (N—H), 1685.8 (C=O), 1591.3 (C=N), 1344.4 (S=O, asym) and 1168.9 cm−1 (S=O, sym); 1H NMR (400 MHz, DMSO-d 6, δ ppm): 3.62, 4.11 (2d, 2H), 7.48–7.51 (m, 2H, Ar-H), 7.63–7.71 (m, 4H, Ar-H), 7.81–7.85 (m, 2H, Ar-H), 7.92, 8.14 (2s, 1H), 8.01 (t, 1H), 11.49, 11.53 (2s, 1H). 13C NMR (400 MHz, DMSO-d 6, δ ppm): 43.21, 128.50, 128.70, 128.86, 129.14, 132.87, 134.34, 137.20, 139.50, 142.53, 145.80, 164.07, 168.96.

Refinement details  

Crystal data, data collection and structure refinement details are summarized in Table 4. H atoms bonded to C were positioned with idealized geometry using a riding model with C—H = 0.93 Å (aromatic) and 0.97 Å (methyl­ene). The amino H atoms were refined with the N—H distances restrained to 0.86 (2) Å. All H atoms were assigned isotropic displacement parameters 1.2 × U eq of the parent atom. In compound (III), the Inline graphic Inline graphic 3 reflection had a poor agreement with its calculated value and was omitted from the final refinement.

Table 4. Experimental details.

  (I) (II) (III)
Crystal data
Chemical formula C15H13Cl2N3O3S C15H13Cl2N3O3S C15H13Cl2N3O3S
M r 386.24 386.24 386.24
Crystal system, space group Triclinic, P\overline{1} Triclinic, P\overline{1} Triclinic, P\overline{1}
Temperature (K) 293 293 293
a, b, c (Å) 7.7426 (7), 10.429 (1), 10.934 (1) 9.491 (1), 9.976 (1), 10.446 (1) 6.7234 (9), 10.281 (1), 13.611 (2)
α, β, γ (°) 85.51 (1), 76.92 (1), 81.04 (1) 67.22 (1), 66.80 (1), 86.32 (1) 74.98 (1), 87.11 (1), 75.34 (1)
V3) 848.64 (14) 833.59 (17) 879.0 (2)
Z 2 2 2
Radiation type Mo Kα Mo Kα Mo Kα
μ (mm−1) 0.52 0.53 0.51
Crystal size (mm) 0.48 × 0.36 × 0.10 0.36 × 0.14 × 0.08 0.46 × 0.42 × 0.20
 
Data collection
Diffractometer Oxford Diffraction Xcalibur with Sapphire CCD Oxford Diffraction Xcalibur with Sapphire CCD Oxford Diffraction Xcalibur with Sapphire CCD
Absorption correction Multi-scan (CrysAlis RED; Oxford Diffraction, 2009) Multi-scan (CrysAlis RED, Oxford Diffraction, 2009) Multi-scan (CrysAlis RED, Oxford Diffraction, 2009)
T min, T max 0.787, 0.949 0.831, 0.959 0.801, 0.906
No. of measured, independent and observed [I > 2σ(I)] reflections 5699, 3417, 2359 5759, 3354, 2688 5737, 3598, 2600
R int 0.018 0.018 0.019
(sin θ/λ)max−1) 0.625 0.625 0.625
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.046, 0.102, 1.04 0.054, 0.108, 1.22 0.048, 0.120, 1.04
No. of reflections 3417 3354 3598
No. of parameters 223 223 223
No. of restraints 2 2 2
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.24, −0.29 0.27, −0.39 0.33, −0.30

Computer programs: CrysAlis CCD and CrysAlis RED (Oxford Diffraction, 2009), SHELXS2013/1 (Sheldrick, 2008), SHELXL2014/6 (Sheldrick, 2015) and PLATON (Spek, 2020).

Supplementary Material

Crystal structure: contains datablock(s) I, II, III, global. DOI: 10.1107/S2056989021006885/mw2177sup1.cif

e-77-00780-sup1.cif (645KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989021006885/mw2177Isup2.hkl

e-77-00780-Isup2.hkl (272.7KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989021006885/mw2177IIsup3.hkl

e-77-00780-IIsup3.hkl (267.7KB, hkl)

Structure factors: contains datablock(s) III. DOI: 10.1107/S2056989021006885/mw2177IIIsup4.hkl

e-77-00780-IIIsup4.hkl (287KB, hkl)

Supporting information file. DOI: 10.1107/S2056989021006885/mw2177Isup5.cml

Supporting information file. DOI: 10.1107/S2056989021006885/mw2177IIsup6.cml

CCDC references: 1433593, 1433594, 1433606

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the SAIF, Panjab University, for providing the NMR facility.

supplementary crystallographic information

(E)-4-Chloro-N-{2-[2-(2-chlorobenzylidene)hydrazinyl]-2-oxoethyl}benzenesulfonamide (I) . Crystal data

C15H13Cl2N3O3S Z = 2
Mr = 386.24 F(000) = 396
Triclinic, P1 Dx = 1.512 Mg m3
a = 7.7426 (7) Å Mo Kα radiation, λ = 0.71073 Å
b = 10.429 (1) Å Cell parameters from 2012 reflections
c = 10.934 (1) Å θ = 2.8–27.8°
α = 85.51 (1)° µ = 0.52 mm1
β = 76.92 (1)° T = 293 K
γ = 81.04 (1)° Prism, yellow
V = 848.64 (14) Å3 0.48 × 0.36 × 0.10 mm

(E)-4-Chloro-N-{2-[2-(2-chlorobenzylidene)hydrazinyl]-2-oxoethyl}benzenesulfonamide (I) . Data collection

Oxford Diffraction Xcalibur with Sapphire CCD diffractometer 2359 reflections with I > 2σ(I)
Radiation source: Enhance (Mo) X-ray Source Rint = 0.018
Rotation method data acquisition using ω scans. θmax = 26.4°, θmin = 2.8°
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) h = −9→9
Tmin = 0.787, Tmax = 0.949 k = −10→13
5699 measured reflections l = −13→13
3417 independent reflections

(E)-4-Chloro-N-{2-[2-(2-chlorobenzylidene)hydrazinyl]-2-oxoethyl}benzenesulfonamide (I) . Refinement

Refinement on F2 2 restraints
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.046 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.102 w = 1/[σ2(Fo2) + (0.0321P)2 + 0.3938P] where P = (Fo2 + 2Fc2)/3
S = 1.04 (Δ/σ)max = 0.001
3417 reflections Δρmax = 0.24 e Å3
223 parameters Δρmin = −0.29 e Å3

(E)-4-Chloro-N-{2-[2-(2-chlorobenzylidene)hydrazinyl]-2-oxoethyl}benzenesulfonamide (I) . Special details

