Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2021 Jul 9;77(Pt 8):775–779. doi: 10.1107/S2056989021006952

Crystal structure and Hirshfeld surface analysis of (3aR,4S,7S,7aS)-4,5,6,7,8,8-hexa­chloro-2-{6-[(3aR,4R,7R,7aS)-4,5,6,7,8,8-hexa­chloro-1,3-dioxo-1,3,3a,4,7,7a-hexa­hydro-2H-4,7-methano­isoindol-2-yl]hex­yl}-3a,4,7,7a-tetra­hydro-1H-4,7-methano­iso­indole-1,3(2H)-dione

Aygun I Alikhanova a, Zeliha Atioğlu b, Mehmet Akkurt c, Sixberth Mlowe d,*
PMCID: PMC8340976  PMID: 34422299

The asymmetric unit contains one-half of the formula unit of the title compound. The crystal structure is stabilized by inter­molecular C—H⋯O, C—H⋯Cl and C—Cl⋯π inter­actions, and short inter­molecular Cl⋯O and Cl⋯Cl contacts, forming a three-dimensional network.

Keywords: crystal structure, pyrrolidine ring, cyclo­pentane ring, cyclo­hexane ring, Hirshfeld surface analysis

Abstract

The mol­ecule of the title compound, C24H16Cl12N2O4, is generated by a crystallographic inversion centre at the midpoint of the central C—C bond. A kink in the mol­ecule is defined by a torsion angle of −169.86 (15)° about this central bond of the alkyl bridge. The pyrrolidine ring is essentially planar [max. deviation = 0.014 (1) Å]. The cyclo­hexane ring has a boat conformation, while both cyclo­pentane rings adopt an envelope conformation. In the crystal structure, mol­ecules are linked by inter­molecular C—H⋯O, C—H⋯Cl and C—Cl⋯π inter­actions, and short inter­molecular Cl⋯O and Cl⋯Cl contacts, forming a three-dimensional network.

Chemical context  

N-heterocyclic compounds are of inter­est in the fields of synthetic organic chemistry, coordination chemistry and medicinal chemistry because of their important biological properties (Mahmoudi et al., 2016, 2017a ,b ,c , 2018a ,b ; 2019; Viswanathan et al., 2019). For this reason, many approaches have been developed for their efficient and versatile synthesis (Gurbanov et al., 2017, 2018a ,b ; Ma et al., 2017a ,b ). On the other hand, N-heterocycles or N-ligands can also be used as precursors in the synthesis of coordination compounds (Ma et al., 2020, 2021; Mahmudov et al., 2013), and as building blocks in the construction of supra­molecular structures as they have both hydrogen-bond donor and acceptor capabilities (Gurbanov et al., 2020a ; Kopylovich et al., 2011a ,b ; Asgarova et al., 2019). In fact, attachment of suitable functional groups to N-ligands can improve their solubility and the catalytic activity of the corresponding coordination compounds (Mizar et al., 2012; Gurbanov et al., 2020b ; Khalilov et al., 2011, 2018a ,b ; Maharramov et al., 2019; Shikhaliyev et al., 2019; Shixaliyev et al., 2014). Inter­molecular halogen bonds and other types of non-covalent inter­actions in halogenated N-heterocyclic compounds can improve their solubility and other functional properties. In order to continue our work in this perspective, we have synthesized a new halogenated N-heterocyclic compound, (3aR,4S,7S,7aS)-4,5,6,7,8,8-hexa­chloro-2-{6-[(3aR,4R,7R,7aS)-4,5,6,7,8,8-hexa­chloro-1,3-dioxo-1,3,3a,4,7,7a-hexa­hydro-2H-4,7-methano­isoindol-2-yl]hex­yl}-3a,4,7,7a-tetra­hydro-1H-4,7-methano­iso­indole-1,3(2H)-dione, which provides multiple iner­molecular non-covalent inter­actions. graphic file with name e-77-00775-scheme1.jpg

Structural commentary  

The mol­ecule of the title compound is generated by a crystallographic inversion centre at the midpoint of the central C—C bond. A kink in the mol­ecule is defined by the C10—C11–C12—C12_a torsion angle of −169.86 (15)° about this central bond of the alkyl bridge (Fig. 1). The pyrrolidine ring (N1/C1/C2/C6/C7) is essentially planar [maximum deviation = −0.014 (1) Å for N1]. The cyclo­hexane ring (C2/C3/C5/C6/C8/C9) has a boat conformation [the puckering parameters (Cremer and Pople, 1975) are Q T = 0.9300 (14) Å, θ = 89.99 (9)°, φ = 59.37 (9)°], while both the cyclo­pentane rings (C2–C6 and C3–C5/C8/C9) adopt an envelope conformation [Q(2) = 0.6308 (14) Å, φ(2) = 252.44 (13)° and Q(2) = 0.5835 (14) Å, φ(2) = 215.53 (14)°, respectively] with the C4 atom bearing the di­chloro­methane group as the flap.

Figure 1.

Figure 1

The mol­ecular structure of the title compound with displacement ellipsoids for the non-hydrogen atoms drawn at the 50% probability level. [Symmetry code: (a) 2 − x, 1 − y, −z].

Supra­molecular features and Hirshfeld surface analysis  

In the crystal structure, mol­ecules are linked by inter­molecular C—H⋯O, C—H⋯Cl and C—Cl⋯π inter­actions (Table 1), and short inter­molecular contacts, listed in Table 2, forming a three-dimensional network (Figs. 2 and 3).

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the N1/C1/C2/C6/C7 pyrrolidine ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O1i 1.00 2.43 3.3867 (16) 161
C10—H10A⋯O2ii 0.99 2.45 3.4402 (17) 178
C12—H12B⋯Cl2iii 0.99 2.80 3.5299 (15) 131
C3—Cl1⋯Cg1iii 1.75 (1) 3.89 (1) 4.9389 (14) 117 (1)

Symmetry codes: (i) -x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}; (ii) -x+2, -y, -z; (iii) -x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}.

Table 2. Summary of short inter­atomic contacts (Å) in the title compound.

Contact Distance Symmetry operation
Cl3⋯Cl2 3.4333 (5) 1 − x, {1\over 2} + y, {1\over 2} − z
O1⋯H6 2.43 2 − x, {1\over 2} + y, {1\over 2} − z
Cl1⋯H11B 2.99 x, {1\over 2} − y, {1\over 2} + z
Cl3⋯H10B 2.96 −1 + x, y, z
O2⋯Cl4 3.4606 (11) 1 − x, −y, −z
H10A⋯O2 2.45 2 − x, −y, −z

Figure 2.

Figure 2

Crystal packing of the title compound viewed along the a-axis direction. C—H⋯O, C—H⋯Cl hydrogen bonds and C—Cl⋯π inter­actions (Table 1) are represented by dashed lines. H atoms not involved in hydrogen bonding are omitted for clarity.

Figure 3.

Figure 3

Crystal packing viewed along the b axis, with inter­molecular inter­actions shown as in Fig. 2. H atoms not involved in hydrogen bonding are omitted for clarity.

In order to visualize the inter­molecular inter­actions (Table 2) in the crystal of the title compound, a Hirshfeld surface analysis was carried out using Crystal Explorer 17.5 (Turner et al., 2017). Fig. 4 shows the Hirshfeld surface plotted over d norm in the range −0.1922 to 1.7149 a.u. The red spots on the Hirshfeld surface represent C—H⋯O and C—H⋯Cl contacts. Fig. 5 shows the full two-dimensional fingerprint plot and those delineated into the major contacts: Cl⋯H/H⋯Cl (33.6%; Fig. 5 b), Cl⋯Cl (29.3%; Fig. 5 c), O⋯H/H⋯O (13.9%; Fig. 5 d), Cl⋯O/O⋯Cl (11.4%; Fig. 5 e) and H⋯H (7.0%; Fig. 5 f) inter­actions. The remaining other weak inter­actions (contribution percentages) are Cl⋯C/C⋯Cl (3.2%), Cl⋯N/N⋯Cl (1.4%) and C⋯H/H⋯C (0.2%).

Figure 4.

Figure 4

A view of the Hirshfeld surface for the title compound, plotted over d norm in the range −0.1922 to 1.7149 a.u. together with inter­acting neighbouring mol­ecules.

Figure 5.

Figure 5

A view of the two-dimensional fingerprint plots for the title compound, showing (a) all inter­actions, and delineated into (b) Cl⋯H/H⋯Cl, (c) Cl⋯Cl and (d) O⋯H/H⋯O, (e) Cl⋯O/O⋯Cl and (f) H⋯H inter­actions. The d i and d e values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface.

Database survey  

Four related compounds containing the methano­iso­indole moiety were found in the Cambridge Structural Database (CSD, version 5.42, update of November 2020; Groom et al., 2016): 4,5,6,7,8,8-hexa­chloro-2-[2-(3,4-di­meth­oxy­phen­yl)eth­yl]-3a,4,7,7a-tetra­hydro-1H-4,7-methano­iso­indole-1,3(2H)-dione (refcode COHTUR: Manohar et al., 2019), 5-hy­droxy-4-(4-methyl­phen­yl)-4-aza­tri­cyclo­[5.2.1.02,6]dec-8-en-3-one (QOVCAH: Aslantaş et al., 2015), (3aR,4S,7R,7aS)-2-(perfluoro­pyridin-4-yl)-3a,4,7,7a-tetra­hydro-1H-4,7-methano­iso­indole-1,3(2H)-dione (MOJFUP: Peloquin et al., 2019) and (3aR,4S,7R,7aS)-2-[(perfluoro­pyridin-4-yl)­oxy]-3a,4,7,7a-tetra­hydro-1H-4,7-methano­iso­indole-1,3(2H)-dione (MOJ­GAW: Peloquin et al., 2019).

In COHTUR, the six-membered ring of the norbornene moiety adopts a boat conformation and the two five-membered rings have envelope conformations. The pyrrolidine ring makes a dihedral angle of 14.83 (12)° with the 3,4-di­meth­oxy­phenyl ring, which are attached to each other by an extended N—CH2—CH2—Car bridge. In the crystal of COHTUR, weak C—H⋯O hydrogen bonds link the mol­ecules, forming a cyclic Inline graphic (48) ring motif (Bernstein et al., 1995). The mol­ecules are stacked in layers held together by offset π–π inter­actions, with a centroid–centroid distance of 3.564 (1) Å for the pyrrolidine and benzene rings. There is also an inter­molecular C—Cl⋯π inter­action present.

In the crystal of QOVCAH, the cyclo­hexene ring adopts a boat conformation, and the five-membered rings have envelope conformations with the bridging atom as the flap. Their mean planes are oriented at a dihedral angle of 86.51 (7)°. The mol­ecular structure is stabilized by a short intra­molecular C—H⋯O contact. In the crystal, mol­ecules are linked by O—H⋯O hydrogen bonds, forming chains propagating along [100]. The chains are linked by C—H⋯π inter­actions, forming slabs parallel to (001).

The compound MOJFUP crystallizes in the triclinic space group P Inline graphic with two mol­ecules, A and B, in the asymmetric unit, and MOJGAW in the monoclinic space group P21/n with one mol­ecule per asymmetric unit. The synthesis of both compounds is conducted using endo starting materials, and the same configuration is observed in the resulting crystal structures. In MOJFUP, steric inter­actions between the ortho-fluorine atoms and the carbonyl oxygen atoms prevents free rotation about the nitro­gen–ipso-carbon bond, which is evidenced by separate 19F NMR peaks in solution for the ortho-F atoms. In mol­ecule A, the 2,3,5,6-tetra­fluoro­pyridine plane is rotated by 58.05 (5)° relative to the pyrrolidine plane and the corresponding dihedral angle for mol­ecule B is 61.65 (7)°. The addition of an oxygen atom between N and C in the bridge between the ring systems in MOJGAW alleviates this steric restriction and only one 19F NMR peak in solution is observed for the ortho-F atoms; even so, the dihedral angle between the 2,3,5,6-tetra­fluoro­pyridine and pyrrolidine planes in the crystal of MOJGAW of 84.01 (5)° is larger than that found in MOJFUP.

The main directional inter­actions in the crystal structures of MOJFUP and MOJGAW are of the type C—H⋯O, C—H⋯F, C—O⋯π, and C—F⋯π. In both compounds, weak hydrogen-bonding inter­actions are observed for the hydrogen atom(s) α to the carbonyl groups (C—H⋯O and C— H⋯F in MOJFUP; C—H⋯O in MOJGAW) and the olefinic hydrogen atoms (C—H⋯F in MOJFUP; C—H⋯O in MOJGAW). A weak inter­action is also observed for a bridge hydrogen atom in MOJGAW, C—H⋯F. The packing is further aided by π-inter­actions with the pyridine ring in MOJGAW.

Synthesis and crystallization  

To 741 mg (2 mmol) of (3aR,4R,7R,7aS)-4,5,6,7,8,8-hexa­chloro-3a,4,7,7a-tetra­hydro-4,7-methano­isobenzo­furan-1,3-dione were added 0.12 mL (1 mmol) of hexane-1,6-di­amine and 25 mL of di­methyl­formamide, and the mixture was stirred for 6 h at 373 K. Then, the reaction mixture was cooled to room temperature and poured into cold water. The obtained precipitate was filtered off, washed with water, recrystallized from chloro­form and dried under vacuum. Yellow powder, yield 92%, m.p 404–405 K (decomp.). Analysis calculated for C24H16Cl12N2O4 (M r = 821.80): C 35.08, H 1.96, N 3.41%; found: C 35.03, H 2.00, N 3.35%. ESI–MS: m/z: 822.9 [M r + H]+. 1H NMR (300.130 MHz) in acetone-d 6, inter­nal TMS, δ (ppm): 1.29–3.43 (12H, 6CH2), 3.86 (4H, CH). 13C{1H} NMR (75.468 MHz, acetone-d 6). δ: 25.8 (2CH2), 27.2 (2CH2), 39.3 (4C–H), 52.0 (2CH2), 79.3 (4CCl), 104.4 (2CCl2), 130.9 (2ClC=CCl) and 170.2 (4C=O). Off-white prismatic crystals suitable for X-ray analysis were obtained by slow evaporation of a chloro­form–hexane (1/1, v/v) mixture.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 3. All C-bound H atoms were positioned geometrically and refined using a riding model, with C—H = 0.99 (methyl­ene) and 1.00 Å (methine), with U iso(H) = 1.2U eq(C). Two reflections (100 and 002), affected by the incident beam-stop, and owing to poor agreement between observed and calculated intensities, two outliers (136 and 118) were omitted in the final cycles of refinement.

Table 3. Experimental details.

Crystal data
Chemical formula C24H16Cl12N2O4
M r 821.79
Crystal system, space group Monoclinic, P21/c
Temperature (K) 150
a, b, c (Å) 8.9549 (3), 10.5908 (4), 16.6043 (6)
β (°) 103.499 (1)
V3) 1531.24 (10)
Z 2
Radiation type Mo Kα
μ (mm−1) 1.12
Crystal size (mm) 0.34 × 0.32 × 0.28
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015)
T min, T max 0.684, 0.736
No. of measured, independent and observed [I > 2σ(I)] reflections 12567, 3403, 3141
R int 0.023
(sin θ/λ)max−1) 0.643
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.021, 0.053, 1.04
No. of reflections 3403
No. of parameters 190
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.33, −0.24

Computer programs: APEX2 and SAINT (Bruker, 2007), SHELXT (Sheldrick, 2015a ), SHELXL (Sheldrick, 2015b ), ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2020).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989021006952/vm2251sup1.cif

e-77-00775-sup1.cif (394.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989021006952/vm2251Isup2.hkl

e-77-00775-Isup2.hkl (271.7KB, hkl)

CCDC reference: 2094787

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors’ contributions are as follows. Conceptualization, AIA and MA; methodology, AIA and ZA; investigation, AIA, ZA, and SM; writing (original draft), MA and SM; writing (review and editing of the manuscript), MA and SM; visualization, AIA and ZA; funding acquisition, AIA; resources, AIA, ZA and SHM; supervision, MA and SM.

supplementary crystallographic information

Crystal data

C24H16Cl12N2O4 F(000) = 820
Mr = 821.79 Dx = 1.782 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 8.9549 (3) Å Cell parameters from 7701 reflections
b = 10.5908 (4) Å θ = 2.3–27.2°
c = 16.6043 (6) Å µ = 1.12 mm1
β = 103.499 (1)° T = 150 K
V = 1531.24 (10) Å3 Block, colourless
Z = 2 0.34 × 0.32 × 0.28 mm

Data collection

Bruker APEXII CCD diffractometer 3141 reflections with I > 2σ(I)
φ and ω scans Rint = 0.023
Absorption correction: multi-scan (SADABS; Krause et al., 2015) θmax = 27.2°, θmin = 2.3°
Tmin = 0.684, Tmax = 0.736 h = −8→11
12567 measured reflections k = −13→13
3403 independent reflections l = −21→21

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.021 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.053 H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0231P)2 + 0.7545P] where P = (Fo2 + 2Fc2)/3
3403 reflections (Δ/σ)max = 0.001
190 parameters Δρmax = 0.33 e Å3
0 restraints Δρmin = −0.24 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.81506 (4) 0.38645 (3) 0.33748 (2) 0.02092 (8)
Cl2 0.65657 (4) 0.08552 (3) 0.31569 (2) 0.02036 (8)
Cl3 0.45141 (4) 0.28198 (3) 0.24334 (2) 0.01993 (8)
Cl4 0.48797 (4) 0.05628 (3) 0.10287 (2) 0.02218 (8)
Cl5 0.75019 (4) 0.52267 (3) 0.15453 (2) 0.02455 (9)
Cl6 0.55737 (5) 0.31532 (4) 0.00843 (2) 0.02966 (9)
O1 1.10843 (11) 0.32935 (10) 0.22625 (6) 0.0224 (2)
O2 0.83761 (12) 0.05643 (10) 0.03360 (6) 0.0220 (2)
N1 0.99701 (12) 0.19567 (11) 0.11936 (7) 0.0156 (2)
C1 1.01234 (15) 0.25177 (13) 0.19624 (8) 0.0152 (3)
C2 0.88902 (15) 0.19800 (12) 0.23555 (8) 0.0139 (2)
H2 0.935586 0.153877 0.288724 0.017*
C3 0.76483 (15) 0.29560 (12) 0.24743 (8) 0.0142 (2)
C4 0.62421 (15) 0.20595 (12) 0.24022 (8) 0.0142 (2)
C5 0.63197 (15) 0.15971 (12) 0.15208 (8) 0.0140 (2)
C6 0.79769 (15) 0.10488 (12) 0.17088 (8) 0.0142 (2)
H6 0.801142 0.017191 0.193567 0.017*
C7 0.87382 (15) 0.11223 (12) 0.09843 (8) 0.0153 (3)
C8 0.71121 (15) 0.36779 (12) 0.16671 (8) 0.0153 (3)
C9 0.63396 (15) 0.28797 (13) 0.11034 (8) 0.0157 (3)
C10 1.09720 (16) 0.21915 (14) 0.06241 (8) 0.0200 (3)
H10A 1.112615 0.139247 0.034488 0.024*
H10B 1.198763 0.248383 0.094445 0.024*
C11 1.02959 (17) 0.31780 (14) −0.00267 (8) 0.0213 (3)
H11A 1.081293 0.311153 −0.049094 0.026*
H11B 0.919312 0.299100 −0.024805 0.026*
C12 1.04563 (18) 0.45260 (13) 0.03013 (8) 0.0223 (3)
H12A 1.010849 0.455925 0.082477 0.027*
H12B 1.155427 0.476794 0.042781 0.027*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.02260 (17) 0.01966 (17) 0.01950 (16) 0.00008 (13) 0.00287 (13) −0.00824 (12)
Cl2 0.02766 (18) 0.01698 (16) 0.01742 (15) 0.00127 (13) 0.00727 (13) 0.00505 (12)
Cl3 0.01596 (15) 0.01944 (17) 0.02574 (17) 0.00286 (12) 0.00760 (13) −0.00038 (12)
Cl4 0.01995 (16) 0.02252 (18) 0.02291 (16) −0.00783 (13) 0.00266 (13) −0.00581 (13)
Cl5 0.02410 (18) 0.01230 (16) 0.0374 (2) −0.00025 (13) 0.00750 (15) 0.00650 (13)
Cl6 0.0340 (2) 0.0339 (2) 0.01635 (16) 0.00063 (16) −0.00359 (14) 0.00900 (14)
O1 0.0162 (5) 0.0248 (5) 0.0257 (5) −0.0038 (4) 0.0037 (4) −0.0082 (4)
O2 0.0253 (5) 0.0215 (5) 0.0197 (5) −0.0021 (4) 0.0061 (4) −0.0076 (4)
N1 0.0153 (5) 0.0151 (6) 0.0165 (5) 0.0019 (4) 0.0043 (4) −0.0011 (4)
C1 0.0124 (6) 0.0151 (6) 0.0168 (6) 0.0048 (5) 0.0008 (5) −0.0006 (5)
C2 0.0146 (6) 0.0121 (6) 0.0139 (6) 0.0031 (5) 0.0008 (5) −0.0012 (5)
C3 0.0147 (6) 0.0129 (6) 0.0145 (6) 0.0014 (5) 0.0021 (5) −0.0018 (5)
C4 0.0153 (6) 0.0118 (6) 0.0154 (6) 0.0020 (5) 0.0037 (5) 0.0016 (5)
C5 0.0144 (6) 0.0128 (6) 0.0138 (6) −0.0016 (5) 0.0015 (5) −0.0002 (5)
C6 0.0163 (6) 0.0116 (6) 0.0142 (6) 0.0007 (5) 0.0023 (5) 0.0003 (5)
C7 0.0163 (6) 0.0117 (6) 0.0177 (6) 0.0035 (5) 0.0036 (5) 0.0000 (5)
C8 0.0135 (6) 0.0129 (6) 0.0200 (6) 0.0024 (5) 0.0049 (5) 0.0037 (5)
C9 0.0146 (6) 0.0173 (6) 0.0146 (6) 0.0036 (5) 0.0021 (5) 0.0049 (5)
C10 0.0189 (7) 0.0217 (7) 0.0220 (7) −0.0003 (6) 0.0100 (5) −0.0032 (5)
C11 0.0262 (7) 0.0211 (7) 0.0172 (6) −0.0055 (6) 0.0067 (6) −0.0023 (5)
C12 0.0274 (7) 0.0209 (7) 0.0178 (6) −0.0054 (6) 0.0037 (6) −0.0022 (5)

Geometric parameters (Å, º)

Cl1—C3 1.7464 (13) C3—C4 1.5592 (18)
Cl2—C4 1.7639 (13) C4—C5 1.5599 (17)
Cl3—C4 1.7558 (13) C5—C9 1.5269 (18)
Cl4—C5 1.7432 (13) C5—C6 1.5559 (18)
Cl5—C8 1.6989 (14) C6—C7 1.5168 (18)
Cl6—C9 1.6958 (13) C6—H6 1.0000
O1—C1 1.2098 (17) C8—C9 1.3293 (19)
O2—C7 1.2042 (16) C10—C11 1.523 (2)
N1—C1 1.3855 (16) C10—H10A 0.9900
N1—C7 1.3927 (17) C10—H10B 0.9900
N1—C10 1.4686 (17) C11—C12 1.5228 (19)
C1—C2 1.5186 (19) C11—H11A 0.9900
C2—C6 1.5442 (17) C11—H11B 0.9900
C2—C3 1.5642 (17) C12—C12i 1.515 (3)
C2—H2 1.0000 C12—H12A 0.9900
C3—C8 1.5203 (17) C12—H12B 0.9900
C1—N1—C7 113.85 (11) C2—C6—C5 103.10 (10)
C1—N1—C10 125.21 (11) C7—C6—H6 111.5
C7—N1—C10 120.94 (11) C2—C6—H6 111.5
O1—C1—N1 125.37 (13) C5—C6—H6 111.5
O1—C1—C2 126.60 (12) O2—C7—N1 124.52 (13)
N1—C1—C2 108.03 (11) O2—C7—C6 127.35 (12)
C1—C2—C6 105.12 (10) N1—C7—C6 108.13 (11)
C1—C2—C3 114.59 (11) C9—C8—C3 107.83 (11)
C6—C2—C3 103.47 (10) C9—C8—Cl5 128.16 (11)
C1—C2—H2 111.1 C3—C8—Cl5 124.00 (10)
C6—C2—H2 111.1 C8—C9—C5 107.78 (11)
C3—C2—H2 111.1 C8—C9—Cl6 128.08 (11)
C8—C3—C4 98.94 (10) C5—C9—Cl6 124.06 (10)
C8—C3—C2 107.98 (10) N1—C10—C11 111.81 (11)
C4—C3—C2 99.97 (10) N1—C10—H10A 109.3
C8—C3—Cl1 116.29 (9) C11—C10—H10A 109.3
C4—C3—Cl1 116.31 (9) N1—C10—H10B 109.3
C2—C3—Cl1 115.05 (9) C11—C10—H10B 109.3
C3—C4—C5 92.94 (9) H10A—C10—H10B 107.9
C3—C4—Cl3 114.83 (9) C12—C11—C10 113.62 (11)
C5—C4—Cl3 113.84 (9) C12—C11—H11A 108.8
C3—C4—Cl2 112.95 (9) C10—C11—H11A 108.8
C5—C4—Cl2 113.80 (9) C12—C11—H11B 108.8
Cl3—C4—Cl2 108.08 (7) C10—C11—H11B 108.8
C9—C5—C6 108.14 (10) H11A—C11—H11B 107.7
C9—C5—C4 98.88 (10) C12i—C12—C11 113.19 (14)
C6—C5—C4 100.27 (9) C12i—C12—H12A 108.9
C9—C5—Cl4 115.59 (9) C11—C12—H12A 108.9
C6—C5—Cl4 115.22 (9) C12i—C12—H12B 108.9
C4—C5—Cl4 116.55 (9) C11—C12—H12B 108.9
C7—C6—C2 104.81 (10) H12A—C12—H12B 107.8
C7—C6—C5 113.96 (10)
C7—N1—C1—O1 −178.12 (13) C3—C2—C6—C5 0.55 (12)
C10—N1—C1—O1 1.4 (2) C9—C5—C6—C7 −47.46 (14)
C7—N1—C1—C2 2.31 (14) C4—C5—C6—C7 −150.44 (11)
C10—N1—C1—C2 −178.13 (11) Cl4—C5—C6—C7 83.59 (12)
O1—C1—C2—C6 179.44 (13) C9—C5—C6—C2 65.53 (12)
N1—C1—C2—C6 −1.01 (13) C4—C5—C6—C2 −37.45 (12)
O1—C1—C2—C3 66.54 (17) Cl4—C5—C6—C2 −163.42 (9)
N1—C1—C2—C3 −113.90 (12) C1—N1—C7—O2 177.78 (13)
C1—C2—C3—C8 47.50 (14) C10—N1—C7—O2 −1.8 (2)
C6—C2—C3—C8 −66.37 (12) C1—N1—C7—C6 −2.63 (15)
C1—C2—C3—C4 150.38 (10) C10—N1—C7—C6 177.79 (11)
C6—C2—C3—C4 36.51 (11) C2—C6—C7—O2 −178.64 (13)
C1—C2—C3—Cl1 −84.24 (12) C5—C6—C7—O2 −66.68 (18)
C6—C2—C3—Cl1 161.89 (9) C2—C6—C7—N1 1.79 (13)
C8—C3—C4—C5 52.32 (10) C5—C6—C7—N1 113.75 (12)
C2—C3—C4—C5 −57.86 (10) C4—C3—C8—C9 −35.34 (13)
Cl1—C3—C4—C5 177.63 (9) C2—C3—C8—C9 68.27 (13)
C8—C3—C4—Cl3 −65.69 (11) Cl1—C3—C8—C9 −160.66 (10)
C2—C3—C4—Cl3 −175.87 (8) C4—C3—C8—Cl5 145.71 (10)
Cl1—C3—C4—Cl3 59.62 (12) C2—C3—C8—Cl5 −110.68 (11)
C8—C3—C4—Cl2 169.74 (9) Cl1—C3—C8—Cl5 20.39 (15)
C2—C3—C4—Cl2 59.57 (11) C3—C8—C9—C5 0.64 (14)
Cl1—C3—C4—Cl2 −64.95 (11) Cl5—C8—C9—C5 179.54 (10)
C3—C4—C5—C9 −51.85 (10) C3—C8—C9—Cl6 −176.19 (10)
Cl3—C4—C5—C9 66.99 (11) Cl5—C8—C9—Cl6 2.7 (2)
Cl2—C4—C5—C9 −168.55 (9) C6—C5—C9—C8 −69.69 (13)
C3—C4—C5—C6 58.55 (10) C4—C5—C9—C8 34.26 (13)
Cl3—C4—C5—C6 177.40 (9) Cl4—C5—C9—C8 159.47 (10)
Cl2—C4—C5—C6 −58.15 (11) C6—C5—C9—Cl6 107.30 (11)
C3—C4—C5—Cl4 −176.38 (9) C4—C5—C9—Cl6 −148.75 (10)
Cl3—C4—C5—Cl4 −57.54 (12) Cl4—C5—C9—Cl6 −23.54 (15)
Cl2—C4—C5—Cl4 66.92 (11) C1—N1—C10—C11 −96.26 (15)
C1—C2—C6—C7 −0.47 (13) C7—N1—C10—C11 83.27 (15)
C3—C2—C6—C7 120.07 (11) N1—C10—C11—C12 76.43 (15)
C1—C2—C6—C5 −119.99 (10) C10—C11—C12—C12i −169.86 (15)

Symmetry code: (i) −x+2, −y+1, −z.

Hydrogen-bond geometry (Å, º)

Cg1 is the centroid of the N1/C1/C2/C6/C7 pyrrolidine ring.

D—H···A D—H H···A D···A D—H···A
C6—H6···O1ii 1.00 2.43 3.3867 (16) 161
C10—H10A···O2iii 0.99 2.45 3.4402 (17) 178
C12—H12B···Cl2iv 0.99 2.80 3.5299 (15) 131
C3—Cl1···Cg1iv 1.75 (1) 3.89 (1) 4.9389 (14) 117 (1)

Symmetry codes: (ii) −x+2, y−1/2, −z+1/2; (iii) −x+2, −y, −z; (iv) −x+2, y+1/2, −z+1/2.

Funding Statement

This work was funded by Institute of Polymer Materials, National Academy of Sciences of Azerbaijan.

References

  1. Asgarova, A. R., Khalilov, A. N., Brito, I., Maharramov, A. M., Shikhaliyev, N. G., Cisterna, J., Cárdenas, A., Gurbanov, A. V., Zubkov, F. I. & Mahmudov, K. T. (2019). Acta Cryst. C75, 342–347. [DOI] [PubMed]
  2. Aslantaş, M., Çelik, C., Çelik, Ö. & Karayel, A. (2015). Acta Cryst. E71, o143–o144. [DOI] [PMC free article] [PubMed]
  3. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  4. Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  6. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  7. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  8. Gurbanov, A. V., Kuznetsov, M. L., Demukhamedova, S. D., Alieva, I. N., Godjaev, N. M., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2020a). CrystEngComm, 22, 628–633.
  9. Gurbanov, A. V., Kuznetsov, M. L., Mahmudov, K. T., Pombeiro, A. J. L. & Resnati, G. (2020b). Chem. Eur. J. 26, 14833–14837. [DOI] [PubMed]
  10. Gurbanov, A. V., Maharramov, A. M., Zubkov, F. I., Saifutdinov, A. M. & Guseinov, F. I. (2018a). Aust. J. Chem. 71, 190–194.
  11. Gurbanov, A. V., Mahmoudi, G., Guedes da Silva, M. F. C., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018b). Inorg. Chim. Acta, 471, 130–136.
  12. Gurbanov, A. V., Mahmudov, K. T., Sutradhar, M., Guedes da Silva, F. C., Mahmudov, T. A., Guseinov, F. I., Zubkov, F. I., Maharramov, A. M. & Pombeiro, A. J. L. (2017). J. Organomet. Chem. 834, 22–27.
  13. Khalilov, A. N., Abdelhamid, A. A., Gurbanov, A. V. & Ng, S. W. (2011). Acta Cryst. E67, o1146. [DOI] [PMC free article] [PubMed]
  14. Khalilov, A. N., Asgarova, A. R., Gurbanov, A. V., Maharramov, A. M., Nagiyev, F. N. & Brito, I. (2018a). Z. Kristallogr. New Cryst. Struct. 233, 1019–1020.
  15. Khalilov, A. N., Asgarova, A. R., Gurbanov, A. V., Nagiyev, F. N. & Brito, I. (2018b). Z. Kristallogr. New Cryst. Struct. 233, 947–948.
  16. Kopylovich, M. N., Mahmudov, K. T., Haukka, M., Luzyanin, K. V. & Pombeiro, A. J. L. (2011a). Inorg. Chim. Acta, 374, 175–180.
  17. Kopylovich, M. N., Mahmudov, K. T., Mizar, A. & Pombeiro, A. J. L. (2011b). Chem. Commun. 47, 7248–7250. [DOI] [PubMed]
  18. Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. [DOI] [PMC free article] [PubMed]
  19. Ma, Z., Gurbanov, A. V., Maharramov, A. M., Guseinov, F. I., Kopylovich, M. N., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2017a). J. Mol. Catal. A Chem. 426, 526–533.
  20. Ma, Z., Gurbanov, A. V., Sutradhar, M., Kopylovich, M. N., Mahmudov, K. T., Maharramov, A. M., Guseinov, F. I., Zubkov, F. I. & Pombeiro, A. J. L. (2017b). Mol. Catal. 428, 17–23.
  21. Ma, Z., Mahmudov, K. T., Aliyeva, V. A., Gurbanov, A. V., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2021). Coord. Chem. Rev. 437, 213859.
  22. Ma, Z., Mahmudov, K. T., Aliyeva, V. A., Gurbanov, A. V. & Pombeiro, A. J. L. (2020). Coord. Chem. Rev. 423, 213482.
  23. Maharramov, A. M., Duruskari, G. S., Mammadova, G. Z., Khalilov, A. N., Aslanova, J. M., Cisterna, J., Cárdenas, A. & Brito, I. (2019). J. Chil. Chem. Soc. 64, 4441–4447.
  24. Mahmoudi, G., Bauzá, A., Gurbanov, A. V., Zubkov, F. I., Maniukiewicz, W., Rodríguez-Diéguez, A., López-Torres, E. & Frontera, A. (2016). CrystEngComm, 18, 9056–9066.
  25. Mahmoudi, G., Dey, L., Chowdhury, H., Bauzá, A., Ghosh, B. K., Kirillov, A. M., Seth, S. K., Gurbanov, A. V. & Frontera, A. (2017a). Inorg. Chim. Acta, 461, 192–205.
  26. Mahmoudi, G., Gurbanov, A. V., Rodríguez-Hermida, S., Carballo, R., Amini, M., Bacchi, A., Mitoraj, M. P., Sagan, F., Kukułka, M. & Safin, D. A. (2017b). Inorg. Chem. 56, 9698–9709. [DOI] [PubMed]
  27. Mahmoudi, G., Khandar, A. A., Afkhami, F. A., Miroslaw, B., Gurbanov, A. V., Zubkov, F. I., Kennedy, A., Franconetti, A. & Frontera, A. (2019). CrystEngComm, 21, 108–117.
  28. Mahmoudi, G., Seth, S. K., Bauzá, A., Zubkov, F. I., Gurbanov, A. V., White, J., Stilinović, V., Doert, T. & Frontera, A. (2018a). CrystEngComm, 20, 2812–2821.
  29. Mahmoudi, G., Zangrando, E., Mitoraj, M. P., Gurbanov, A. V., Zubkov, F. I., Moosavifar, M., Konyaeva, I. A., Kirillov, A. M. & Safin, D. A. (2018b). New J. Chem. 42, 4959–4971.
  30. Mahmoudi, G., Zaręba, J. K., Gurbanov, A. V., Bauzá, A., Zubkov, F. I., Kubicki, M., Stilinović, V., Kinzhybalo, V. & Frontera, A. (2017c). Eur. J. Inorg. Chem. pp. 4763–4772.
  31. Mahmudov, K. T., Kopylovich, M. N., Haukka, M., Mahmudova, G. S., Esmaeila, E. F., Chyragov, F. M. & Pombeiro, A. J. L. (2013). J. Mol. Struct. 1048, 108–112.
  32. Manohar, R., Harikrishna, M., Etti, S. H., Ramanathan, C. & Gunasekaran, K. (2019). Acta Cryst. E75, 562–564. [DOI] [PMC free article] [PubMed]
  33. Mizar, A., Guedes da Silva, M. F. C., Kopylovich, M. N., Mukherjee, S., Mahmudov, K. T. & Pombeiro, A. J. L. (2012). Eur. J. Inorg. Chem. pp. 2305–2313.
  34. Peloquin, A. J., Balaich, G. J. & Iacono, S. T. (2019). Acta Cryst. E75, 1153–1157. [DOI] [PMC free article] [PubMed]
  35. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  36. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  37. Shikhaliyev, N. Q., Kuznetsov, M. L., Maharramov, A. M., Gurbanov, A. V., Ahmadova, N. E., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2019). CrystEngComm, 21, 5032–5038.
  38. Shixaliyev, N. Q., Gurbanov, A. V., Maharramov, A. M., Mahmudov, K. T., Kopylovich, M. N., Martins, L. M. D. R. S., Muzalevskiy, V. M., Nenajdenko, V. G. & Pombeiro, A. J. L. (2014). New J. Chem. 38, 4807–4815.
  39. Spek, A. L. (2020). Acta Cryst. E76, 1–11. [DOI] [PMC free article] [PubMed]
  40. Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17.5. University of Western Australia.http://hirshfeldsuface.net
  41. Viswanathan, A., Kute, D., Musa, A., Mani, S. K., Sipilä, V., Emmert-Streib, F., Zubkov, F. I., Gurbanov, A. V., Yli-Harja, O. & Kandhavelu, M. (2019). Eur. J. Med. Chem. 166, 291–303. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989021006952/vm2251sup1.cif

e-77-00775-sup1.cif (394.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989021006952/vm2251Isup2.hkl

e-77-00775-Isup2.hkl (271.7KB, hkl)

CCDC reference: 2094787

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES