The asymmetric unit contains one-half of the formula unit of the title compound. The crystal structure is stabilized by intermolecular C—H⋯O, C—H⋯Cl and C—Cl⋯π interactions, and short intermolecular Cl⋯O and Cl⋯Cl contacts, forming a three-dimensional network.
Keywords: crystal structure, pyrrolidine ring, cyclopentane ring, cyclohexane ring, Hirshfeld surface analysis
Abstract
The molecule of the title compound, C24H16Cl12N2O4, is generated by a crystallographic inversion centre at the midpoint of the central C—C bond. A kink in the molecule is defined by a torsion angle of −169.86 (15)° about this central bond of the alkyl bridge. The pyrrolidine ring is essentially planar [max. deviation = 0.014 (1) Å]. The cyclohexane ring has a boat conformation, while both cyclopentane rings adopt an envelope conformation. In the crystal structure, molecules are linked by intermolecular C—H⋯O, C—H⋯Cl and C—Cl⋯π interactions, and short intermolecular Cl⋯O and Cl⋯Cl contacts, forming a three-dimensional network.
Chemical context
N-heterocyclic compounds are of interest in the fields of synthetic organic chemistry, coordination chemistry and medicinal chemistry because of their important biological properties (Mahmoudi et al., 2016 ▸, 2017a
▸,b
▸,c
▸, 2018a
▸,b
▸; 2019 ▸; Viswanathan et al., 2019 ▸). For this reason, many approaches have been developed for their efficient and versatile synthesis (Gurbanov et al., 2017 ▸, 2018a
▸,b
▸; Ma et al., 2017a
▸,b
▸). On the other hand, N-heterocycles or N-ligands can also be used as precursors in the synthesis of coordination compounds (Ma et al., 2020 ▸, 2021 ▸; Mahmudov et al., 2013 ▸), and as building blocks in the construction of supramolecular structures as they have both hydrogen-bond donor and acceptor capabilities (Gurbanov et al., 2020a
▸; Kopylovich et al., 2011a
▸,b
▸; Asgarova et al., 2019 ▸). In fact, attachment of suitable functional groups to N-ligands can improve their solubility and the catalytic activity of the corresponding coordination compounds (Mizar et al., 2012 ▸; Gurbanov et al., 2020b
▸; Khalilov et al., 2011 ▸, 2018a
▸,b
▸; Maharramov et al., 2019 ▸; Shikhaliyev et al., 2019 ▸; Shixaliyev et al., 2014 ▸). Intermolecular halogen bonds and other types of non-covalent interactions in halogenated N-heterocyclic compounds can improve their solubility and other functional properties. In order to continue our work in this perspective, we have synthesized a new halogenated N-heterocyclic compound, (3aR,4S,7S,7aS)-4,5,6,7,8,8-hexachloro-2-{6-[(3aR,4R,7R,7aS)-4,5,6,7,8,8-hexachloro-1,3-dioxo-1,3,3a,4,7,7a-hexahydro-2H-4,7-methanoisoindol-2-yl]hexyl}-3a,4,7,7a-tetrahydro-1H-4,7-methanoisoindole-1,3(2H)-dione, which provides multiple inermolecular non-covalent interactions.
Structural commentary
The molecule of the title compound is generated by a crystallographic inversion centre at the midpoint of the central C—C bond. A kink in the molecule is defined by the C10—C11–C12—C12_a torsion angle of −169.86 (15)° about this central bond of the alkyl bridge (Fig. 1 ▸). The pyrrolidine ring (N1/C1/C2/C6/C7) is essentially planar [maximum deviation = −0.014 (1) Å for N1]. The cyclohexane ring (C2/C3/C5/C6/C8/C9) has a boat conformation [the puckering parameters (Cremer and Pople, 1975 ▸) are Q T = 0.9300 (14) Å, θ = 89.99 (9)°, φ = 59.37 (9)°], while both the cyclopentane rings (C2–C6 and C3–C5/C8/C9) adopt an envelope conformation [Q(2) = 0.6308 (14) Å, φ(2) = 252.44 (13)° and Q(2) = 0.5835 (14) Å, φ(2) = 215.53 (14)°, respectively] with the C4 atom bearing the dichloromethane group as the flap.
Figure 1.
The molecular structure of the title compound with displacement ellipsoids for the non-hydrogen atoms drawn at the 50% probability level. [Symmetry code: (a) 2 − x, 1 − y, −z].
Supramolecular features and Hirshfeld surface analysis
In the crystal structure, molecules are linked by intermolecular C—H⋯O, C—H⋯Cl and C—Cl⋯π interactions (Table 1 ▸), and short intermolecular contacts, listed in Table 2 ▸, forming a three-dimensional network (Figs. 2 ▸ and 3 ▸).
Table 1. Hydrogen-bond geometry (Å, °).
Cg1 is the centroid of the N1/C1/C2/C6/C7 pyrrolidine ring.
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| C6—H6⋯O1i | 1.00 | 2.43 | 3.3867 (16) | 161 |
| C10—H10A⋯O2ii | 0.99 | 2.45 | 3.4402 (17) | 178 |
| C12—H12B⋯Cl2iii | 0.99 | 2.80 | 3.5299 (15) | 131 |
| C3—Cl1⋯Cg1iii | 1.75 (1) | 3.89 (1) | 4.9389 (14) | 117 (1) |
Symmetry codes: (i) -x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}; (ii) -x+2, -y, -z; (iii) -x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}.
Table 2. Summary of short interatomic contacts (Å) in the title compound.
| Contact | Distance | Symmetry operation |
|---|---|---|
| Cl3⋯Cl2 | 3.4333 (5) | 1 − x, {1\over 2} + y, {1\over 2} − z |
| O1⋯H6 | 2.43 | 2 − x, {1\over 2} + y, {1\over 2} − z |
| Cl1⋯H11B | 2.99 | x, {1\over 2} − y, {1\over 2} + z |
| Cl3⋯H10B | 2.96 | −1 + x, y, z |
| O2⋯Cl4 | 3.4606 (11) | 1 − x, −y, −z |
| H10A⋯O2 | 2.45 | 2 − x, −y, −z |
Figure 2.
Crystal packing of the title compound viewed along the a-axis direction. C—H⋯O, C—H⋯Cl hydrogen bonds and C—Cl⋯π interactions (Table 1 ▸) are represented by dashed lines. H atoms not involved in hydrogen bonding are omitted for clarity.
Figure 3.
Crystal packing viewed along the b axis, with intermolecular interactions shown as in Fig. 2 ▸. H atoms not involved in hydrogen bonding are omitted for clarity.
In order to visualize the intermolecular interactions (Table 2 ▸) in the crystal of the title compound, a Hirshfeld surface analysis was carried out using Crystal Explorer 17.5 (Turner et al., 2017 ▸). Fig. 4 ▸ shows the Hirshfeld surface plotted over d norm in the range −0.1922 to 1.7149 a.u. The red spots on the Hirshfeld surface represent C—H⋯O and C—H⋯Cl contacts. Fig. 5 ▸ shows the full two-dimensional fingerprint plot and those delineated into the major contacts: Cl⋯H/H⋯Cl (33.6%; Fig. 5 ▸ b), Cl⋯Cl (29.3%; Fig. 5 ▸ c), O⋯H/H⋯O (13.9%; Fig. 5 ▸ d), Cl⋯O/O⋯Cl (11.4%; Fig. 5 ▸ e) and H⋯H (7.0%; Fig. 5 ▸ f) interactions. The remaining other weak interactions (contribution percentages) are Cl⋯C/C⋯Cl (3.2%), Cl⋯N/N⋯Cl (1.4%) and C⋯H/H⋯C (0.2%).
Figure 4.
A view of the Hirshfeld surface for the title compound, plotted over d norm in the range −0.1922 to 1.7149 a.u. together with interacting neighbouring molecules.
Figure 5.
A view of the two-dimensional fingerprint plots for the title compound, showing (a) all interactions, and delineated into (b) Cl⋯H/H⋯Cl, (c) Cl⋯Cl and (d) O⋯H/H⋯O, (e) Cl⋯O/O⋯Cl and (f) H⋯H interactions. The d i and d e values are the closest internal and external distances (in Å) from given points on the Hirshfeld surface.
Database survey
Four related compounds containing the methanoisoindole moiety were found in the Cambridge Structural Database (CSD, version 5.42, update of November 2020; Groom et al., 2016 ▸): 4,5,6,7,8,8-hexachloro-2-[2-(3,4-dimethoxyphenyl)ethyl]-3a,4,7,7a-tetrahydro-1H-4,7-methanoisoindole-1,3(2H)-dione (refcode COHTUR: Manohar et al., 2019 ▸), 5-hydroxy-4-(4-methylphenyl)-4-azatricyclo[5.2.1.02,6]dec-8-en-3-one (QOVCAH: Aslantaş et al., 2015 ▸), (3aR,4S,7R,7aS)-2-(perfluoropyridin-4-yl)-3a,4,7,7a-tetrahydro-1H-4,7-methanoisoindole-1,3(2H)-dione (MOJFUP: Peloquin et al., 2019 ▸) and (3aR,4S,7R,7aS)-2-[(perfluoropyridin-4-yl)oxy]-3a,4,7,7a-tetrahydro-1H-4,7-methanoisoindole-1,3(2H)-dione (MOJGAW: Peloquin et al., 2019 ▸).
In COHTUR, the six-membered ring of the norbornene moiety adopts a boat conformation and the two five-membered rings have envelope conformations. The pyrrolidine ring makes a dihedral angle of 14.83 (12)° with the 3,4-dimethoxyphenyl ring, which are attached to each other by an extended N—CH2—CH2—Car bridge. In the crystal of COHTUR, weak C—H⋯O hydrogen bonds link the molecules, forming a cyclic
(48) ring motif (Bernstein et al., 1995 ▸). The molecules are stacked in layers held together by offset π–π interactions, with a centroid–centroid distance of 3.564 (1) Å for the pyrrolidine and benzene rings. There is also an intermolecular C—Cl⋯π interaction present.
In the crystal of QOVCAH, the cyclohexene ring adopts a boat conformation, and the five-membered rings have envelope conformations with the bridging atom as the flap. Their mean planes are oriented at a dihedral angle of 86.51 (7)°. The molecular structure is stabilized by a short intramolecular C—H⋯O contact. In the crystal, molecules are linked by O—H⋯O hydrogen bonds, forming chains propagating along [100]. The chains are linked by C—H⋯π interactions, forming slabs parallel to (001).
The compound MOJFUP crystallizes in the triclinic space group P
with two molecules, A and B, in the asymmetric unit, and MOJGAW in the monoclinic space group P21/n with one molecule per asymmetric unit. The synthesis of both compounds is conducted using endo starting materials, and the same configuration is observed in the resulting crystal structures. In MOJFUP, steric interactions between the ortho-fluorine atoms and the carbonyl oxygen atoms prevents free rotation about the nitrogen–ipso-carbon bond, which is evidenced by separate 19F NMR peaks in solution for the ortho-F atoms. In molecule A, the 2,3,5,6-tetrafluoropyridine plane is rotated by 58.05 (5)° relative to the pyrrolidine plane and the corresponding dihedral angle for molecule B is 61.65 (7)°. The addition of an oxygen atom between N and C in the bridge between the ring systems in MOJGAW alleviates this steric restriction and only one 19F NMR peak in solution is observed for the ortho-F atoms; even so, the dihedral angle between the 2,3,5,6-tetrafluoropyridine and pyrrolidine planes in the crystal of MOJGAW of 84.01 (5)° is larger than that found in MOJFUP.
The main directional interactions in the crystal structures of MOJFUP and MOJGAW are of the type C—H⋯O, C—H⋯F, C—O⋯π, and C—F⋯π. In both compounds, weak hydrogen-bonding interactions are observed for the hydrogen atom(s) α to the carbonyl groups (C—H⋯O and C— H⋯F in MOJFUP; C—H⋯O in MOJGAW) and the olefinic hydrogen atoms (C—H⋯F in MOJFUP; C—H⋯O in MOJGAW). A weak interaction is also observed for a bridge hydrogen atom in MOJGAW, C—H⋯F. The packing is further aided by π-interactions with the pyridine ring in MOJGAW.
Synthesis and crystallization
To 741 mg (2 mmol) of (3aR,4R,7R,7aS)-4,5,6,7,8,8-hexachloro-3a,4,7,7a-tetrahydro-4,7-methanoisobenzofuran-1,3-dione were added 0.12 mL (1 mmol) of hexane-1,6-diamine and 25 mL of dimethylformamide, and the mixture was stirred for 6 h at 373 K. Then, the reaction mixture was cooled to room temperature and poured into cold water. The obtained precipitate was filtered off, washed with water, recrystallized from chloroform and dried under vacuum. Yellow powder, yield 92%, m.p 404–405 K (decomp.). Analysis calculated for C24H16Cl12N2O4 (M r = 821.80): C 35.08, H 1.96, N 3.41%; found: C 35.03, H 2.00, N 3.35%. ESI–MS: m/z: 822.9 [M r + H]+. 1H NMR (300.130 MHz) in acetone-d 6, internal TMS, δ (ppm): 1.29–3.43 (12H, 6CH2), 3.86 (4H, CH). 13C{1H} NMR (75.468 MHz, acetone-d 6). δ: 25.8 (2CH2), 27.2 (2CH2), 39.3 (4C–H), 52.0 (2CH2), 79.3 (4CCl), 104.4 (2CCl2), 130.9 (2ClC=CCl) and 170.2 (4C=O). Off-white prismatic crystals suitable for X-ray analysis were obtained by slow evaporation of a chloroform–hexane (1/1, v/v) mixture.
Refinement
Crystal data, data collection and structure refinement details are summarized in Table 3 ▸. All C-bound H atoms were positioned geometrically and refined using a riding model, with C—H = 0.99 (methylene) and 1.00 Å (methine), with U iso(H) = 1.2U eq(C). Two reflections (100 and 002), affected by the incident beam-stop, and owing to poor agreement between observed and calculated intensities, two outliers (136 and 118) were omitted in the final cycles of refinement.
Table 3. Experimental details.
| Crystal data | |
| Chemical formula | C24H16Cl12N2O4 |
| M r | 821.79 |
| Crystal system, space group | Monoclinic, P21/c |
| Temperature (K) | 150 |
| a, b, c (Å) | 8.9549 (3), 10.5908 (4), 16.6043 (6) |
| β (°) | 103.499 (1) |
| V (Å3) | 1531.24 (10) |
| Z | 2 |
| Radiation type | Mo Kα |
| μ (mm−1) | 1.12 |
| Crystal size (mm) | 0.34 × 0.32 × 0.28 |
| Data collection | |
| Diffractometer | Bruker APEXII CCD |
| Absorption correction | Multi-scan (SADABS; Krause et al., 2015 ▸) |
| T min, T max | 0.684, 0.736 |
| No. of measured, independent and observed [I > 2σ(I)] reflections | 12567, 3403, 3141 |
| R int | 0.023 |
| (sin θ/λ)max (Å−1) | 0.643 |
| Refinement | |
| R[F 2 > 2σ(F 2)], wR(F 2), S | 0.021, 0.053, 1.04 |
| No. of reflections | 3403 |
| No. of parameters | 190 |
| H-atom treatment | H-atom parameters constrained |
| Δρmax, Δρmin (e Å−3) | 0.33, −0.24 |
Supplementary Material
Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989021006952/vm2251sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989021006952/vm2251Isup2.hkl
CCDC reference: 2094787
Additional supporting information: crystallographic information; 3D view; checkCIF report
Acknowledgments
The authors’ contributions are as follows. Conceptualization, AIA and MA; methodology, AIA and ZA; investigation, AIA, ZA, and SM; writing (original draft), MA and SM; writing (review and editing of the manuscript), MA and SM; visualization, AIA and ZA; funding acquisition, AIA; resources, AIA, ZA and SHM; supervision, MA and SM.
supplementary crystallographic information
Crystal data
| C24H16Cl12N2O4 | F(000) = 820 |
| Mr = 821.79 | Dx = 1.782 Mg m−3 |
| Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
| a = 8.9549 (3) Å | Cell parameters from 7701 reflections |
| b = 10.5908 (4) Å | θ = 2.3–27.2° |
| c = 16.6043 (6) Å | µ = 1.12 mm−1 |
| β = 103.499 (1)° | T = 150 K |
| V = 1531.24 (10) Å3 | Block, colourless |
| Z = 2 | 0.34 × 0.32 × 0.28 mm |
Data collection
| Bruker APEXII CCD diffractometer | 3141 reflections with I > 2σ(I) |
| φ and ω scans | Rint = 0.023 |
| Absorption correction: multi-scan (SADABS; Krause et al., 2015) | θmax = 27.2°, θmin = 2.3° |
| Tmin = 0.684, Tmax = 0.736 | h = −8→11 |
| 12567 measured reflections | k = −13→13 |
| 3403 independent reflections | l = −21→21 |
Refinement
| Refinement on F2 | Primary atom site location: structure-invariant direct methods |
| Least-squares matrix: full | Secondary atom site location: difference Fourier map |
| R[F2 > 2σ(F2)] = 0.021 | Hydrogen site location: inferred from neighbouring sites |
| wR(F2) = 0.053 | H-atom parameters constrained |
| S = 1.04 | w = 1/[σ2(Fo2) + (0.0231P)2 + 0.7545P] where P = (Fo2 + 2Fc2)/3 |
| 3403 reflections | (Δ/σ)max = 0.001 |
| 190 parameters | Δρmax = 0.33 e Å−3 |
| 0 restraints | Δρmin = −0.24 e Å−3 |
Special details
| Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| Cl1 | 0.81506 (4) | 0.38645 (3) | 0.33748 (2) | 0.02092 (8) | |
| Cl2 | 0.65657 (4) | 0.08552 (3) | 0.31569 (2) | 0.02036 (8) | |
| Cl3 | 0.45141 (4) | 0.28198 (3) | 0.24334 (2) | 0.01993 (8) | |
| Cl4 | 0.48797 (4) | 0.05628 (3) | 0.10287 (2) | 0.02218 (8) | |
| Cl5 | 0.75019 (4) | 0.52267 (3) | 0.15453 (2) | 0.02455 (9) | |
| Cl6 | 0.55737 (5) | 0.31532 (4) | 0.00843 (2) | 0.02966 (9) | |
| O1 | 1.10843 (11) | 0.32935 (10) | 0.22625 (6) | 0.0224 (2) | |
| O2 | 0.83761 (12) | 0.05643 (10) | 0.03360 (6) | 0.0220 (2) | |
| N1 | 0.99701 (12) | 0.19567 (11) | 0.11936 (7) | 0.0156 (2) | |
| C1 | 1.01234 (15) | 0.25177 (13) | 0.19624 (8) | 0.0152 (3) | |
| C2 | 0.88902 (15) | 0.19800 (12) | 0.23555 (8) | 0.0139 (2) | |
| H2 | 0.935586 | 0.153877 | 0.288724 | 0.017* | |
| C3 | 0.76483 (15) | 0.29560 (12) | 0.24743 (8) | 0.0142 (2) | |
| C4 | 0.62421 (15) | 0.20595 (12) | 0.24022 (8) | 0.0142 (2) | |
| C5 | 0.63197 (15) | 0.15971 (12) | 0.15208 (8) | 0.0140 (2) | |
| C6 | 0.79769 (15) | 0.10488 (12) | 0.17088 (8) | 0.0142 (2) | |
| H6 | 0.801142 | 0.017191 | 0.193567 | 0.017* | |
| C7 | 0.87382 (15) | 0.11223 (12) | 0.09843 (8) | 0.0153 (3) | |
| C8 | 0.71121 (15) | 0.36779 (12) | 0.16671 (8) | 0.0153 (3) | |
| C9 | 0.63396 (15) | 0.28797 (13) | 0.11034 (8) | 0.0157 (3) | |
| C10 | 1.09720 (16) | 0.21915 (14) | 0.06241 (8) | 0.0200 (3) | |
| H10A | 1.112615 | 0.139247 | 0.034488 | 0.024* | |
| H10B | 1.198763 | 0.248383 | 0.094445 | 0.024* | |
| C11 | 1.02959 (17) | 0.31780 (14) | −0.00267 (8) | 0.0213 (3) | |
| H11A | 1.081293 | 0.311153 | −0.049094 | 0.026* | |
| H11B | 0.919312 | 0.299100 | −0.024805 | 0.026* | |
| C12 | 1.04563 (18) | 0.45260 (13) | 0.03013 (8) | 0.0223 (3) | |
| H12A | 1.010849 | 0.455925 | 0.082477 | 0.027* | |
| H12B | 1.155427 | 0.476794 | 0.042781 | 0.027* |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| Cl1 | 0.02260 (17) | 0.01966 (17) | 0.01950 (16) | 0.00008 (13) | 0.00287 (13) | −0.00824 (12) |
| Cl2 | 0.02766 (18) | 0.01698 (16) | 0.01742 (15) | 0.00127 (13) | 0.00727 (13) | 0.00505 (12) |
| Cl3 | 0.01596 (15) | 0.01944 (17) | 0.02574 (17) | 0.00286 (12) | 0.00760 (13) | −0.00038 (12) |
| Cl4 | 0.01995 (16) | 0.02252 (18) | 0.02291 (16) | −0.00783 (13) | 0.00266 (13) | −0.00581 (13) |
| Cl5 | 0.02410 (18) | 0.01230 (16) | 0.0374 (2) | −0.00025 (13) | 0.00750 (15) | 0.00650 (13) |
| Cl6 | 0.0340 (2) | 0.0339 (2) | 0.01635 (16) | 0.00063 (16) | −0.00359 (14) | 0.00900 (14) |
| O1 | 0.0162 (5) | 0.0248 (5) | 0.0257 (5) | −0.0038 (4) | 0.0037 (4) | −0.0082 (4) |
| O2 | 0.0253 (5) | 0.0215 (5) | 0.0197 (5) | −0.0021 (4) | 0.0061 (4) | −0.0076 (4) |
| N1 | 0.0153 (5) | 0.0151 (6) | 0.0165 (5) | 0.0019 (4) | 0.0043 (4) | −0.0011 (4) |
| C1 | 0.0124 (6) | 0.0151 (6) | 0.0168 (6) | 0.0048 (5) | 0.0008 (5) | −0.0006 (5) |
| C2 | 0.0146 (6) | 0.0121 (6) | 0.0139 (6) | 0.0031 (5) | 0.0008 (5) | −0.0012 (5) |
| C3 | 0.0147 (6) | 0.0129 (6) | 0.0145 (6) | 0.0014 (5) | 0.0021 (5) | −0.0018 (5) |
| C4 | 0.0153 (6) | 0.0118 (6) | 0.0154 (6) | 0.0020 (5) | 0.0037 (5) | 0.0016 (5) |
| C5 | 0.0144 (6) | 0.0128 (6) | 0.0138 (6) | −0.0016 (5) | 0.0015 (5) | −0.0002 (5) |
| C6 | 0.0163 (6) | 0.0116 (6) | 0.0142 (6) | 0.0007 (5) | 0.0023 (5) | 0.0003 (5) |
| C7 | 0.0163 (6) | 0.0117 (6) | 0.0177 (6) | 0.0035 (5) | 0.0036 (5) | 0.0000 (5) |
| C8 | 0.0135 (6) | 0.0129 (6) | 0.0200 (6) | 0.0024 (5) | 0.0049 (5) | 0.0037 (5) |
| C9 | 0.0146 (6) | 0.0173 (6) | 0.0146 (6) | 0.0036 (5) | 0.0021 (5) | 0.0049 (5) |
| C10 | 0.0189 (7) | 0.0217 (7) | 0.0220 (7) | −0.0003 (6) | 0.0100 (5) | −0.0032 (5) |
| C11 | 0.0262 (7) | 0.0211 (7) | 0.0172 (6) | −0.0055 (6) | 0.0067 (6) | −0.0023 (5) |
| C12 | 0.0274 (7) | 0.0209 (7) | 0.0178 (6) | −0.0054 (6) | 0.0037 (6) | −0.0022 (5) |
Geometric parameters (Å, º)
| Cl1—C3 | 1.7464 (13) | C3—C4 | 1.5592 (18) |
| Cl2—C4 | 1.7639 (13) | C4—C5 | 1.5599 (17) |
| Cl3—C4 | 1.7558 (13) | C5—C9 | 1.5269 (18) |
| Cl4—C5 | 1.7432 (13) | C5—C6 | 1.5559 (18) |
| Cl5—C8 | 1.6989 (14) | C6—C7 | 1.5168 (18) |
| Cl6—C9 | 1.6958 (13) | C6—H6 | 1.0000 |
| O1—C1 | 1.2098 (17) | C8—C9 | 1.3293 (19) |
| O2—C7 | 1.2042 (16) | C10—C11 | 1.523 (2) |
| N1—C1 | 1.3855 (16) | C10—H10A | 0.9900 |
| N1—C7 | 1.3927 (17) | C10—H10B | 0.9900 |
| N1—C10 | 1.4686 (17) | C11—C12 | 1.5228 (19) |
| C1—C2 | 1.5186 (19) | C11—H11A | 0.9900 |
| C2—C6 | 1.5442 (17) | C11—H11B | 0.9900 |
| C2—C3 | 1.5642 (17) | C12—C12i | 1.515 (3) |
| C2—H2 | 1.0000 | C12—H12A | 0.9900 |
| C3—C8 | 1.5203 (17) | C12—H12B | 0.9900 |
| C1—N1—C7 | 113.85 (11) | C2—C6—C5 | 103.10 (10) |
| C1—N1—C10 | 125.21 (11) | C7—C6—H6 | 111.5 |
| C7—N1—C10 | 120.94 (11) | C2—C6—H6 | 111.5 |
| O1—C1—N1 | 125.37 (13) | C5—C6—H6 | 111.5 |
| O1—C1—C2 | 126.60 (12) | O2—C7—N1 | 124.52 (13) |
| N1—C1—C2 | 108.03 (11) | O2—C7—C6 | 127.35 (12) |
| C1—C2—C6 | 105.12 (10) | N1—C7—C6 | 108.13 (11) |
| C1—C2—C3 | 114.59 (11) | C9—C8—C3 | 107.83 (11) |
| C6—C2—C3 | 103.47 (10) | C9—C8—Cl5 | 128.16 (11) |
| C1—C2—H2 | 111.1 | C3—C8—Cl5 | 124.00 (10) |
| C6—C2—H2 | 111.1 | C8—C9—C5 | 107.78 (11) |
| C3—C2—H2 | 111.1 | C8—C9—Cl6 | 128.08 (11) |
| C8—C3—C4 | 98.94 (10) | C5—C9—Cl6 | 124.06 (10) |
| C8—C3—C2 | 107.98 (10) | N1—C10—C11 | 111.81 (11) |
| C4—C3—C2 | 99.97 (10) | N1—C10—H10A | 109.3 |
| C8—C3—Cl1 | 116.29 (9) | C11—C10—H10A | 109.3 |
| C4—C3—Cl1 | 116.31 (9) | N1—C10—H10B | 109.3 |
| C2—C3—Cl1 | 115.05 (9) | C11—C10—H10B | 109.3 |
| C3—C4—C5 | 92.94 (9) | H10A—C10—H10B | 107.9 |
| C3—C4—Cl3 | 114.83 (9) | C12—C11—C10 | 113.62 (11) |
| C5—C4—Cl3 | 113.84 (9) | C12—C11—H11A | 108.8 |
| C3—C4—Cl2 | 112.95 (9) | C10—C11—H11A | 108.8 |
| C5—C4—Cl2 | 113.80 (9) | C12—C11—H11B | 108.8 |
| Cl3—C4—Cl2 | 108.08 (7) | C10—C11—H11B | 108.8 |
| C9—C5—C6 | 108.14 (10) | H11A—C11—H11B | 107.7 |
| C9—C5—C4 | 98.88 (10) | C12i—C12—C11 | 113.19 (14) |
| C6—C5—C4 | 100.27 (9) | C12i—C12—H12A | 108.9 |
| C9—C5—Cl4 | 115.59 (9) | C11—C12—H12A | 108.9 |
| C6—C5—Cl4 | 115.22 (9) | C12i—C12—H12B | 108.9 |
| C4—C5—Cl4 | 116.55 (9) | C11—C12—H12B | 108.9 |
| C7—C6—C2 | 104.81 (10) | H12A—C12—H12B | 107.8 |
| C7—C6—C5 | 113.96 (10) | ||
| C7—N1—C1—O1 | −178.12 (13) | C3—C2—C6—C5 | 0.55 (12) |
| C10—N1—C1—O1 | 1.4 (2) | C9—C5—C6—C7 | −47.46 (14) |
| C7—N1—C1—C2 | 2.31 (14) | C4—C5—C6—C7 | −150.44 (11) |
| C10—N1—C1—C2 | −178.13 (11) | Cl4—C5—C6—C7 | 83.59 (12) |
| O1—C1—C2—C6 | 179.44 (13) | C9—C5—C6—C2 | 65.53 (12) |
| N1—C1—C2—C6 | −1.01 (13) | C4—C5—C6—C2 | −37.45 (12) |
| O1—C1—C2—C3 | 66.54 (17) | Cl4—C5—C6—C2 | −163.42 (9) |
| N1—C1—C2—C3 | −113.90 (12) | C1—N1—C7—O2 | 177.78 (13) |
| C1—C2—C3—C8 | 47.50 (14) | C10—N1—C7—O2 | −1.8 (2) |
| C6—C2—C3—C8 | −66.37 (12) | C1—N1—C7—C6 | −2.63 (15) |
| C1—C2—C3—C4 | 150.38 (10) | C10—N1—C7—C6 | 177.79 (11) |
| C6—C2—C3—C4 | 36.51 (11) | C2—C6—C7—O2 | −178.64 (13) |
| C1—C2—C3—Cl1 | −84.24 (12) | C5—C6—C7—O2 | −66.68 (18) |
| C6—C2—C3—Cl1 | 161.89 (9) | C2—C6—C7—N1 | 1.79 (13) |
| C8—C3—C4—C5 | 52.32 (10) | C5—C6—C7—N1 | 113.75 (12) |
| C2—C3—C4—C5 | −57.86 (10) | C4—C3—C8—C9 | −35.34 (13) |
| Cl1—C3—C4—C5 | 177.63 (9) | C2—C3—C8—C9 | 68.27 (13) |
| C8—C3—C4—Cl3 | −65.69 (11) | Cl1—C3—C8—C9 | −160.66 (10) |
| C2—C3—C4—Cl3 | −175.87 (8) | C4—C3—C8—Cl5 | 145.71 (10) |
| Cl1—C3—C4—Cl3 | 59.62 (12) | C2—C3—C8—Cl5 | −110.68 (11) |
| C8—C3—C4—Cl2 | 169.74 (9) | Cl1—C3—C8—Cl5 | 20.39 (15) |
| C2—C3—C4—Cl2 | 59.57 (11) | C3—C8—C9—C5 | 0.64 (14) |
| Cl1—C3—C4—Cl2 | −64.95 (11) | Cl5—C8—C9—C5 | 179.54 (10) |
| C3—C4—C5—C9 | −51.85 (10) | C3—C8—C9—Cl6 | −176.19 (10) |
| Cl3—C4—C5—C9 | 66.99 (11) | Cl5—C8—C9—Cl6 | 2.7 (2) |
| Cl2—C4—C5—C9 | −168.55 (9) | C6—C5—C9—C8 | −69.69 (13) |
| C3—C4—C5—C6 | 58.55 (10) | C4—C5—C9—C8 | 34.26 (13) |
| Cl3—C4—C5—C6 | 177.40 (9) | Cl4—C5—C9—C8 | 159.47 (10) |
| Cl2—C4—C5—C6 | −58.15 (11) | C6—C5—C9—Cl6 | 107.30 (11) |
| C3—C4—C5—Cl4 | −176.38 (9) | C4—C5—C9—Cl6 | −148.75 (10) |
| Cl3—C4—C5—Cl4 | −57.54 (12) | Cl4—C5—C9—Cl6 | −23.54 (15) |
| Cl2—C4—C5—Cl4 | 66.92 (11) | C1—N1—C10—C11 | −96.26 (15) |
| C1—C2—C6—C7 | −0.47 (13) | C7—N1—C10—C11 | 83.27 (15) |
| C3—C2—C6—C7 | 120.07 (11) | N1—C10—C11—C12 | 76.43 (15) |
| C1—C2—C6—C5 | −119.99 (10) | C10—C11—C12—C12i | −169.86 (15) |
Symmetry code: (i) −x+2, −y+1, −z.
Hydrogen-bond geometry (Å, º)
Cg1 is the centroid of the N1/C1/C2/C6/C7 pyrrolidine ring.
| D—H···A | D—H | H···A | D···A | D—H···A |
| C6—H6···O1ii | 1.00 | 2.43 | 3.3867 (16) | 161 |
| C10—H10A···O2iii | 0.99 | 2.45 | 3.4402 (17) | 178 |
| C12—H12B···Cl2iv | 0.99 | 2.80 | 3.5299 (15) | 131 |
| C3—Cl1···Cg1iv | 1.75 (1) | 3.89 (1) | 4.9389 (14) | 117 (1) |
Symmetry codes: (ii) −x+2, y−1/2, −z+1/2; (iii) −x+2, −y, −z; (iv) −x+2, y+1/2, −z+1/2.
Funding Statement
This work was funded by Institute of Polymer Materials, National Academy of Sciences of Azerbaijan.
References
- Asgarova, A. R., Khalilov, A. N., Brito, I., Maharramov, A. M., Shikhaliyev, N. G., Cisterna, J., Cárdenas, A., Gurbanov, A. V., Zubkov, F. I. & Mahmudov, K. T. (2019). Acta Cryst. C75, 342–347. [DOI] [PubMed]
- Aslantaş, M., Çelik, C., Çelik, Ö. & Karayel, A. (2015). Acta Cryst. E71, o143–o144. [DOI] [PMC free article] [PubMed]
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
- Gurbanov, A. V., Kuznetsov, M. L., Demukhamedova, S. D., Alieva, I. N., Godjaev, N. M., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2020a). CrystEngComm, 22, 628–633.
- Gurbanov, A. V., Kuznetsov, M. L., Mahmudov, K. T., Pombeiro, A. J. L. & Resnati, G. (2020b). Chem. Eur. J. 26, 14833–14837. [DOI] [PubMed]
- Gurbanov, A. V., Maharramov, A. M., Zubkov, F. I., Saifutdinov, A. M. & Guseinov, F. I. (2018a). Aust. J. Chem. 71, 190–194.
- Gurbanov, A. V., Mahmoudi, G., Guedes da Silva, M. F. C., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018b). Inorg. Chim. Acta, 471, 130–136.
- Gurbanov, A. V., Mahmudov, K. T., Sutradhar, M., Guedes da Silva, F. C., Mahmudov, T. A., Guseinov, F. I., Zubkov, F. I., Maharramov, A. M. & Pombeiro, A. J. L. (2017). J. Organomet. Chem. 834, 22–27.
- Khalilov, A. N., Abdelhamid, A. A., Gurbanov, A. V. & Ng, S. W. (2011). Acta Cryst. E67, o1146. [DOI] [PMC free article] [PubMed]
- Khalilov, A. N., Asgarova, A. R., Gurbanov, A. V., Maharramov, A. M., Nagiyev, F. N. & Brito, I. (2018a). Z. Kristallogr. New Cryst. Struct. 233, 1019–1020.
- Khalilov, A. N., Asgarova, A. R., Gurbanov, A. V., Nagiyev, F. N. & Brito, I. (2018b). Z. Kristallogr. New Cryst. Struct. 233, 947–948.
- Kopylovich, M. N., Mahmudov, K. T., Haukka, M., Luzyanin, K. V. & Pombeiro, A. J. L. (2011a). Inorg. Chim. Acta, 374, 175–180.
- Kopylovich, M. N., Mahmudov, K. T., Mizar, A. & Pombeiro, A. J. L. (2011b). Chem. Commun. 47, 7248–7250. [DOI] [PubMed]
- Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. [DOI] [PMC free article] [PubMed]
- Ma, Z., Gurbanov, A. V., Maharramov, A. M., Guseinov, F. I., Kopylovich, M. N., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2017a). J. Mol. Catal. A Chem. 426, 526–533.
- Ma, Z., Gurbanov, A. V., Sutradhar, M., Kopylovich, M. N., Mahmudov, K. T., Maharramov, A. M., Guseinov, F. I., Zubkov, F. I. & Pombeiro, A. J. L. (2017b). Mol. Catal. 428, 17–23.
- Ma, Z., Mahmudov, K. T., Aliyeva, V. A., Gurbanov, A. V., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2021). Coord. Chem. Rev. 437, 213859.
- Ma, Z., Mahmudov, K. T., Aliyeva, V. A., Gurbanov, A. V. & Pombeiro, A. J. L. (2020). Coord. Chem. Rev. 423, 213482.
- Maharramov, A. M., Duruskari, G. S., Mammadova, G. Z., Khalilov, A. N., Aslanova, J. M., Cisterna, J., Cárdenas, A. & Brito, I. (2019). J. Chil. Chem. Soc. 64, 4441–4447.
- Mahmoudi, G., Bauzá, A., Gurbanov, A. V., Zubkov, F. I., Maniukiewicz, W., Rodríguez-Diéguez, A., López-Torres, E. & Frontera, A. (2016). CrystEngComm, 18, 9056–9066.
- Mahmoudi, G., Dey, L., Chowdhury, H., Bauzá, A., Ghosh, B. K., Kirillov, A. M., Seth, S. K., Gurbanov, A. V. & Frontera, A. (2017a). Inorg. Chim. Acta, 461, 192–205.
- Mahmoudi, G., Gurbanov, A. V., Rodríguez-Hermida, S., Carballo, R., Amini, M., Bacchi, A., Mitoraj, M. P., Sagan, F., Kukułka, M. & Safin, D. A. (2017b). Inorg. Chem. 56, 9698–9709. [DOI] [PubMed]
- Mahmoudi, G., Khandar, A. A., Afkhami, F. A., Miroslaw, B., Gurbanov, A. V., Zubkov, F. I., Kennedy, A., Franconetti, A. & Frontera, A. (2019). CrystEngComm, 21, 108–117.
- Mahmoudi, G., Seth, S. K., Bauzá, A., Zubkov, F. I., Gurbanov, A. V., White, J., Stilinović, V., Doert, T. & Frontera, A. (2018a). CrystEngComm, 20, 2812–2821.
- Mahmoudi, G., Zangrando, E., Mitoraj, M. P., Gurbanov, A. V., Zubkov, F. I., Moosavifar, M., Konyaeva, I. A., Kirillov, A. M. & Safin, D. A. (2018b). New J. Chem. 42, 4959–4971.
- Mahmoudi, G., Zaręba, J. K., Gurbanov, A. V., Bauzá, A., Zubkov, F. I., Kubicki, M., Stilinović, V., Kinzhybalo, V. & Frontera, A. (2017c). Eur. J. Inorg. Chem. pp. 4763–4772.
- Mahmudov, K. T., Kopylovich, M. N., Haukka, M., Mahmudova, G. S., Esmaeila, E. F., Chyragov, F. M. & Pombeiro, A. J. L. (2013). J. Mol. Struct. 1048, 108–112.
- Manohar, R., Harikrishna, M., Etti, S. H., Ramanathan, C. & Gunasekaran, K. (2019). Acta Cryst. E75, 562–564. [DOI] [PMC free article] [PubMed]
- Mizar, A., Guedes da Silva, M. F. C., Kopylovich, M. N., Mukherjee, S., Mahmudov, K. T. & Pombeiro, A. J. L. (2012). Eur. J. Inorg. Chem. pp. 2305–2313.
- Peloquin, A. J., Balaich, G. J. & Iacono, S. T. (2019). Acta Cryst. E75, 1153–1157. [DOI] [PMC free article] [PubMed]
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
- Shikhaliyev, N. Q., Kuznetsov, M. L., Maharramov, A. M., Gurbanov, A. V., Ahmadova, N. E., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2019). CrystEngComm, 21, 5032–5038.
- Shixaliyev, N. Q., Gurbanov, A. V., Maharramov, A. M., Mahmudov, K. T., Kopylovich, M. N., Martins, L. M. D. R. S., Muzalevskiy, V. M., Nenajdenko, V. G. & Pombeiro, A. J. L. (2014). New J. Chem. 38, 4807–4815.
- Spek, A. L. (2020). Acta Cryst. E76, 1–11. [DOI] [PMC free article] [PubMed]
- Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17.5. University of Western Australia.http://hirshfeldsuface.net
- Viswanathan, A., Kute, D., Musa, A., Mani, S. K., Sipilä, V., Emmert-Streib, F., Zubkov, F. I., Gurbanov, A. V., Yli-Harja, O. & Kandhavelu, M. (2019). Eur. J. Med. Chem. 166, 291–303. [DOI] [PubMed]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989021006952/vm2251sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989021006952/vm2251Isup2.hkl
CCDC reference: 2094787
Additional supporting information: crystallographic information; 3D view; checkCIF report