Experimental. CrysAlis RED (Oxford Diffraction, 2009) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

(E)-4-Chloro-N-{2-[2-(2-chlorobenzylidene)hydrazinyl]-2-oxoethyl}benzenesulfonamide (I) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.1746 (3) 0.6076 (2) 0.8440 (2) 0.0487 (6)
C2 0.1897 (4) 0.7192 (3) 0.8985 (3) 0.0687 (8)
H2 0.3023 0.7399 0.8985 0.082*
C3 0.0378 (5) 0.7997 (3) 0.9529 (3) 0.0852 (11)
H3 0.0473 0.8756 0.9888 0.102*
C4 −0.1270 (5) 0.7675 (4) 0.9540 (3) 0.0801 (11)
C5 −0.1448 (4) 0.6551 (4) 0.9042 (3) 0.0763 (10)
H5 −0.2579 0.6330 0.9083 0.092*
C6 0.0079 (4) 0.5742 (3) 0.8473 (3) 0.0595 (7)
H6 −0.0022 0.4982 0.8118 0.071*
C7 0.5597 (3) 0.6727 (2) 0.6046 (3) 0.0521 (7)
H7A 0.5504 0.7198 0.6794 0.063*
H7B 0.5376 0.7357 0.5378 0.063*
C8 0.7483 (3) 0.6002 (2) 0.5670 (2) 0.0386 (5)
C9 0.9738 (3) 0.8484 (2) 0.6184 (2) 0.0405 (6)
H9 1.0910 0.8074 0.5943 0.049*
C10 0.9368 (3) 0.9816 (2) 0.6622 (2) 0.0381 (5)
C11 1.0705 (3) 1.0515 (2) 0.6753 (2) 0.0430 (6)
C12 1.0322 (4) 1.1777 (2) 0.7149 (3) 0.0545 (7)
H12 1.1239 1.2217 0.7240 0.065*
C13 0.8572 (4) 1.2374 (3) 0.7408 (3) 0.0616 (8)
H13 0.8306 1.3224 0.7669 0.074*
C14 0.7213 (4) 1.1717 (3) 0.7281 (3) 0.0614 (8)
H14 0.6032 1.2124 0.7452 0.074*
C15 0.7610 (3) 1.0457 (2) 0.6902 (3) 0.0516 (7)
H15 0.6681 1.0019 0.6831 0.062*
N1 0.4241 (3) 0.5872 (2) 0.6292 (2) 0.0526 (6)
H1N 0.383 (3) 0.569 (3) 0.569 (2) 0.063*
N2 0.8820 (3) 0.66560 (18) 0.5716 (2) 0.0420 (5)
H2N 0.990 (2) 0.631 (2) 0.544 (2) 0.050*
N3 0.8430 (2) 0.79018 (18) 0.61392 (19) 0.0411 (5)
O1 0.5090 (3) 0.5131 (2) 0.8282 (2) 0.0751 (6)
O2 0.3180 (3) 0.39150 (17) 0.7388 (2) 0.0732 (6)
O3 0.7778 (2) 0.48784 (15) 0.53116 (17) 0.0483 (4)
Cl1 −0.31736 (16) 0.87209 (13) 1.01893 (11) 0.1407 (6)
Cl2 1.29502 (9) 0.98193 (7) 0.63926 (8) 0.0690 (3)
S1 0.36939 (9) 0.51159 (7) 0.76264 (7) 0.0529 (2)

(E)-4-Chloro-N-{2-[2-(2-chlorobenzylidene)hydrazinyl]-2-oxoethyl}benzenesulfonamide (I) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0476 (15) 0.0454 (15) 0.0497 (16) −0.0040 (12) −0.0062 (12) 0.0005 (12)
C2 0.0685 (19) 0.062 (2) 0.071 (2) −0.0128 (16) −0.0002 (16) −0.0158 (17)
C3 0.105 (3) 0.062 (2) 0.071 (2) 0.004 (2) 0.011 (2) −0.0138 (18)
C4 0.079 (2) 0.077 (2) 0.056 (2) 0.026 (2) 0.0122 (17) 0.0121 (18)
C5 0.0474 (17) 0.105 (3) 0.064 (2) 0.0034 (18) −0.0040 (15) 0.019 (2)
C6 0.0504 (16) 0.0663 (19) 0.0597 (18) −0.0082 (14) −0.0104 (14) 0.0043 (15)
C7 0.0380 (13) 0.0404 (15) 0.0759 (19) −0.0050 (11) −0.0040 (13) −0.0151 (13)
C8 0.0374 (12) 0.0324 (13) 0.0450 (14) −0.0041 (10) −0.0076 (11) −0.0029 (11)
C9 0.0360 (12) 0.0333 (13) 0.0513 (15) −0.0035 (10) −0.0079 (11) −0.0032 (11)
C10 0.0392 (12) 0.0289 (12) 0.0452 (14) −0.0035 (10) −0.0077 (11) −0.0018 (11)
C11 0.0402 (13) 0.0371 (13) 0.0525 (16) −0.0063 (10) −0.0113 (11) −0.0021 (12)
C12 0.0604 (17) 0.0397 (15) 0.0690 (19) −0.0164 (13) −0.0179 (14) −0.0070 (14)
C13 0.075 (2) 0.0322 (14) 0.077 (2) −0.0029 (14) −0.0153 (16) −0.0124 (14)
C14 0.0508 (16) 0.0414 (16) 0.086 (2) 0.0051 (13) −0.0068 (15) −0.0124 (15)
C15 0.0414 (14) 0.0391 (14) 0.0737 (19) −0.0058 (11) −0.0096 (13) −0.0072 (13)
N1 0.0412 (12) 0.0617 (15) 0.0576 (15) −0.0181 (11) −0.0039 (10) −0.0171 (12)
N2 0.0340 (10) 0.0305 (11) 0.0600 (14) −0.0033 (9) −0.0053 (10) −0.0093 (10)
N3 0.0405 (11) 0.0298 (10) 0.0529 (13) −0.0052 (9) −0.0086 (9) −0.0057 (9)
O1 0.0577 (12) 0.0822 (15) 0.0895 (16) 0.0029 (11) −0.0313 (11) −0.0095 (13)
O2 0.0696 (13) 0.0384 (11) 0.1099 (18) −0.0079 (10) −0.0132 (12) −0.0116 (11)
O3 0.0393 (9) 0.0342 (9) 0.0725 (12) −0.0030 (7) −0.0115 (8) −0.0153 (9)
Cl1 0.1177 (9) 0.1400 (10) 0.1047 (8) 0.0695 (8) 0.0332 (7) 0.0151 (7)
Cl2 0.0391 (4) 0.0617 (5) 0.1092 (7) −0.0066 (3) −0.0181 (4) −0.0182 (4)
S1 0.0428 (4) 0.0433 (4) 0.0722 (5) −0.0029 (3) −0.0113 (3) −0.0093 (3)

(E)-4-Chloro-N-{2-[2-(2-chlorobenzylidene)hydrazinyl]-2-oxoethyl}benzenesulfonamide (I) . Geometric parameters (Å, º)

C1—C2 1.380 (4) C9—C10 1.469 (3)
C1—C6 1.381 (4) C9—H9 0.9300
C1—S1 1.769 (3) C10—C11 1.394 (3)
C2—C3 1.377 (4) C10—C15 1.398 (3)
C2—H2 0.9300 C11—C12 1.385 (3)
C3—C4 1.367 (5) C11—Cl2 1.745 (2)
C3—H3 0.9300 C12—C13 1.376 (4)
C4—C5 1.369 (5) C12—H12 0.9300
C4—Cl1 1.736 (3) C13—C14 1.379 (4)
C5—C6 1.391 (4) C13—H13 0.9300
C5—H5 0.9300 C14—C15 1.377 (3)
C6—H6 0.9300 C14—H14 0.9300
C7—N1 1.447 (3) C15—H15 0.9300
C7—C8 1.518 (3) N1—S1 1.604 (2)
C7—H7A 0.9700 N1—H1N 0.841 (16)
C7—H7B 0.9700 N2—N3 1.379 (3)
C8—O3 1.236 (3) N2—H2N 0.852 (16)
C8—N2 1.337 (3) O1—S1 1.4283 (19)
C9—N3 1.271 (3) O2—S1 1.4312 (19)
C2—C1—C6 120.3 (3) C11—C10—C9 123.2 (2)
C2—C1—S1 119.8 (2) C15—C10—C9 120.2 (2)
C6—C1—S1 119.8 (2) C12—C11—C10 122.1 (2)
C3—C2—C1 119.9 (3) C12—C11—Cl2 117.61 (19)
C3—C2—H2 120.1 C10—C11—Cl2 120.32 (18)
C1—C2—H2 120.1 C13—C12—C11 119.4 (2)
C4—C3—C2 119.6 (3) C13—C12—H12 120.3
C4—C3—H3 120.2 C11—C12—H12 120.3
C2—C3—H3 120.2 C12—C13—C14 120.2 (2)
C3—C4—C5 121.4 (3) C12—C13—H13 119.9
C3—C4—Cl1 119.1 (3) C14—C13—H13 119.9
C5—C4—Cl1 119.5 (3) C15—C14—C13 119.7 (3)
C4—C5—C6 119.4 (3) C15—C14—H14 120.1
C4—C5—H5 120.3 C13—C14—H14 120.1
C6—C5—H5 120.3 C14—C15—C10 121.9 (2)
C1—C6—C5 119.4 (3) C14—C15—H15 119.0
C1—C6—H6 120.3 C10—C15—H15 119.0
C5—C6—H6 120.3 C7—N1—S1 122.21 (19)
N1—C7—C8 112.8 (2) C7—N1—H1N 119 (2)
N1—C7—H7A 109.0 S1—N1—H1N 119 (2)
C8—C7—H7A 109.0 C8—N2—N3 119.52 (19)
N1—C7—H7B 109.0 C8—N2—H2N 119.0 (17)
C8—C7—H7B 109.0 N3—N2—H2N 121.4 (17)
H7A—C7—H7B 107.8 C9—N3—N2 117.61 (19)
O3—C8—N2 121.5 (2) O1—S1—O2 120.84 (13)
O3—C8—C7 122.1 (2) O1—S1—N1 107.43 (13)
N2—C8—C7 116.5 (2) O2—S1—N1 107.08 (12)
N3—C9—C10 119.0 (2) O1—S1—C1 107.99 (13)
N3—C9—H9 120.5 O2—S1—C1 107.31 (12)
C10—C9—H9 120.5 N1—S1—C1 105.16 (12)
C11—C10—C15 116.6 (2)
C6—C1—C2—C3 −2.1 (4) C11—C12—C13—C14 0.5 (4)
S1—C1—C2—C3 174.7 (2) C12—C13—C14—C15 0.4 (5)
C1—C2—C3—C4 0.9 (5) C13—C14—C15—C10 −0.8 (4)
C2—C3—C4—C5 1.3 (5) C11—C10—C15—C14 0.4 (4)
C2—C3—C4—Cl1 −178.2 (2) C9—C10—C15—C14 −178.1 (3)
C3—C4—C5—C6 −2.3 (5) C8—C7—N1—S1 83.6 (3)
Cl1—C4—C5—C6 177.2 (2) O3—C8—N2—N3 −179.0 (2)
C2—C1—C6—C5 1.1 (4) C7—C8—N2—N3 2.6 (3)
S1—C1—C6—C5 −175.7 (2) C10—C9—N3—N2 179.6 (2)
C4—C5—C6—C1 1.1 (4) C8—N2—N3—C9 179.1 (2)
N1—C7—C8—O3 17.0 (4) C7—N1—S1—O1 −17.3 (2)
N1—C7—C8—N2 −164.6 (2) C7—N1—S1—O2 −148.5 (2)
N3—C9—C10—C11 177.3 (2) C7—N1—S1—C1 97.6 (2)
N3—C9—C10—C15 −4.3 (4) C2—C1—S1—O1 36.9 (3)
C15—C10—C11—C12 0.5 (4) C6—C1—S1—O1 −146.3 (2)
C9—C10—C11—C12 179.0 (2) C2—C1—S1—O2 168.7 (2)
C15—C10—C11—Cl2 −178.54 (19) C6—C1—S1—O2 −14.6 (3)
C9—C10—C11—Cl2 0.0 (3) C2—C1—S1—N1 −77.6 (2)
C10—C11—C12—C13 −0.9 (4) C6—C1—S1—N1 99.2 (2)
Cl2—C11—C12—C13 178.1 (2)

(E)-4-Chloro-N-{2-[2-(2-chlorobenzylidene)hydrazinyl]-2-oxoethyl}benzenesulfonamide (I) . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1N···O3i 0.84 (2) 2.01 (2) 2.823 (3) 162 (3)
N2—H2N···O3ii 0.85 (2) 2.06 (2) 2.897 (2) 167 (2)
C12—H12···O2iii 0.93 2.53 3.439 (3) 166

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+2, −y+1, −z+1; (iii) x+1, y+1, z.

(E)-4-Chloro-N-{2-[2-(3-chlorobenzylidene)hydrazinyl]-2-oxoethyl}benzenesulfonamide (II) . Crystal data

C15H13Cl2N3O3S Z = 2
Mr = 386.24 F(000) = 396
Triclinic, P1 Dx = 1.539 Mg m3
a = 9.491 (1) Å Mo Kα radiation, λ = 0.71073 Å
b = 9.976 (1) Å Cell parameters from 2850 reflections
c = 10.446 (1) Å θ = 2.6–27.9°
α = 67.22 (1)° µ = 0.53 mm1
β = 66.80 (1)° T = 293 K
γ = 86.32 (1)° Prism, colourless
V = 833.59 (17) Å3 0.36 × 0.14 × 0.08 mm

(E)-4-Chloro-N-{2-[2-(3-chlorobenzylidene)hydrazinyl]-2-oxoethyl}benzenesulfonamide (II) . Data collection

Oxford Diffraction Xcalibur with Sapphire CCD diffractometer 2688 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.018
Rotation method data acquisition using ω scans. θmax = 26.4°, θmin = 2.6°
Absorption correction: multi-scan (CrysAlis RED, Oxford Diffraction, 2009) h = −11→11
Tmin = 0.831, Tmax = 0.959 k = −12→12
5759 measured reflections l = −13→12
3354 independent reflections

(E)-4-Chloro-N-{2-[2-(3-chlorobenzylidene)hydrazinyl]-2-oxoethyl}benzenesulfonamide (II) . Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054 Hydrogen site location: mixed
wR(F2) = 0.108 H atoms treated by a mixture of independent and constrained refinement
S = 1.22 w = 1/[σ2(Fo2) + (0.0148P)2 + 1.1114P] where P = (Fo2 + 2Fc2)/3
3354 reflections (Δ/σ)max = 0.002
223 parameters Δρmax = 0.27 e Å3
2 restraints Δρmin = −0.39 e Å3

(E)-4-Chloro-N-{2-[2-(3-chlorobenzylidene)hydrazinyl]-2-oxoethyl}benzenesulfonamide (II) . Special details

Experimental. CrysAlis RED, Oxford Diffraction Ltd., 2009 Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

(E)-4-Chloro-N-{2-[2-(3-chlorobenzylidene)hydrazinyl]-2-oxoethyl}benzenesulfonamide (II) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.2520 (3) −0.1930 (3) 1.0295 (3) 0.0312 (6)
C2 0.1178 (3) −0.2828 (3) 1.0900 (4) 0.0408 (7)
H2 0.0241 −0.2549 1.1415 0.049*
C3 0.1226 (4) −0.4145 (4) 1.0739 (4) 0.0458 (8)
H3 0.0329 −0.4769 1.1166 0.055*
C4 0.2616 (4) −0.4519 (3) 0.9939 (4) 0.0392 (7)
C5 0.3966 (4) −0.3626 (3) 0.9327 (4) 0.0393 (7)
H5 0.4898 −0.3896 0.8789 0.047*
C6 0.3924 (3) −0.2326 (3) 0.9519 (3) 0.0356 (7)
H6 0.4828 −0.1724 0.9131 0.043*
C7 0.2808 (3) 0.1427 (3) 0.7715 (3) 0.0356 (7)
H7A 0.2814 0.2480 0.7273 0.043*
H7B 0.1751 0.0995 0.8162 0.043*
C8 0.3771 (3) 0.0903 (3) 0.6490 (3) 0.0351 (7)
C9 0.1510 (4) 0.1675 (4) 0.4412 (3) 0.0414 (7)
H9 0.2108 0.1262 0.3740 0.050*
C10 0.0084 (4) 0.2250 (3) 0.4311 (3) 0.0400 (7)
C11 −0.0769 (4) 0.3041 (4) 0.5152 (4) 0.0469 (8)
H11 −0.0426 0.3245 0.5783 0.056*
C12 −0.2121 (4) 0.3515 (4) 0.5037 (4) 0.0540 (9)
C13 −0.2654 (4) 0.3247 (4) 0.4096 (5) 0.0600 (10)
H13 −0.3566 0.3589 0.4022 0.072*
C14 −0.1815 (5) 0.2467 (4) 0.3273 (5) 0.0603 (10)
H14 −0.2165 0.2274 0.2640 0.072*
C15 −0.0459 (4) 0.1966 (4) 0.3371 (4) 0.0497 (8)
H15 0.0097 0.1435 0.2808 0.060*
Cl1 0.26935 (11) −0.61454 (10) 0.96808 (12) 0.0584 (3)
Cl2 −0.32203 (15) 0.44557 (16) 0.61290 (17) 0.0976 (5)
N1 0.3402 (3) 0.1031 (3) 0.8891 (3) 0.0318 (5)
H1N 0.436 (2) 0.101 (3) 0.860 (3) 0.038*
N2 0.3309 (3) 0.1124 (3) 0.5371 (3) 0.0436 (7)
H2N 0.378 (4) 0.072 (4) 0.474 (3) 0.052*
N3 0.1952 (3) 0.1727 (3) 0.5398 (3) 0.0394 (6)
O1 0.3340 (2) −0.0350 (2) 1.1413 (2) 0.0411 (5)
O2 0.0898 (2) 0.0034 (2) 1.1055 (2) 0.0408 (5)
O3 0.4936 (2) 0.0311 (3) 0.6515 (2) 0.0475 (6)
S1 0.24739 (8) −0.02589 (8) 1.05320 (8) 0.03071 (18)

(E)-4-Chloro-N-{2-[2-(3-chlorobenzylidene)hydrazinyl]-2-oxoethyl}benzenesulfonamide (II) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0333 (15) 0.0300 (15) 0.0385 (16) 0.0073 (12) −0.0189 (13) −0.0176 (13)
C2 0.0280 (16) 0.0415 (18) 0.057 (2) 0.0072 (13) −0.0145 (15) −0.0268 (16)
C3 0.0347 (17) 0.0386 (18) 0.069 (2) 0.0006 (14) −0.0209 (17) −0.0261 (17)
C4 0.0461 (19) 0.0299 (16) 0.0530 (19) 0.0096 (14) −0.0279 (16) −0.0204 (15)
C5 0.0347 (17) 0.0377 (17) 0.0496 (19) 0.0124 (13) −0.0173 (15) −0.0224 (15)
C6 0.0291 (15) 0.0343 (16) 0.0469 (18) 0.0061 (12) −0.0159 (14) −0.0192 (14)
C7 0.0354 (16) 0.0374 (17) 0.0375 (16) 0.0116 (13) −0.0156 (14) −0.0185 (14)
C8 0.0341 (16) 0.0371 (17) 0.0339 (16) 0.0086 (13) −0.0129 (13) −0.0153 (14)
C9 0.0435 (18) 0.050 (2) 0.0326 (16) 0.0112 (15) −0.0145 (14) −0.0195 (15)
C10 0.0422 (18) 0.0414 (18) 0.0329 (16) 0.0052 (14) −0.0150 (14) −0.0113 (14)
C11 0.047 (2) 0.054 (2) 0.0451 (19) 0.0126 (16) −0.0246 (16) −0.0199 (17)
C12 0.048 (2) 0.052 (2) 0.052 (2) 0.0109 (17) −0.0181 (18) −0.0131 (18)
C13 0.044 (2) 0.060 (2) 0.067 (3) 0.0048 (18) −0.031 (2) −0.006 (2)
C14 0.065 (3) 0.060 (2) 0.062 (2) −0.004 (2) −0.042 (2) −0.011 (2)
C15 0.062 (2) 0.047 (2) 0.0440 (19) 0.0028 (17) −0.0269 (18) −0.0156 (16)
Cl1 0.0641 (6) 0.0405 (5) 0.0897 (7) 0.0132 (4) −0.0367 (5) −0.0401 (5)
Cl2 0.0847 (9) 0.1137 (11) 0.1072 (10) 0.0590 (8) −0.0404 (8) −0.0618 (9)
N1 0.0274 (12) 0.0354 (13) 0.0368 (14) 0.0033 (11) −0.0109 (11) −0.0205 (11)
N2 0.0416 (16) 0.0597 (18) 0.0408 (15) 0.0224 (13) −0.0198 (13) −0.0303 (14)
N3 0.0378 (14) 0.0457 (16) 0.0368 (14) 0.0134 (12) −0.0165 (12) −0.0183 (12)
O1 0.0400 (12) 0.0535 (14) 0.0406 (12) 0.0020 (10) −0.0200 (10) −0.0249 (11)
O2 0.0309 (11) 0.0474 (13) 0.0512 (13) 0.0071 (9) −0.0115 (10) −0.0320 (11)
O3 0.0404 (13) 0.0727 (16) 0.0418 (13) 0.0248 (12) −0.0208 (11) −0.0336 (12)
S1 0.0279 (4) 0.0352 (4) 0.0363 (4) 0.0050 (3) −0.0127 (3) −0.0219 (3)

(E)-4-Chloro-N-{2-[2-(3-chlorobenzylidene)hydrazinyl]-2-oxoethyl}benzenesulfonamide (II) . Geometric parameters (Å, º)

C1—C2 1.377 (4) C9—C10 1.462 (4)
C1—C6 1.385 (4) C9—H9 0.9300
C1—S1 1.773 (3) C10—C15 1.394 (4)
C2—C3 1.384 (4) C10—C11 1.394 (4)
C2—H2 0.9300 C11—C12 1.372 (5)
C3—C4 1.374 (4) C11—H11 0.9300
C3—H3 0.9300 C12—C13 1.381 (5)
C4—C5 1.380 (4) C12—Cl2 1.743 (4)
C4—Cl1 1.737 (3) C13—C14 1.370 (6)
C5—C6 1.382 (4) C13—H13 0.9300
C5—H5 0.9300 C14—C15 1.378 (5)
C6—H6 0.9300 C14—H14 0.9300
C7—N1 1.457 (4) C15—H15 0.9300
C7—C8 1.510 (4) N1—S1 1.618 (3)
C7—H7A 0.9700 N1—H1N 0.841 (17)
C7—H7B 0.9700 N2—N3 1.380 (3)
C8—O3 1.224 (3) N2—H2N 0.863 (18)
C8—N2 1.342 (4) O1—S1 1.433 (2)
C9—N3 1.275 (4) O2—S1 1.430 (2)
C2—C1—C6 120.8 (3) C15—C10—C9 118.8 (3)
C2—C1—S1 120.2 (2) C11—C10—C9 122.2 (3)
C6—C1—S1 119.0 (2) C12—C11—C10 119.3 (3)
C1—C2—C3 119.9 (3) C12—C11—H11 120.4
C1—C2—H2 120.0 C10—C11—H11 120.4
C3—C2—H2 120.0 C11—C12—C13 121.9 (4)
C4—C3—C2 119.1 (3) C11—C12—Cl2 119.4 (3)
C4—C3—H3 120.4 C13—C12—Cl2 118.7 (3)
C2—C3—H3 120.4 C14—C13—C12 118.7 (3)
C3—C4—C5 121.4 (3) C14—C13—H13 120.6
C3—C4—Cl1 119.8 (2) C12—C13—H13 120.6
C5—C4—Cl1 118.8 (2) C13—C14—C15 120.9 (4)
C4—C5—C6 119.5 (3) C13—C14—H14 119.6
C4—C5—H5 120.3 C15—C14—H14 119.6
C6—C5—H5 120.3 C14—C15—C10 120.3 (4)
C5—C6—C1 119.3 (3) C14—C15—H15 119.9
C5—C6—H6 120.4 C10—C15—H15 119.9
C1—C6—H6 120.4 C7—N1—S1 119.9 (2)
N1—C7—C8 111.0 (2) C7—N1—H1N 116 (2)
N1—C7—H7A 109.4 S1—N1—H1N 112 (2)
C8—C7—H7A 109.4 C8—N2—N3 120.8 (2)
N1—C7—H7B 109.4 C8—N2—H2N 117 (2)
C8—C7—H7B 109.4 N3—N2—H2N 121 (2)
H7A—C7—H7B 108.0 C9—N3—N2 115.1 (3)
O3—C8—N2 121.4 (3) O2—S1—O1 119.53 (13)
O3—C8—C7 121.1 (3) O2—S1—N1 107.80 (13)
N2—C8—C7 117.5 (3) O1—S1—N1 105.65 (13)
N3—C9—C10 121.6 (3) O2—S1—C1 107.23 (13)
N3—C9—H9 119.2 O1—S1—C1 107.84 (13)
C10—C9—H9 119.2 N1—S1—C1 108.40 (13)
C15—C10—C11 119.0 (3)
C6—C1—C2—C3 0.2 (5) Cl2—C12—C13—C14 −178.0 (3)
S1—C1—C2—C3 −178.6 (3) C12—C13—C14—C15 −0.4 (6)
C1—C2—C3—C4 −1.7 (5) C13—C14—C15—C10 −0.2 (6)
C2—C3—C4—C5 1.5 (5) C11—C10—C15—C14 0.3 (5)
C2—C3—C4—Cl1 −178.3 (3) C9—C10—C15—C14 178.7 (3)
C3—C4—C5—C6 0.0 (5) C8—C7—N1—S1 −107.2 (3)
Cl1—C4—C5—C6 179.8 (2) O3—C8—N2—N3 176.8 (3)
C4—C5—C6—C1 −1.4 (5) C7—C8—N2—N3 −3.8 (5)
C2—C1—C6—C5 1.3 (5) C10—C9—N3—N2 179.1 (3)
S1—C1—C6—C5 −179.8 (2) C8—N2—N3—C9 −169.5 (3)
N1—C7—C8—O3 −4.1 (4) C7—N1—S1—O2 −50.2 (2)
N1—C7—C8—N2 176.5 (3) C7—N1—S1—O1 −179.0 (2)
N3—C9—C10—C15 −170.4 (3) C7—N1—S1—C1 65.6 (2)
N3—C9—C10—C11 8.0 (5) C2—C1—S1—O2 −13.7 (3)
C15—C10—C11—C12 0.2 (5) C6—C1—S1—O2 167.4 (2)
C9—C10—C11—C12 −178.2 (3) C2—C1—S1—O1 116.3 (3)
C10—C11—C12—C13 −0.8 (6) C6—C1—S1—O1 −62.6 (3)
C10—C11—C12—Cl2 178.1 (3) C2—C1—S1—N1 −129.8 (3)
C11—C12—C13—C14 0.9 (6) C6—C1—S1—N1 51.3 (3)

(E)-4-Chloro-N-{2-[2-(3-chlorobenzylidene)hydrazinyl]-2-oxoethyl}benzenesulfonamide (II) . Hydrogen-bond geometry (Å, º)

Cg is the centroid of the C1–C6 ring.

D—H···A D—H H···A D···A D—H···A
N1—H1N···O1i 0.84 (2) 2.23 (2) 3.041 (3) 161 (3)
N2—H2N···O3ii 0.86 (2) 1.97 (2) 2.828 (3) 171 (3)
C6—H6···O1i 0.93 2.53 3.422 (4) 161
C7—H7B···O2iii 0.97 2.47 3.434 (4) 172
C15—H15···O2iv 0.93 2.58 3.474 (4) 162
C14—H14···Cgv 0.93 2.84 3.675 (5) 150

Symmetry codes: (i) −x+1, −y, −z+2; (ii) −x+1, −y, −z+1; (iii) −x, −y, −z+2; (iv) x, y, z−1; (v) −x, −y, −z+1.

(E)-4-Chloro-N-{2-[2-(4-chlorobenzylidene)hydrazinyl]-2-oxoethyl}benzenesulfonamide (III) . Crystal data

C15H13Cl2N3O3S Z = 2
Mr = 386.24 F(000) = 396
Triclinic, P1 Dx = 1.459 Mg m3
a = 6.7234 (9) Å Mo Kα radiation, λ = 0.71073 Å
b = 10.281 (1) Å Cell parameters from 1746 reflections
c = 13.611 (2) Å θ = 2.9–27.9°
α = 74.98 (1)° µ = 0.51 mm1
β = 87.11 (1)° T = 293 K
γ = 75.34 (1)° Rod, colourless
V = 879.0 (2) Å3 0.46 × 0.42 × 0.20 mm

(E)-4-Chloro-N-{2-[2-(4-chlorobenzylidene)hydrazinyl]-2-oxoethyl}benzenesulfonamide (III) . Data collection

Oxford Diffraction Xcalibur with Sapphire CCD diffractometer 2600 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.019
Rotation method data acquisition using ω scans. θmax = 26.4°, θmin = 2.9°
Absorption correction: multi-scan (CrysAlis RED, Oxford Diffraction, 2009) h = −8→8
Tmin = 0.801, Tmax = 0.906 k = −12→12
5737 measured reflections l = −13→16
3598 independent reflections

(E)-4-Chloro-N-{2-[2-(4-chlorobenzylidene)hydrazinyl]-2-oxoethyl}benzenesulfonamide (III) . Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048 Hydrogen site location: mixed
wR(F2) = 0.120 H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0407P)2 + 0.5495P] where P = (Fo2 + 2Fc2)/3
3598 reflections (Δ/σ)max < 0.001
223 parameters Δρmax = 0.33 e Å3
2 restraints Δρmin = −0.30 e Å3

(E)-4-Chloro-N-{2-[2-(4-chlorobenzylidene)hydrazinyl]-2-oxoethyl}benzenesulfonamide (III) . Special details

Experimental. CrysAlis RED, Oxford Diffraction Ltd., 2009 Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

(E)-4-Chloro-N-{2-[2-(4-chlorobenzylidene)hydrazinyl]-2-oxoethyl}benzenesulfonamide (III) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 −0.75370 (19) 0.81534 (16) 0.50474 (9) 0.1284 (5)
Cl2 1.20248 (15) 0.42711 (14) 0.39838 (7) 0.1119 (4)
S1 −0.27969 (10) 1.01993 (7) 0.11321 (5) 0.04891 (19)
O1 −0.1031 (3) 1.05461 (19) 0.14290 (15) 0.0609 (5)
O2 −0.4241 (3) 1.12132 (19) 0.04119 (15) 0.0628 (5)
O3 −0.1441 (3) 0.66440 (19) 0.00307 (15) 0.0601 (5)
N1 −0.1982 (3) 0.8899 (2) 0.06592 (17) 0.0518 (5)
H1N −0.285 (4) 0.868 (3) 0.038 (2) 0.062*
N2 0.1718 (3) 0.5636 (2) 0.07085 (17) 0.0529 (5)
H2N 0.179 (4) 0.490 (2) 0.050 (2) 0.063*
N3 0.3257 (3) 0.5661 (2) 0.13326 (15) 0.0490 (5)
C1 −0.4154 (4) 0.9674 (3) 0.2247 (2) 0.0487 (6)
C2 −0.3286 (5) 0.9436 (4) 0.3189 (2) 0.0707 (8)
H2 −0.199533 0.958848 0.324412 0.085*
C3 −0.4330 (5) 0.8971 (4) 0.4049 (2) 0.0840 (10)
H3 −0.374571 0.880441 0.468907 0.101*
C4 −0.6231 (5) 0.8754 (4) 0.3961 (3) 0.0767 (9)
C5 −0.7090 (5) 0.8990 (4) 0.3026 (3) 0.0909 (11)
H5 −0.837854 0.883342 0.297257 0.109*
C6 −0.6066 (5) 0.9456 (4) 0.2165 (2) 0.0773 (9)
H6 −0.666116 0.962570 0.152735 0.093*
C7 −0.0149 (4) 0.7821 (3) 0.10526 (19) 0.0471 (6)
H7A −0.022691 0.748572 0.178490 0.057*
H7B 0.105960 0.818535 0.089975 0.057*
C8 −0.0016 (4) 0.6659 (3) 0.05555 (18) 0.0466 (6)
C9 0.4825 (4) 0.4633 (3) 0.1450 (2) 0.0521 (6)
H9 0.486624 0.393537 0.112435 0.063*
C10 0.6568 (4) 0.4535 (3) 0.20951 (19) 0.0480 (6)
C11 0.6490 (4) 0.5479 (3) 0.2675 (2) 0.0606 (7)
H11 0.530130 0.618121 0.266545 0.073*
C12 0.8152 (5) 0.5385 (3) 0.3263 (2) 0.0682 (8)
H12 0.808568 0.601525 0.365387 0.082*
C13 0.9906 (4) 0.4354 (4) 0.3268 (2) 0.0648 (8)
C14 1.0018 (4) 0.3406 (3) 0.2719 (2) 0.0692 (8)
H14 1.120998 0.270324 0.273761 0.083*
C15 0.8334 (4) 0.3497 (3) 0.2128 (2) 0.0596 (7)
H15 0.840415 0.284985 0.175185 0.071*

(E)-4-Chloro-N-{2-[2-(4-chlorobenzylidene)hydrazinyl]-2-oxoethyl}benzenesulfonamide (III) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.1225 (9) 0.1721 (12) 0.0862 (7) −0.0563 (9) 0.0375 (7) −0.0130 (8)
Cl2 0.0737 (6) 0.1848 (12) 0.0779 (6) −0.0439 (7) −0.0247 (5) −0.0185 (7)
S1 0.0460 (3) 0.0478 (4) 0.0565 (4) −0.0123 (3) −0.0034 (3) −0.0181 (3)
O1 0.0516 (10) 0.0629 (12) 0.0799 (13) −0.0225 (9) −0.0016 (9) −0.0303 (10)
O2 0.0616 (12) 0.0518 (11) 0.0695 (13) −0.0097 (9) −0.0111 (9) −0.0076 (9)
O3 0.0520 (10) 0.0608 (11) 0.0742 (13) −0.0063 (9) −0.0165 (9) −0.0329 (10)
N1 0.0454 (12) 0.0572 (13) 0.0591 (14) −0.0092 (10) −0.0070 (10) −0.0277 (11)
N2 0.0500 (12) 0.0529 (13) 0.0604 (14) −0.0070 (10) −0.0122 (10) −0.0258 (11)
N3 0.0473 (12) 0.0524 (13) 0.0495 (12) −0.0115 (10) −0.0077 (9) −0.0161 (10)
C1 0.0438 (13) 0.0487 (14) 0.0566 (15) −0.0078 (11) −0.0012 (11) −0.0215 (12)
C2 0.0552 (17) 0.103 (3) 0.0606 (18) −0.0226 (16) −0.0005 (14) −0.0302 (18)
C3 0.076 (2) 0.119 (3) 0.0541 (19) −0.019 (2) −0.0019 (16) −0.0212 (19)
C4 0.072 (2) 0.090 (2) 0.066 (2) −0.0230 (18) 0.0196 (16) −0.0157 (18)
C5 0.061 (2) 0.139 (3) 0.080 (2) −0.044 (2) 0.0082 (17) −0.023 (2)
C6 0.0577 (18) 0.118 (3) 0.0617 (19) −0.0349 (18) −0.0015 (15) −0.0199 (19)
C7 0.0455 (13) 0.0516 (14) 0.0475 (14) −0.0129 (11) −0.0030 (11) −0.0169 (12)
C8 0.0462 (13) 0.0511 (14) 0.0455 (14) −0.0142 (11) −0.0029 (11) −0.0145 (11)
C9 0.0533 (15) 0.0527 (15) 0.0548 (15) −0.0139 (12) −0.0041 (12) −0.0200 (12)
C10 0.0469 (13) 0.0483 (14) 0.0483 (14) −0.0115 (11) −0.0032 (11) −0.0110 (11)
C11 0.0581 (16) 0.0583 (17) 0.0647 (18) −0.0068 (13) −0.0100 (13) −0.0200 (14)
C12 0.075 (2) 0.077 (2) 0.0606 (18) −0.0238 (17) −0.0107 (15) −0.0244 (16)
C13 0.0557 (17) 0.089 (2) 0.0481 (16) −0.0261 (16) −0.0076 (13) −0.0056 (15)
C14 0.0499 (16) 0.075 (2) 0.0688 (19) −0.0025 (14) −0.0039 (14) −0.0055 (16)
C15 0.0584 (16) 0.0557 (16) 0.0644 (18) −0.0101 (13) −0.0019 (13) −0.0183 (14)

(E)-4-Chloro-N-{2-[2-(4-chlorobenzylidene)hydrazinyl]-2-oxoethyl}benzenesulfonamide (III) . Geometric parameters (Å, º)

Cl1—C4 1.735 (3) C4—C5 1.362 (5)
Cl2—C13 1.738 (3) C5—C6 1.368 (4)
S1—O1 1.4275 (18) C5—H5 0.9300
S1—O2 1.4297 (19) C6—H6 0.9300
S1—N1 1.594 (2) C7—C8 1.500 (3)
S1—C1 1.764 (3) C7—H7A 0.9700
O3—C8 1.229 (3) C7—H7B 0.9700
N1—C7 1.450 (3) C9—C10 1.467 (3)
N1—H1N 0.818 (17) C9—H9 0.9300
N2—C8 1.341 (3) C10—C15 1.375 (4)
N2—N3 1.380 (3) C10—C11 1.390 (4)
N2—H2N 0.861 (17) C11—C12 1.377 (4)
N3—C9 1.273 (3) C11—H11 0.9300
C1—C2 1.373 (4) C12—C13 1.371 (4)
C1—C6 1.374 (4) C12—H12 0.9300
C2—C3 1.375 (4) C13—C14 1.360 (4)
C2—H2 0.9300 C14—C15 1.392 (4)
C3—C4 1.369 (5) C14—H14 0.9300
C3—H3 0.9300 C15—H15 0.9300
O1—S1—O2 119.70 (12) N1—C7—C8 107.76 (19)
O1—S1—N1 107.02 (11) N1—C7—H7A 110.2
O2—S1—N1 106.60 (12) C8—C7—H7A 110.2
O1—S1—C1 107.38 (12) N1—C7—H7B 110.2
O2—S1—C1 107.41 (12) C8—C7—H7B 110.2
N1—S1—C1 108.32 (12) H7A—C7—H7B 108.5
C7—N1—S1 121.73 (16) O3—C8—N2 121.3 (2)
C7—N1—H1N 117 (2) O3—C8—C7 121.3 (2)
S1—N1—H1N 116 (2) N2—C8—C7 117.4 (2)
C8—N2—N3 119.7 (2) N3—C9—C10 120.7 (2)
C8—N2—H2N 119.9 (19) N3—C9—H9 119.7
N3—N2—H2N 119.6 (19) C10—C9—H9 119.7
C9—N3—N2 115.3 (2) C15—C10—C11 118.6 (2)
C2—C1—C6 120.1 (3) C15—C10—C9 119.8 (2)
C2—C1—S1 120.5 (2) C11—C10—C9 121.6 (2)
C6—C1—S1 119.3 (2) C12—C11—C10 120.8 (3)
C1—C2—C3 119.8 (3) C12—C11—H11 119.6
C1—C2—H2 120.1 C10—C11—H11 119.6
C3—C2—H2 120.1 C13—C12—C11 119.3 (3)
C4—C3—C2 119.7 (3) C13—C12—H12 120.3
C4—C3—H3 120.1 C11—C12—H12 120.3
C2—C3—H3 120.1 C14—C13—C12 121.2 (3)
C5—C4—C3 120.4 (3) C14—C13—Cl2 119.7 (3)
C5—C4—Cl1 119.9 (3) C12—C13—Cl2 119.1 (2)
C3—C4—Cl1 119.7 (3) C13—C14—C15 119.5 (3)
C4—C5—C6 120.3 (3) C13—C14—H14 120.3
C4—C5—H5 119.8 C15—C14—H14 120.3
C6—C5—H5 119.8 C10—C15—C14 120.6 (3)
C5—C6—C1 119.7 (3) C10—C15—H15 119.7
C5—C6—H6 120.2 C14—C15—H15 119.7
C1—C6—H6 120.2
O1—S1—N1—C7 35.4 (2) S1—C1—C6—C5 177.1 (3)
O2—S1—N1—C7 164.6 (2) S1—N1—C7—C8 171.09 (18)
C1—S1—N1—C7 −80.1 (2) N3—N2—C8—O3 −177.6 (2)
C8—N2—N3—C9 178.5 (2) N3—N2—C8—C7 2.2 (4)
O1—S1—C1—C2 −10.8 (3) N1—C7—C8—O3 −9.0 (3)
O2—S1—C1—C2 −140.8 (2) N1—C7—C8—N2 171.1 (2)
N1—S1—C1—C2 104.5 (2) N2—N3—C9—C10 180.0 (2)
O1—S1—C1—C6 171.5 (2) N3—C9—C10—C15 −173.1 (3)
O2—S1—C1—C6 41.5 (3) N3—C9—C10—C11 6.4 (4)
N1—S1—C1—C6 −73.3 (3) C15—C10—C11—C12 0.6 (4)
C6—C1—C2—C3 0.4 (5) C9—C10—C11—C12 −179.0 (3)
S1—C1—C2—C3 −177.3 (3) C10—C11—C12—C13 0.5 (5)
C1—C2—C3—C4 −0.2 (5) C11—C12—C13—C14 −1.4 (5)
C2—C3—C4—C5 0.3 (6) C11—C12—C13—Cl2 178.2 (2)
C2—C3—C4—Cl1 179.5 (3) C12—C13—C14—C15 1.1 (5)
C3—C4—C5—C6 −0.5 (6) Cl2—C13—C14—C15 −178.5 (2)
Cl1—C4—C5—C6 −179.7 (3) C11—C10—C15—C14 −0.9 (4)
C4—C5—C6—C1 0.6 (6) C9—C10—C15—C14 178.7 (3)
C2—C1—C6—C5 −0.6 (5) C13—C14—C15—C10 0.1 (5)

(E)-4-Chloro-N-{2-[2-(4-chlorobenzylidene)hydrazinyl]-2-oxoethyl}benzenesulfonamide (III) . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1N···O2i 0.82 (2) 2.25 (2) 3.032 (3) 162 (3)
N1—H1N···O3 0.82 (2) 2.23 (3) 2.609 (3) 109 (2)
N2—H2N···O3ii 0.86 (2) 1.98 (2) 2.829 (3) 170 (3)
C15—H15···O1iii 0.93 2.45 3.330 (3) 157

Symmetry codes: (i) −x−1, −y+2, −z; (ii) −x, −y+1, −z; (iii) x+1, y−1, z.

Funding Statement

This work was funded by University Grants Commission.

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc., Perkin Trans. 2, pp. S1–19.
  2. Brouwer, E. B., Enright, G. D., Ratcliffe, C. I., Facey, G. A. & Ripmeester, J. A. (1999). J. Phys. Chem. B, 103, 10604–10616.
  3. Cao, Y., Yu, T., Lai, W., Liu, Y. & Wang, B. (2020). Energetic Materials Frontiers, 1, 95–102.
  4. Jabłoński, M. (2020). Molecules, 25, 5512–5548. [DOI] [PMC free article] [PubMed]
  5. Kim, K. S., Tarakeshwar, P. & Lee, J. Y. (2000). Chem. Rev. 100, 4145–4186. [DOI] [PubMed]
  6. Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.
  7. Purandara, H., Foro, S. & Thimme Gowda, B. (2017a). Acta Cryst. E73, 1683–1686. [DOI] [PMC free article] [PubMed]
  8. Purandara, H., Foro, S. & Thimme Gowda, B. (2017b). Acta Cryst. E73, 1946–1951. [DOI] [PMC free article] [PubMed]
  9. Purandara, H., Foro, S. & Thimme Gowda, B. (2018). Acta Cryst. C74, 1553–1560. [DOI] [PubMed]
  10. Seth, S. K., Sarkar, D., Jana, A. D. & Kar, T. (2011). Cryst. Growth Des. 11, 4837–4849.
  11. Sharma, P., Sharma, S., Chawla, M. & Mitra, A. (2009). J. Mol. Model. 15, 633–649. [DOI] [PubMed]
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  14. Spek, A. L. (2020). Acta Cryst. E76, 1–11. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, II, III, global. DOI: 10.1107/S2056989021006885/mw2177sup1.cif

e-77-00780-sup1.cif (645KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989021006885/mw2177Isup2.hkl

e-77-00780-Isup2.hkl (272.7KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989021006885/mw2177IIsup3.hkl

e-77-00780-IIsup3.hkl (267.7KB, hkl)

Structure factors: contains datablock(s) III. DOI: 10.1107/S2056989021006885/mw2177IIIsup4.hkl

e-77-00780-IIIsup4.hkl (287KB, hkl)

Supporting information file. DOI: 10.1107/S2056989021006885/mw2177Isup5.cml

Supporting information file. DOI: 10.1107/S2056989021006885/mw2177IIsup6.cml

CCDC references: 1433593, 1433594, 1433606

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES