Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2021 Jul 27;77(Pt 8):839–846. doi: 10.1107/S2056989021007398

Bis{N′-[3-(4-nitro­phen­yl)-1-phenyl­prop-2-en-1-yl­idene]-N-phenyl­carbamimido­thio­ato}zinc(II): crystal structure, Hirshfeld surface analysis and computational study

Ming Yueh Tan a, Huey Chong Kwong b, Karen A Crouse c,d,, Thahira B S A Ravoof c,e, Edward R T Tiekink b,*
PMCID: PMC8340977  PMID: 34422312

The N2S2 donor set about the zinc atom in the title complex has a geometry approaching tetra­hedral. A linear supra­molecular chain featuring amine-N—H⋯O(nitro) hydrogen bonding is noted in the crystal.

Keywords: crystal structure, zinc, Schiff base, thio­semicarbazone, hydrogen bonding, Hirshfeld surface analysis

Abstract

The title zinc bis­(thio­semicarbazone) complex, [Zn(C22H17N4O2S)2], comprises two N,S-donor anions, leading to a distorted tetra­hedral N2S2 donor set. The resultant five-membered chelate rings are nearly planar and form a dihedral angle of 73.28 (3)°. The configurations about the endocyclic- and exocyclic-imine bonds are Z and E, respectively, and that about the ethyl­ene bond is E. The major differences in the conformations of the ligands are seen in the dihedral angles between the chelate ring and nitro­benzene rings [40.48 (6) cf. 13.18 (4)°] and the N-bound phenyl and nitro­benzene ring [43.23 (8) and 22.64 (4)°]. In the crystal, a linear supra­molecular chain along the b-axis direction features amine-N—H⋯O(nitro) hydrogen bonding. The chains assemble along the 21-screw axis through a combination of phenyl-C—H⋯O(nitro) and π(chelate ring)–π(phen­yl) contacts. The double chains are linked into a three-dimensional architecture through phenyl-C—H⋯O(nitro) and nitro-O⋯π(phen­yl) inter­actions.

Chemical context  

Thio­semicarbazones constitute part of the versatile nitro­gen- and sulfur-donor ligands important in coordination chemistry because of their variable donor properties, structural diversity and pharmacological applications. These ligands usually act as monodentate or bidentate ligands and coordinate with transition and non-transition metal ions either in neutral or anionic form through thione/thiol­ate-sulfur and azomethine/imine-nitro­gen donor atoms (Lobana et al., 2009; Prajapati & Patel, 2019; Şen Yüksel, 2021). The pharmacological activities of metal complexes are usually enhanced compared to their parent free thio­semicarbazone ligands (Mathews & Kurup, 2021). The enhanced activities may be attributed to the redox potential and increased lipophilicity of the metal complexes (Rapheal et al., 2021). Transition-metal complexes derived from thio­semicarbazones exhibit widespread pharmacological activities inclusive of anti-tubercular (Khan et al., 2020), anti-microbial (Nibila et al., 2021), anti-bacterial (Prajapati & Patel, 2019), anti-malarial (Savir et al., 2020), anti-diabetic (Kumar et al., 2020), anti-viral (Rogolino et al., 2015) and anti-cancer (Anjum et al., 2019; Balakrishnan et al., 2019). In this work, 4-phenyl-3-thio­semicarbazide was condensed with 4-nitro­chalcone to form the thio­semicarbazone, which was then complexed with zinc(II) in a molar ratio of 2:1 to form the title compound, hereafter (I). In a continuation of on-going studies of metal complexes derived from thio­semicarbazones and their parent ligands (Tan, Ho et al., 2020; Tan, Kwong et al. 2020a ,b ), herein the synthesis, structure determination, Hirshfeld surface analysis and computational chemistry of (I) are described. graphic file with name e-77-00839-scheme1.jpg

Structural commentary  

The mol­ecular structure of (I), Fig. 1, comprises a zinc atom S,N-coordinated by two thio­semicarbazone anions within an N2S2-donor set. From the data in Table 1, the key geometric parameters for both ligands bear a close similarity. However, the Zn—S1 and Zn—N1 bond lengths are shorter and longer, respectively, compared with the Zn—S2 and Zn—N5 bonds, each by ca 0.07 Å. The angles about the zinc atom range from an acute 86.77 (4)° for the S1—Zn—N1 chelate angle, to a wide 131.16 (2)°, for S1—Zn—S2, consistent with an approximate tetra­hedral geometry. The mode of coordination of the thio­semicarbazone ligands leads to the formation of five-membered chelate rings. These are nearly planar with r.m.s. deviations of 0.0459 and 0.0152 Å for the S1- and S2-containing rings, respectively. However, the maximum deviation from the plane through the S1-chelate ring of −0.0613 (9) Å for the N1 atom suggests an alternate description of the conformation of the S1-ring might be valid. Another description might be an envelope conformation with the zinc atom lying 0.209 (3) Å out of the plane of the four remaining atoms (r.m.s. deviation = 0.0005 Å). The dihedral angle between the mean plane through the rings is 73.28 (3)°. There are three formal double bonds in each thio­semicarbazone anion. Owing to chelation, the configuration about the endocyclic imine bond is Z whereas that about the exocylic imine bond is E; the configuration of the ethyl­ene bond is E.

Figure 1.

Figure 1

The mol­ecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 70% probability level.

Table 1. Selected geometric parameters (Å, °).

Zn—S1 2.2558 (5) Zn—S2 2.2618 (5)
Zn—N1 2.0757 (16) Zn—N5 2.0688 (16)
S1—C16 1.758 (2) S2—C38 1.759 (2)
N1—N2 1.382 (2) N5—N6 1.381 (2)
N2—C16 1.314 (2) N6—C38 1.309 (2)
N3—C16 1.360 (2) N7—C38 1.363 (2)
       
S1—Zn—S2 131.16 (2) S2—Zn—N1 125.14 (4)
S1—Zn—N1 86.77 (4) S2—Zn—N5 87.56 (4)
S1—Zn—N5 127.38 (5) N1—Zn—N5 98.00 (6)

Some major differences are noted in the conformations of the ligands. Thus, the sequence of dihedral angles formed between the chelate ring and the imine-phenyl, N-bound phenyl and nitro­benzene rings is 72.41 (5), 16.96 (11) and 40.48 (6)°, respectively, for the S1-ring compared with 82.47 (6), 20.33 (5) and 13.18 (4)°, respectively, for the S2-ring. Similarly, the pairs of dihedral angles between the imine- and N-bound phenyl rings, i.e. 59.15 (6) and 76.48 (8)°, and N-bound phenyl and nitro­benzene rings, i.e. 43.23 (8) and 22.64 (4)°, show notable differences; the dihedral angles between the imine-phenyl and nitro­benzene rings are comparable, i.e. 82.28 (7) and 85.67 (7)°. Finally, the nitro groups present different relative orientations with respect to the benzene rings they are connected to, with the N4-nitro group being twisted out of the plane. This is shown in the value of the C2—C3—N4—O1 torsion angle of 161.88 (18)° compared with −0.4 (3)° for the C26—C25—N8—O3 torsion angle.

Supra­molecular features  

Conventional amine-N7—H⋯O4(nitro) hydrogen bonds are noted in the crystal of (I). These feature within a linear supra­molecular chain aligned along the b-axis direction, Table 2 and Fig. 2(a). The hydrogen bonds involve the N7-amine, there being no apparent role for the N3-amine in the supra­molecular aggregation. A phenyl-C44—H⋯O4(nitro) contact provides extra stability to the chain and indicates the nitro-O4 atom forms two contacts. Chains assemble about the 21-screw axis via a combination of phenyl-C37—H⋯O3(nitro) and π–π contacts. The π–π contacts are of particular inter­est in that the participating rings are a phenyl and a chelate ring, as highlighted in Fig. 2(b); such inter­actions are now well recognized in the supra­molecular chemistry of metal complexes and impart significant energies of stabilization to the packing (Malenov et al., 2017; Tiekink, 2017). In (I), the inter-centroid separation between Cg(C23–C28)⋯Cg(Zn,S2,N5,N6,C38)i is 3.5559 (11) Å with an inter-planar angle = 6.70 (8)° and slippage of 0.34 Å for symmetry operation (i): Inline graphic  − x, Inline graphic  + y, Inline graphic  − z. The links between chains to consolidate the three-dimensional architecture are of the type phenyl-C14—H⋯O1(nitro) and nitro-O1⋯π(phen­yl), Table 2. The parameters associated with the latter inter­action are: N4—O1⋯Cg(C23–C28)ii = 3.4788 (19) Å with angle at O1 = 108.71 (13)° for (ii): 1 − x, 1 − y, 1 − z. A view of the unit-cell contents is shown in Fig. 3.

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N7—H7N⋯O4i 0.87 (2) 2.18 (2) 3.019 (2) 165 (2)
C44—H44⋯O4i 0.95 2.49 3.305 (3) 144
C37—H37⋯O3ii 0.95 2.48 3.373 (3) 157
C14—H14⋯O1iii 0.95 2.54 3.462 (3) 164

Symmetry codes: (i) x, y-1, z; (ii) -x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}; (iii) -x+1, -y+1, -z+1.

Figure 2.

Figure 2

Mol­ecular packing in (I): (a) a view of the linear supra­molecular chain featuring amine-N—H⋯O(meth­oxy) hydrogen bonding shown as blue dashed lines and (b) detail of the π(phen­yl)–π(chelate ring) inter­action shown as purple dashed lines. In each image, non-participating H atoms are omitted.

Figure 3.

Figure 3

A view of the unit-cell contents shown in projection down the b-axis direction. The C—H⋯O, N—O⋯π and π–π inter­actions are shown as orange, pink and purple dashed lines, respectively. The non-participating H atoms are omitted and one chain sustained by amine-N—H⋯O(meth­oxy), π(phen­yl)–π(chelate ring) and phenyl-C—H⋯O4(nitro) inter­actions is highlighted in space-filling mode.

Analysis of the Hirshfeld surfaces  

In order to acquire further information on the supra­molecular association between mol­ecules in the crystal of (I), the Hirshfeld surface and two-dimensional fingerprint plots were calculated employing the program Crystal Explorer 17 (Turner et al., 2017) employing established methods (Tan et al., 2019). The bright-red spots on the Hirshfeld surface mapped over d norm in Fig. 4, i.e. near the amine-H7N, phenyl-H44 and nitro-O4 atoms correspond to the inter­actions leading to the linear chain; geometric data for the identified contacts in the Hirshfeld surface analysis are given in Table 3. Links between chains include phenyl-C37—H⋯O3 (Fig. 4), phenyl-C14—H⋯O1 and phenyl-C35—H⋯C12 inter­actions (Fig. 5) and these shown as red spots on the d norm-mapped Hirshfeld surfaces in Figs. 4 and 5.

Figure 4.

Figure 4

Two views of the Hirshfeld surface mapped over d norm for (I) in the range −0.239 to +1.045 arbitrary units, highlighting N—H⋯O and C—H⋯O contact within red circles.

Table 3. A summary of short inter­atomic contacts (Å) for (I) a .

Contact Distance Symmetry operation
N7—H7N⋯O4 b 2.04 x, y − 1, z
C44—H44⋯O4 b 2.38 x, y − 1, z
C37—H37⋯O3 b 2.36 x + {3\over 2}, y − {1\over 2}, −z + {1\over 2}
C14—H14⋯O1 b 2.41 x + 1, −y + 1, −z + 1
C35—H35⋯C12 2.60 x + 1, −y + 1, −z + 1
C2—H2⋯O2 2.54 x, y, z
H24⋯H44 2.17 x, y − 1, z
S1⋯H24 2.93 x + {3\over 2}, y − {1\over 2}, −z + {1\over 2}
C23—H23⋯C19 2.66 x + {1\over 2}, −y + {3\over 2}, z + {1\over 2}
C11—H11⋯O1 2.54 x − {1\over 2}, −y + {1\over 2}, z − {1\over 2}
C42—H42⋯N1 2.59 x + {1\over 2}, −y + {1\over 2}, z + {1\over 2}
C21—H21⋯C6 2.75 x + {1\over 2}, y + {1\over 2}, −z + {1\over 2}
S1⋯C24 3.45 x + {3\over 2}, y − {1\over 2}, −z + {1\over 2}

Notes: (a) The inter­atomic distances are calculated in Crystal Explorer 17 (Turner et al., 2017) with the X—H bond lengths adjusted to their neutron values; (b) these inter­actions correspond to those listed in Table 2.

Figure 5.

Figure 5

View of the Hirshfeld surface mapped over d norm for (I), highlighting inter-chain C—H⋯O and C—H⋯C inter­actions.

The faint-red spots observed on the d norm-mapped Hirshfeld surface of Fig. 6 correspond to a number of weak contacts listed in Table 3. In addition, an extra C24⋯S1 short contact was observed in the mol­ecular packing, Fig. 7, with a distance of 0.05 Å shorter than the sum of their van der Waals radii, Table 3. The π(C23–C28)–π(Zn,S2,N5,N6,C38) and nitro-O1⋯π(C23–C28) inter­actions were not manifested on the d norm-mapped Hirshfeld surface. However, the π–π inter­action appears as a flat surface on the curvedness-mapped Hirshfeld surface of Fig. 8(a), the nitro-O⋯π inter­action is shown as red concave and blue bump regions on the shape-index-mapped Hirshfeld surface of Fig. 8(b).

Figure 6.

Figure 6

Two views of the Hirshfeld surface mapped over d norm for (I), highlighting weak inter­actions within red circles (see text).

Figure 7.

Figure 7

View of the Hirshfeld surface mapped over d norm for (I), highlighting C⋯S short contacts.

Figure 8.

Figure 8

Views of the Hirshfeld surface mapped over (a) curveness and (b) the shape index property highlighting the inter­molecular π–π and N—O⋯π inter­actions, respectively.

The overall two-dimensional fingerprint plot for (I) along with those delineated into the individual H⋯H, H⋯O/O⋯H, H⋯C/C⋯H, H⋯S/S⋯H and H⋯N/N⋯H contacts are illustrated in Fig. 9(a)–(f), respectively. The percentage contributions from each inter­atomic contact are summarized in Table 4. As the greatest contributor to the overall Hirshfeld surface, the H⋯H contacts contributed 39.9%, Fig. 9(b), with the peak tipped at d e = d i ∼2.2 Å corresponding to the H24⋯H44 contact, Table 3. Consistent with the C—H⋯O and C—H⋯C inter­actions manifested in the mol­ecular packing, H⋯O/O⋯H and H⋯C/C⋯H contacts are the next most prominent, with percentage contributions of 18.0 and 17.6% to the overall surface, with the peak of these contacts tipped at d e + d i ∼2.0 and 2.6 Å, respectively, Fig. 9(c) and (d). The H⋯S/S⋯H contacts contribute 8.6% and appear as two blunt-symmetric wings at d e + d i ∼2.9 Å in Fig. 9(e). This feature reflects the long-range H⋯S/S⋯H contact evinced in the packing with a separation of 0.1 Å shorter than the sum of their van der Waals radii, Table 3. Although H⋯N/N⋯H contacts appear at d e + d i ∼2.6 Å in the fingerprint plot of Fig. 9(f), the contribution to the overall Hirshfeld surface is only 5.2%. The other 11 inter­atomic contacts have a negligible effect on the mol­ecular packing as their accumulated contribution is below 11%, Table 4.

Figure 9.

Figure 9

(a) A comparison of the full two-dimensional fingerprint plot for (I) and those delineated into (b) H⋯H, (c) H⋯O/O⋯H, (d) H⋯C/C⋯H, (e) H⋯S/S⋯H and (f) H⋯N/N⋯H contacts.

Table 4. Percentage contributions of inter­atomic contacts to the calculated Hirshfeld surface of (I).

Contact Percentage contribution Contact Percentage contribution
H⋯H 39.9 C⋯N/N⋯C 1.5
H⋯O/O⋯H 18.0 C⋯Zn/Zn⋯C 0.9
H⋯C/C⋯H 17.6 H⋯Zn/Zn⋯H 0.5
H⋯S/S⋯H 8.6 O⋯O 0.4
H⋯N/N⋯H 5.2 O⋯N/N⋯O 0.4
C⋯S/S⋯C 2.4 N⋯N 0.3
C⋯C 1.9 O⋯S/S⋯O 0.3
C⋯O/O⋯C 1.8 N⋯S/S⋯N 0.3

Computational chemistry  

The pairwise inter­action energies between mol­ecules in the mol­ecular packing of (I) were calculated using wave-functions at the B3LYP/6-31G(d,p) level of theory. The total energy (E tot) was calculated by summing four energy components, comprising the electrostatic (E ele), polarization (E pol), dispersion (E dis) and exchange-repulsion (E rep) energies. The independent energy components as well as the E tot are tabulated in Table 5. Even with the presence of hydrogen bonds, the E dis energy term still makes the major contribution to the inter­action energies partly due to the presence of π–π, N—O⋯π, C—H⋯O and C—H⋯C inter­actions. The total E dis components of all pairwise inter­actions sum to −432.1 kJ mol−1, whereas the total E ele sums to −190.2 kJ mol−1. The stabilization of the crystal through the contribution of the dispersion forces is emphasized by the energy framework diagram, Fig. 10, viewed down the b axis.

Table 5. A summary of inter­action energies (kJ mol−1) calculated for (I).

Contact R (Å) E ele E pol E dis E rep E tot
C14—H14⋯O1i +            
C35—H35⋯C12i +            
N4—O1⋯Cg1i +            
H4⋯H15i 7.91 −44.4 −12.4 −140.2 146.0 −88.0
C37—H37⋯O3ii +            
Cg1⋯Cg2iii +            
S1⋯H24ii +            
H19⋯H36iii 10.18 −36.9 −5.1 −83.6 78.3 −67.2
C2—H2⋯O2iv 16.54 −14.3 −4.0 −20.9 15.4 −26.8
N7—H7N⋯O4v +            
C44—H44⋯O4v +            
H24⋯H44vi 15.83 −22.5 −5.8 −15.2 32.7 −21.1
C42—H42⋯N1vii +            
C11—H11⋯O1viii 12.05 −16.9 −3.3 −43.8 33.0 −38.0
C12—H12⋯O4ix +            
C21—H21⋯C6 x 11.21 −11.4 −3.5 −48.8 37.4 −34.0
C23—H23⋯C19xi +            
H19⋯H29xii 13.60 −16.5 −3.4 −32.6 29.0 −30.5
N3—H3N⋯S1xiii 12.14 −23.3 −3.5 −27.7 35.1 −29.7
H36⋯H37xiv 11.81 −4.0 −1.0 −19.3 15.8 −12.0

Symmetry code: (i) −x + 1, −y + 1, −z + 1; (ii) −x + {3\over 2}, y − {1\over 2}, −z + {1\over 2}; (iii) −x + {3\over 2}, y + {1\over 2}, −z + {1\over 2}; (iv) −x + 1, −y, −z + 1; (v) x, y − 1, z; (vi) x, y + 1, z; (vii) x + {1\over 2}, −y + {1\over 2}, z + {1\over 2}; (viii) x − {1\over 2}, −y + {1\over 2}, z − {1\over 2}; (ix) −x + {1\over 2}, y − {1\over 2}, −z + {1\over 2}; (x) −x + {1\over 2}, y + {1\over 2}, −z + {1\over 2}; (xi) x + {1\over 2}, −y + {3\over 2}, z + {1\over 2}, (xii) x + {1\over 2}, −y + {3\over 2}, z − {1\over 2}; (xiii) −x + 1, −y + 1, z − {1\over 2}; (xiv) −x + 2, −y + 1, z − {1\over 2}.

Figure 10.

Figure 10

Perspective views of the energy frameworks calculated for (I) showing (a) electrostatic potential force, (b) dispersion force and (c) total energy, each plotted down the b axis. The radii of the cylinders are proportional to the relative magnitudes of the corresponding energies and were adjusted to the same scale factor of 50 with a cut-off value of 5 kJ mol−1 within 1 × 1 × 1 unit-cells.

Database survey  

The ligand in (I) may be considered a chalcone–thio­semicarbazone hybrid ligand having elements of both chalcone and thio­semicarbazone. There are four related species in the literature, namely an N-bound ethyl species with a terminal phenyl ring [(II); Cambridge Structural Database refcode JAXFEW; Tan et al., 2017], a terminal 4-meth­oxy­benzene ring [(III); QEMXUE; Tan et al., 2018] as well as two N-bound phenyl derivatives with terminal 4-cyano [(IV); QISJUA; Barbosa et al., 2018] and 4-chloro rings [(V); QISKEL; Barbosa et al., 2018]; (V) was characterized as a 1:1 THF solvate. In each of (I)–(V), the imine-bound substituent is a phenyl ring. Selected geometric parameters for (I)–(V), calculated employing PLATON (Spek, 2020), are collated in Table 6. From the data collated, there is an obvious homogeneity in the data to the point of common disparities in the Zn—S and Zn—N bond lengths formed by the two ligands in each complex. The range of tetra­hedral angles are similar as are the dihedral angles formed between the chelate rings. A measurement of the distortion of a four-coordinate donor set from a regular geometry is qu­anti­fied by the value of τ4 (Yang et al., 2007). The value of τ4 is 1.00 for an ideal tetra­hedron and 0.00 for perfect square-planar geometry. The range of values for τ4 listed in Table 6 vindicate the assignment of similar coordination geometries for (I)–(V), being distorted from a regular tetra­hedron.

Table 6. A comparison of key geometric parameters (Å, °) in structures related to (I).

Compound Zn—S, N (chelate 1) Zn—S, N (chelate 2) range of X—Zn—Y angles chelate 1/chelate 2 angle τ4 Ref.
(I) 2.2558 (5), 2.0757 (16) 2.2618 (5), 2.0688 (16) 86.77 (4)–131.16 (2) 73.28 (3) 0.72 This work
(II) a 2.2825 (8), 2.0526 (17) 2.2689 (7), 2.0523 (17) 87.00 (5)–133.99 (5) 73.49 (6) 0.70 Tan et al. (2017)
  2.2706 (7), 2.0727 (17) 2.2824 (9), 2.0495 (17) 85.99 (5)–131.30 (6) 77.00 (6) 0.74  
(III) 2.2880 (12), 2.042 (3) 2.2758 (10), 2.070 (3) 86.73 (9)–127.92 (5) 79.68 (13) 0.74 Tan et al. (2018)
(IV) 2.2524 (10), 2.073 (3) 2.2493 (9), 2.060 (2) 87.06 (7)–128.55 (4) 76.11 (9) 0.74 Barbosa et al. (2018)
(V) 2.2636 (7), 2.068 (2) 2.2529 (8), 2.041 (2) 86.41 (6)–128.29 (6) 78.82 (8) 0.73 Barbosa et al. (2018)

Note: (a) Two independent mol­ecules comprise the asymmetric unit.

Synthesis and crystallization  

Analytical grade reagents were used as procured and without further purification. 4-Phenyl-3-thio­semicarbazide (1.6723 g, 10 mmol) and 4-nitro­chalcone (2.5325 g, 10 mmol) were dissolved separately in hot absolute ethanol (50 ml) and mixed while stirring. About five drops of concentrated hydro­chloric acid were added to the mixture and the mixture was heated (348 K) while stirring for about 30 min. The yellow precipitate, (2E)-2-[3-(4-nitro­phen­yl)-1-phenyl­allyl­idene]-N-phenyl­hydrazine-1-carbo­thio­amide, (VI), was filtered, washed with cold ethanol and dried in vacuo after which it was used without further purification. Compound (VI) (0.4047 g, 1 mmol) was dissolved in hot absolute ethanol (50 ml), which was added to a solution of Zn(CH3COO)2·2H2O (0.1098 g, 0.5 mmol) in hot absolute ethanol (40 ml). The mixture was heated (348 K) and stirred for about 10 min, followed by stirring for about 1 h at room temperature. The white precipitate obtained was filtered, washed with cold ethanol and dried in vacuo. Single crystals were grown at room temperature by slow evaporation of (I) in a mixed solvent system containing methanol and aceto­nitrile (1:1; v/v 20 ml). Yield: 90%, m.p. 511–512 K. FT–IR (ATR (solid) cm−1): 3428 ν(N—H), 1593 ν(C=N), 1335 ν(N—N), 579 ν(Zn—N), 489 ν(Zn—S). UV–Visible: λmax (nm; ɛ (L mol−1 cm−1)): 250 (25,070), 292 (13,010), 433 (21,810). ICP–AES: Experimental %Zn = 7.26, Theoretical %Zn = 7.53.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 7. The carbon-bound H atoms were placed in calculated positions (C—H = 0.95 Å) and were included in the refinement in the riding-model approximation, with U iso(H) set to 1.2U eq(C). The N-bound H atoms were located in a difference-Fourier map, but were refined with an N—H = 0.88±0.01 Å distance restraint, and with U iso(H) set to 1.2U eq(N).

Table 7. Experimental details.

Crystal data
Chemical formula [Zn(C22H17N4O2S)2]
M r 868.28
Crystal system, space group Monoclinic, P21/n
Temperature (K) 100
a, b, c (Å) 13.4029 (4), 15.8310 (4), 19.6257 (6)
β (°) 107.841 (3)
V3) 3964.0 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.78
Crystal size (mm) 0.34 × 0.17 × 0.12
 
Data collection
Diffractometer Oxford Diffraction Gemini
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2012)
T min, T max 0.865, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 17644, 8932, 7199
R int 0.032
(sin θ/λ)max−1) 0.679
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.036, 0.086, 1.02
No. of reflections 8932
No. of parameters 540
No. of restraints 2
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.36, −0.40

Computer programs: CrysAlis PRO (Agilent, 2012), SHELXT (Sheldrick, 2015a ), SHELXL2018/3 (Sheldrick, 2015b ), ORTEP-3 for Windows (Farrugia, 2012), DIAMOND (Brandenburg, 2006) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989021007398/mw2178sup1.cif

e-77-00839-sup1.cif (555.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989021007398/mw2178Isup2.hkl

e-77-00839-Isup2.hkl (709.1KB, hkl)

CCDC reference: 2097106

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The intensity data were collected by M. I. M. Tahir, Universiti Putra Malaysia.

supplementary crystallographic information

Crystal data

[Zn(C22H17N4O2S)2] F(000) = 1792
Mr = 868.28 Dx = 1.455 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
a = 13.4029 (4) Å Cell parameters from 5987 reflections
b = 15.8310 (4) Å θ = 2.2–28.8°
c = 19.6257 (6) Å µ = 0.78 mm1
β = 107.841 (3)° T = 100 K
V = 3964.0 (2) Å3 Prism, colourless
Z = 4 0.34 × 0.17 × 0.12 mm

Data collection

Oxford Diffraction Gemini diffractometer 7199 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.032
ω scans θmax = 28.9°, θmin = 2.2°
Absorption correction: multi-scan (CrysAlisPro; Agilent, 2012) h = −16→17
Tmin = 0.865, Tmax = 1.000 k = −17→19
17644 measured reflections l = −26→23
8932 independent reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036 Hydrogen site location: mixed
wR(F2) = 0.086 H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0322P)2 + 1.7875P] where P = (Fo2 + 2Fc2)/3
8932 reflections (Δ/σ)max = 0.001
540 parameters Δρmax = 0.36 e Å3
2 restraints Δρmin = −0.40 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Zn 0.58274 (2) 0.37086 (2) 0.20624 (2) 0.01673 (7)
S1 0.58652 (4) 0.44525 (3) 0.10903 (3) 0.02441 (12)
S2 0.58396 (4) 0.23003 (3) 0.22591 (3) 0.01931 (11)
O1 0.55672 (12) 0.15118 (10) 0.65080 (8) 0.0303 (4)
O2 0.50717 (14) 0.05390 (9) 0.57014 (9) 0.0369 (4)
O3 0.54146 (13) 0.94898 (9) 0.17974 (8) 0.0329 (4)
O4 0.61311 (15) 0.99625 (9) 0.28598 (9) 0.0420 (4)
N1 0.46644 (12) 0.45354 (9) 0.21386 (8) 0.0158 (3)
N2 0.44712 (12) 0.52228 (10) 0.16827 (8) 0.0168 (3)
N3 0.48578 (14) 0.58845 (11) 0.07532 (9) 0.0214 (4)
H3N 0.5220 (15) 0.5835 (13) 0.0455 (10) 0.020 (6)*
N4 0.52155 (14) 0.12782 (11) 0.58837 (10) 0.0238 (4)
N5 0.68182 (12) 0.38332 (9) 0.30981 (8) 0.0154 (3)
N6 0.70509 (13) 0.30949 (9) 0.34901 (9) 0.0171 (3)
N7 0.68388 (14) 0.16658 (10) 0.35245 (9) 0.0199 (4)
H7N 0.6565 (16) 0.1232 (10) 0.3266 (10) 0.026 (6)*
N8 0.59028 (13) 0.93859 (10) 0.24236 (9) 0.0212 (4)
C1 0.45854 (15) 0.23217 (12) 0.41034 (11) 0.0202 (4)
H1 0.453813 0.217926 0.362427 0.024*
C2 0.48297 (16) 0.17003 (13) 0.46245 (11) 0.0218 (4)
H2 0.491912 0.112986 0.450476 0.026*
C3 0.49404 (15) 0.19296 (12) 0.53227 (11) 0.0198 (4)
C4 0.47873 (15) 0.27476 (12) 0.55129 (11) 0.0202 (4)
H4 0.487903 0.289001 0.599854 0.024*
C5 0.44979 (15) 0.33557 (12) 0.49829 (11) 0.0201 (4)
H5 0.435907 0.391535 0.510350 0.024*
C6 0.44065 (14) 0.31582 (12) 0.42709 (10) 0.0176 (4)
C7 0.41199 (15) 0.38247 (12) 0.37269 (10) 0.0179 (4)
H7 0.373314 0.429169 0.381690 0.022*
C8 0.43599 (15) 0.38270 (12) 0.31141 (10) 0.0174 (4)
H8 0.468932 0.333854 0.300077 0.021*
C9 0.41514 (15) 0.45260 (12) 0.26090 (10) 0.0165 (4)
C10 0.33978 (15) 0.52098 (12) 0.26386 (10) 0.0168 (4)
C11 0.23278 (16) 0.50424 (13) 0.24251 (11) 0.0229 (4)
H11 0.207955 0.448858 0.228010 0.027*
C12 0.16233 (17) 0.56849 (15) 0.24240 (12) 0.0282 (5)
H12 0.089173 0.557323 0.226578 0.034*
C13 0.19822 (18) 0.64882 (14) 0.26526 (11) 0.0281 (5)
H13 0.149830 0.692385 0.266047 0.034*
C14 0.30442 (18) 0.66550 (13) 0.28691 (12) 0.0269 (5)
H14 0.328964 0.720644 0.302532 0.032*
C15 0.37555 (16) 0.60205 (13) 0.28596 (11) 0.0223 (4)
H15 0.448522 0.613961 0.300379 0.027*
C16 0.49833 (15) 0.52179 (12) 0.12093 (10) 0.0181 (4)
C17 0.43201 (16) 0.66552 (12) 0.07269 (11) 0.0207 (4)
C18 0.45367 (17) 0.72857 (13) 0.02964 (11) 0.0257 (5)
H18 0.499997 0.717405 0.002519 0.031*
C19 0.40772 (17) 0.80745 (14) 0.02638 (12) 0.0304 (5)
H19 0.422299 0.849898 −0.003447 0.037*
C20 0.34085 (18) 0.82520 (14) 0.06602 (13) 0.0332 (5)
H20 0.310569 0.879725 0.064307 0.040*
C21 0.31882 (17) 0.76236 (14) 0.10812 (13) 0.0315 (5)
H21 0.272830 0.774161 0.135360 0.038*
C22 0.36257 (16) 0.68213 (13) 0.11149 (12) 0.0259 (5)
H22 0.345390 0.639214 0.139829 0.031*
C23 0.70309 (15) 0.76045 (12) 0.36476 (11) 0.0194 (4)
H23 0.740369 0.751645 0.413851 0.023*
C24 0.67607 (15) 0.84148 (12) 0.33996 (11) 0.0195 (4)
H24 0.694471 0.888503 0.371405 0.023*
C25 0.62165 (15) 0.85267 (11) 0.26834 (11) 0.0169 (4)
C26 0.59400 (15) 0.78618 (12) 0.22071 (11) 0.0195 (4)
H26 0.557032 0.795631 0.171657 0.023*
C27 0.62175 (16) 0.70522 (12) 0.24655 (11) 0.0203 (4)
H27 0.603312 0.658577 0.214698 0.024*
C28 0.67624 (14) 0.69108 (11) 0.31847 (10) 0.0160 (4)
C29 0.70270 (15) 0.60651 (12) 0.34873 (11) 0.0182 (4)
H29 0.733633 0.603231 0.399152 0.022*
C30 0.68795 (15) 0.53321 (12) 0.31287 (11) 0.0174 (4)
H30 0.662728 0.534603 0.262062 0.021*
C31 0.70882 (14) 0.45193 (11) 0.34831 (10) 0.0161 (4)
C32 0.75469 (15) 0.44706 (11) 0.42785 (10) 0.0172 (4)
C33 0.68844 (17) 0.44340 (12) 0.47036 (11) 0.0232 (4)
H33 0.614641 0.445966 0.448801 0.028*
C34 0.72993 (18) 0.43605 (13) 0.54392 (12) 0.0276 (5)
H34 0.684477 0.432751 0.572662 0.033*
C35 0.83700 (19) 0.43348 (13) 0.57565 (12) 0.0286 (5)
H35 0.865457 0.429202 0.626204 0.034*
C36 0.90223 (18) 0.43714 (14) 0.53374 (12) 0.0306 (5)
H36 0.975996 0.435308 0.555597 0.037*
C37 0.86174 (17) 0.44350 (14) 0.45986 (11) 0.0259 (5)
H37 0.907621 0.445393 0.431367 0.031*
C38 0.66455 (15) 0.24045 (12) 0.31503 (10) 0.0166 (4)
C39 0.72045 (15) 0.15319 (12) 0.42737 (11) 0.0198 (4)
C40 0.76208 (17) 0.21521 (14) 0.47840 (11) 0.0277 (5)
H40 0.773700 0.270666 0.463945 0.033*
C41 0.78648 (18) 0.19551 (14) 0.55048 (12) 0.0314 (5)
H41 0.813842 0.238257 0.585148 0.038*
C42 0.77190 (18) 0.11516 (14) 0.57297 (12) 0.0306 (5)
H42 0.787784 0.102876 0.622539 0.037*
C43 0.73386 (19) 0.05284 (14) 0.52240 (13) 0.0334 (5)
H43 0.725650 −0.003121 0.537320 0.040*
C44 0.70773 (18) 0.07131 (13) 0.45040 (12) 0.0286 (5)
H44 0.680855 0.028083 0.416101 0.034*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Zn 0.02270 (13) 0.01347 (11) 0.01473 (12) 0.00168 (9) 0.00678 (9) 0.00058 (9)
S1 0.0346 (3) 0.0236 (3) 0.0196 (3) 0.0088 (2) 0.0151 (2) 0.0058 (2)
S2 0.0269 (3) 0.0131 (2) 0.0173 (2) −0.00068 (19) 0.0060 (2) −0.00247 (19)
O1 0.0369 (9) 0.0309 (9) 0.0207 (8) 0.0035 (7) 0.0053 (7) 0.0061 (7)
O2 0.0563 (11) 0.0170 (8) 0.0372 (10) −0.0021 (7) 0.0139 (8) 0.0060 (7)
O3 0.0496 (10) 0.0212 (8) 0.0222 (8) 0.0083 (7) 0.0025 (7) 0.0060 (6)
O4 0.0681 (12) 0.0114 (8) 0.0320 (9) 0.0003 (7) −0.0060 (8) −0.0031 (7)
N1 0.0194 (8) 0.0127 (8) 0.0139 (8) −0.0009 (6) 0.0030 (6) 0.0004 (6)
N2 0.0207 (8) 0.0145 (8) 0.0143 (8) 0.0006 (6) 0.0037 (7) 0.0025 (6)
N3 0.0299 (10) 0.0202 (9) 0.0152 (9) 0.0025 (7) 0.0088 (7) 0.0040 (7)
N4 0.0250 (9) 0.0220 (9) 0.0259 (10) 0.0017 (7) 0.0100 (8) 0.0075 (8)
N5 0.0169 (8) 0.0125 (8) 0.0172 (8) 0.0014 (6) 0.0057 (7) 0.0018 (6)
N6 0.0221 (8) 0.0109 (8) 0.0180 (8) 0.0017 (6) 0.0057 (7) 0.0016 (6)
N7 0.0288 (10) 0.0101 (8) 0.0196 (9) −0.0008 (7) 0.0059 (7) −0.0004 (7)
N8 0.0260 (9) 0.0147 (8) 0.0218 (9) 0.0003 (7) 0.0058 (7) 0.0028 (7)
C1 0.0248 (11) 0.0186 (10) 0.0186 (10) −0.0005 (8) 0.0089 (8) −0.0013 (8)
C2 0.0247 (11) 0.0168 (10) 0.0245 (11) 0.0002 (8) 0.0085 (9) −0.0006 (8)
C3 0.0184 (10) 0.0194 (10) 0.0217 (11) 0.0006 (8) 0.0064 (8) 0.0060 (8)
C4 0.0228 (10) 0.0222 (10) 0.0160 (10) −0.0010 (8) 0.0066 (8) 0.0005 (8)
C5 0.0224 (10) 0.0172 (10) 0.0219 (11) 0.0000 (8) 0.0088 (8) −0.0012 (8)
C6 0.0149 (9) 0.0204 (10) 0.0182 (10) −0.0026 (8) 0.0061 (8) 0.0015 (8)
C7 0.0183 (10) 0.0154 (9) 0.0202 (10) 0.0001 (7) 0.0060 (8) 0.0001 (8)
C8 0.0178 (9) 0.0145 (9) 0.0202 (10) −0.0003 (7) 0.0060 (8) 0.0000 (8)
C9 0.0174 (10) 0.0150 (9) 0.0154 (9) −0.0023 (7) 0.0027 (8) −0.0026 (8)
C10 0.0193 (10) 0.0186 (10) 0.0129 (9) 0.0013 (8) 0.0053 (8) 0.0011 (8)
C11 0.0221 (11) 0.0244 (11) 0.0211 (11) −0.0004 (8) 0.0051 (9) 0.0000 (9)
C12 0.0200 (11) 0.0385 (13) 0.0244 (11) 0.0047 (9) 0.0045 (9) 0.0031 (10)
C13 0.0331 (12) 0.0309 (12) 0.0214 (11) 0.0153 (10) 0.0098 (10) 0.0063 (9)
C14 0.0366 (13) 0.0192 (10) 0.0253 (12) 0.0031 (9) 0.0103 (10) −0.0005 (9)
C15 0.0233 (10) 0.0204 (10) 0.0240 (11) −0.0005 (8) 0.0083 (9) −0.0019 (9)
C16 0.0221 (10) 0.0157 (9) 0.0149 (10) −0.0015 (8) 0.0032 (8) 0.0002 (8)
C17 0.0216 (10) 0.0173 (10) 0.0181 (10) 0.0006 (8) −0.0016 (8) 0.0036 (8)
C18 0.0291 (12) 0.0218 (11) 0.0208 (11) −0.0046 (9) −0.0002 (9) 0.0043 (9)
C19 0.0287 (12) 0.0222 (11) 0.0303 (12) −0.0058 (9) −0.0059 (10) 0.0088 (9)
C20 0.0258 (12) 0.0200 (11) 0.0448 (15) 0.0033 (9) −0.0024 (10) 0.0052 (10)
C21 0.0228 (11) 0.0278 (12) 0.0415 (14) 0.0060 (9) 0.0062 (10) 0.0071 (10)
C22 0.0212 (11) 0.0220 (11) 0.0317 (12) 0.0026 (8) 0.0039 (9) 0.0079 (9)
C23 0.0210 (10) 0.0166 (10) 0.0181 (10) 0.0002 (8) 0.0023 (8) −0.0001 (8)
C24 0.0225 (10) 0.0128 (9) 0.0222 (11) −0.0016 (8) 0.0055 (8) −0.0028 (8)
C25 0.0189 (10) 0.0113 (9) 0.0213 (10) 0.0003 (7) 0.0071 (8) 0.0023 (8)
C26 0.0231 (10) 0.0169 (10) 0.0174 (10) −0.0016 (8) 0.0046 (8) 0.0005 (8)
C27 0.0242 (11) 0.0141 (9) 0.0219 (11) −0.0021 (8) 0.0061 (9) −0.0026 (8)
C28 0.0149 (9) 0.0133 (9) 0.0199 (10) −0.0015 (7) 0.0056 (8) 0.0009 (8)
C29 0.0189 (10) 0.0170 (9) 0.0179 (10) −0.0008 (8) 0.0044 (8) 0.0012 (8)
C30 0.0186 (10) 0.0150 (9) 0.0185 (10) −0.0017 (8) 0.0056 (8) 0.0004 (8)
C31 0.0153 (9) 0.0137 (9) 0.0198 (10) 0.0011 (7) 0.0061 (8) 0.0010 (8)
C32 0.0218 (10) 0.0098 (9) 0.0189 (10) −0.0021 (7) 0.0048 (8) −0.0029 (7)
C33 0.0259 (11) 0.0191 (10) 0.0263 (11) −0.0031 (8) 0.0107 (9) −0.0031 (9)
C34 0.0400 (13) 0.0224 (11) 0.0263 (12) −0.0067 (9) 0.0190 (10) −0.0047 (9)
C35 0.0448 (14) 0.0220 (11) 0.0171 (11) −0.0068 (10) 0.0065 (10) −0.0046 (9)
C36 0.0278 (12) 0.0365 (13) 0.0233 (12) −0.0033 (10) 0.0018 (9) −0.0050 (10)
C37 0.0250 (11) 0.0311 (12) 0.0225 (11) −0.0018 (9) 0.0086 (9) −0.0022 (9)
C38 0.0207 (10) 0.0133 (9) 0.0168 (10) 0.0022 (7) 0.0071 (8) 0.0003 (8)
C39 0.0205 (10) 0.0178 (10) 0.0202 (10) 0.0052 (8) 0.0052 (8) 0.0047 (8)
C40 0.0329 (12) 0.0236 (11) 0.0215 (11) −0.0015 (9) 0.0007 (9) 0.0054 (9)
C41 0.0366 (13) 0.0284 (12) 0.0225 (12) −0.0006 (10) −0.0006 (10) 0.0011 (10)
C42 0.0306 (12) 0.0360 (13) 0.0221 (11) 0.0091 (10) 0.0038 (9) 0.0118 (10)
C43 0.0463 (15) 0.0221 (11) 0.0310 (13) 0.0076 (10) 0.0107 (11) 0.0125 (10)
C44 0.0412 (13) 0.0164 (10) 0.0282 (12) 0.0032 (9) 0.0108 (10) 0.0020 (9)

Geometric parameters (Å, º)

Zn—S1 2.2558 (5) C15—H15 0.9500
Zn—N1 2.0757 (16) C17—C18 1.395 (3)
S1—C16 1.758 (2) C17—C22 1.396 (3)
N1—N2 1.382 (2) C18—C19 1.385 (3)
N2—C16 1.314 (2) C18—H18 0.9500
N3—C16 1.360 (2) C19—C20 1.384 (3)
Zn—S2 2.2618 (5) C19—H19 0.9500
Zn—N5 2.0688 (16) C20—C21 1.382 (3)
S2—C38 1.759 (2) C20—H20 0.9500
N5—N6 1.381 (2) C21—C22 1.392 (3)
N6—C38 1.309 (2) C21—H21 0.9500
N7—C38 1.363 (2) C22—H22 0.9500
O1—N4 1.227 (2) C23—C24 1.380 (3)
O2—N4 1.222 (2) C23—C28 1.400 (3)
O3—N8 1.214 (2) C23—H23 0.9500
O4—N8 1.224 (2) C24—C25 1.382 (3)
N1—C9 1.309 (2) C24—H24 0.9500
N3—C17 1.410 (3) C25—C26 1.381 (3)
N3—H3N 0.871 (9) C26—C27 1.387 (3)
N4—C3 1.471 (2) C26—H26 0.9500
N5—C31 1.309 (2) C27—C28 1.394 (3)
N7—C39 1.416 (3) C27—H27 0.9500
N7—H7N 0.866 (9) C28—C29 1.464 (3)
N8—C25 1.468 (2) C29—C30 1.340 (3)
C1—C2 1.384 (3) C29—H29 0.9500
C1—C6 1.403 (3) C30—C31 1.449 (3)
C1—H1 0.9500 C30—H30 0.9500
C2—C3 1.381 (3) C31—C32 1.494 (3)
C2—H2 0.9500 C32—C37 1.380 (3)
C3—C4 1.380 (3) C32—C33 1.394 (3)
C4—C5 1.383 (3) C33—C34 1.384 (3)
C4—H4 0.9500 C33—H33 0.9500
C5—C6 1.400 (3) C34—C35 1.379 (3)
C5—H5 0.9500 C34—H34 0.9500
C6—C7 1.466 (3) C35—C36 1.373 (3)
C7—C8 1.337 (3) C35—H35 0.9500
C7—H7 0.9500 C36—C37 1.387 (3)
C8—C9 1.455 (3) C36—H36 0.9500
C8—H8 0.9500 C37—H37 0.9500
C9—C10 1.494 (3) C39—C40 1.391 (3)
C10—C11 1.391 (3) C39—C44 1.400 (3)
C10—C15 1.392 (3) C40—C41 1.386 (3)
C11—C12 1.387 (3) C40—H40 0.9500
C11—H11 0.9500 C41—C42 1.380 (3)
C12—C13 1.385 (3) C41—H41 0.9500
C12—H12 0.9500 C42—C43 1.382 (3)
C13—C14 1.380 (3) C42—H42 0.9500
C13—H13 0.9500 C43—C44 1.379 (3)
C14—C15 1.389 (3) C43—H43 0.9500
C14—H14 0.9500 C44—H44 0.9500
S1—Zn—S2 131.16 (2) C19—C18—H18 120.0
S1—Zn—N1 86.77 (4) C17—C18—H18 120.0
S1—Zn—N5 127.38 (5) C20—C19—C18 120.8 (2)
S2—Zn—N1 125.14 (4) C20—C19—H19 119.6
S2—Zn—N5 87.56 (4) C18—C19—H19 119.6
N1—Zn—N5 98.00 (6) C21—C20—C19 118.9 (2)
C16—S1—Zn 93.29 (6) C21—C20—H20 120.5
C38—S2—Zn 92.72 (6) C19—C20—H20 120.5
C9—N1—N2 115.51 (15) C20—C21—C22 121.4 (2)
C9—N1—Zn 127.72 (13) C20—C21—H21 119.3
N2—N1—Zn 116.48 (11) C22—C21—H21 119.3
C16—N2—N1 114.74 (15) C21—C22—C17 119.2 (2)
C16—N3—C17 130.84 (17) C21—C22—H22 120.4
C16—N3—H3N 113.0 (14) C17—C22—H22 120.4
C17—N3—H3N 115.9 (14) C24—C23—C28 120.84 (18)
O2—N4—O1 123.98 (18) C24—C23—H23 119.6
O2—N4—C3 118.13 (18) C28—C23—H23 119.6
O1—N4—C3 117.89 (17) C23—C24—C25 118.51 (18)
C31—N5—N6 113.90 (16) C23—C24—H24 120.7
C31—N5—Zn 128.82 (13) C25—C24—H24 120.7
N6—N5—Zn 115.72 (11) C26—C25—C24 122.63 (17)
C38—N6—N5 115.80 (16) C26—C25—N8 118.83 (17)
C38—N7—C39 129.51 (17) C24—C25—N8 118.53 (17)
C38—N7—H7N 112.8 (15) C25—C26—C27 118.09 (18)
C39—N7—H7N 116.1 (15) C25—C26—H26 121.0
O3—N8—O4 123.27 (17) C27—C26—H26 121.0
O3—N8—C25 119.05 (16) C26—C27—C28 121.15 (18)
O4—N8—C25 117.66 (17) C26—C27—H27 119.4
C2—C1—C6 121.10 (18) C28—C27—H27 119.4
C2—C1—H1 119.5 C27—C28—C23 118.79 (17)
C6—C1—H1 119.5 C27—C28—C29 122.97 (17)
C3—C2—C1 118.40 (18) C23—C28—C29 118.17 (17)
C3—C2—H2 120.8 C30—C29—C28 126.92 (18)
C1—C2—H2 120.8 C30—C29—H29 116.5
C4—C3—C2 122.36 (18) C28—C29—H29 116.5
C4—C3—N4 118.64 (18) C29—C30—C31 122.77 (18)
C2—C3—N4 118.99 (18) C29—C30—H30 118.6
C3—C4—C5 118.71 (18) C31—C30—H30 118.6
C3—C4—H4 120.6 N5—C31—C30 118.76 (17)
C5—C4—H4 120.6 N5—C31—C32 120.84 (16)
C4—C5—C6 120.92 (18) C30—C31—C32 120.31 (16)
C4—C5—H5 119.5 C37—C32—C33 119.35 (19)
C6—C5—H5 119.5 C37—C32—C31 121.02 (17)
C5—C6—C1 118.41 (18) C33—C32—C31 119.60 (18)
C5—C6—C7 119.30 (18) C34—C33—C32 120.1 (2)
C1—C6—C7 122.29 (18) C34—C33—H33 119.9
C8—C7—C6 125.14 (18) C32—C33—H33 119.9
C8—C7—H7 117.4 C35—C34—C33 120.2 (2)
C6—C7—H7 117.4 C35—C34—H34 119.9
C7—C8—C9 124.49 (18) C33—C34—H34 119.9
C7—C8—H8 117.8 C36—C35—C34 119.6 (2)
C9—C8—H8 117.8 C36—C35—H35 120.2
N1—C9—C8 117.16 (17) C34—C35—H35 120.2
N1—C9—C10 121.78 (17) C35—C36—C37 120.8 (2)
C8—C9—C10 121.05 (16) C35—C36—H36 119.6
C11—C10—C15 119.64 (18) C37—C36—H36 119.6
C11—C10—C9 119.83 (17) C32—C37—C36 119.9 (2)
C15—C10—C9 120.51 (17) C32—C37—H37 120.1
C12—C11—C10 120.0 (2) C36—C37—H37 120.1
C12—C11—H11 120.0 N6—C38—N7 117.47 (17)
C10—C11—H11 120.0 N6—C38—S2 128.14 (15)
C13—C12—C11 120.3 (2) N7—C38—S2 114.38 (14)
C13—C12—H12 119.9 C40—C39—C44 118.86 (19)
C11—C12—H12 119.9 C40—C39—N7 125.21 (18)
C14—C13—C12 119.9 (2) C44—C39—N7 115.85 (18)
C14—C13—H13 120.1 C41—C40—C39 119.5 (2)
C12—C13—H13 120.1 C41—C40—H40 120.2
C13—C14—C15 120.3 (2) C39—C40—H40 120.2
C13—C14—H14 119.8 C42—C41—C40 121.4 (2)
C15—C14—H14 119.8 C42—C41—H41 119.3
C14—C15—C10 119.9 (2) C40—C41—H41 119.3
C14—C15—H15 120.0 C41—C42—C43 119.1 (2)
C10—C15—H15 120.0 C41—C42—H42 120.5
N2—C16—N3 118.35 (17) C43—C42—H42 120.5
N2—C16—S1 128.06 (15) C44—C43—C42 120.4 (2)
N3—C16—S1 113.57 (14) C44—C43—H43 119.8
C18—C17—C22 119.54 (19) C42—C43—H43 119.8
C18—C17—N3 116.26 (18) C43—C44—C39 120.6 (2)
C22—C17—N3 124.18 (18) C43—C44—H44 119.7
C19—C18—C17 120.1 (2) C39—C44—H44 119.7
C9—N1—N2—C16 −179.30 (17) C18—C17—C22—C21 −2.0 (3)
Zn—N1—N2—C16 6.4 (2) N3—C17—C22—C21 176.1 (2)
C31—N5—N6—C38 169.32 (16) C28—C23—C24—C25 0.1 (3)
Zn—N5—N6—C38 2.3 (2) C23—C24—C25—C26 −0.5 (3)
C6—C1—C2—C3 −2.9 (3) C23—C24—C25—N8 178.29 (17)
C1—C2—C3—C4 1.9 (3) O3—N8—C25—C26 −0.4 (3)
C1—C2—C3—N4 −179.09 (17) O4—N8—C25—C26 177.99 (19)
O2—N4—C3—C4 160.31 (19) O3—N8—C25—C24 −179.19 (18)
O1—N4—C3—C4 −19.0 (3) O4—N8—C25—C24 −0.8 (3)
O2—N4—C3—C2 −18.8 (3) C24—C25—C26—C27 0.5 (3)
O1—N4—C3—C2 161.88 (18) N8—C25—C26—C27 −178.27 (17)
C2—C3—C4—C5 1.0 (3) C25—C26—C27—C28 −0.2 (3)
N4—C3—C4—C5 −178.09 (17) C26—C27—C28—C23 −0.1 (3)
C3—C4—C5—C6 −2.8 (3) C26—C27—C28—C29 176.99 (18)
C4—C5—C6—C1 1.9 (3) C24—C23—C28—C27 0.2 (3)
C4—C5—C6—C7 −178.68 (18) C24—C23—C28—C29 −177.12 (17)
C2—C1—C6—C5 1.1 (3) C27—C28—C29—C30 6.2 (3)
C2—C1—C6—C7 −178.38 (18) C23—C28—C29—C30 −176.68 (19)
C5—C6—C7—C8 154.6 (2) C28—C29—C30—C31 −174.73 (18)
C1—C6—C7—C8 −26.0 (3) N6—N5—C31—C30 −179.84 (15)
C6—C7—C8—C9 −174.32 (18) Zn—N5—C31—C30 −14.9 (2)
N2—N1—C9—C8 −178.00 (15) N6—N5—C31—C32 −3.3 (2)
Zn—N1—C9—C8 −4.4 (2) Zn—N5—C31—C32 161.66 (13)
N2—N1—C9—C10 0.9 (3) C29—C30—C31—N5 172.80 (18)
Zn—N1—C9—C10 174.45 (13) C29—C30—C31—C32 −3.7 (3)
C7—C8—C9—N1 162.41 (19) N5—C31—C32—C37 92.3 (2)
C7—C8—C9—C10 −16.5 (3) C30—C31—C32—C37 −91.2 (2)
N1—C9—C10—C11 109.3 (2) N5—C31—C32—C33 −85.7 (2)
C8—C9—C10—C11 −71.9 (2) C30—C31—C32—C33 90.8 (2)
N1—C9—C10—C15 −68.9 (3) C37—C32—C33—C34 −0.2 (3)
C8—C9—C10—C15 109.9 (2) C31—C32—C33—C34 177.85 (18)
C15—C10—C11—C12 0.9 (3) C32—C33—C34—C35 0.9 (3)
C9—C10—C11—C12 −177.35 (18) C33—C34—C35—C36 −0.9 (3)
C10—C11—C12—C13 −1.7 (3) C34—C35—C36—C37 0.1 (3)
C11—C12—C13—C14 1.3 (3) C33—C32—C37—C36 −0.6 (3)
C12—C13—C14—C15 −0.1 (3) C31—C32—C37—C36 −178.59 (19)
C13—C14—C15—C10 −0.7 (3) C35—C36—C37—C32 0.7 (3)
C11—C10—C15—C14 0.3 (3) N5—N6—C38—N7 −178.58 (15)
C9—C10—C15—C14 178.54 (18) N5—N6—C38—S2 −0.2 (3)
N1—N2—C16—N3 −178.24 (16) C39—N7—C38—N6 16.9 (3)
N1—N2—C16—S1 0.2 (3) C39—N7—C38—S2 −161.73 (16)
C17—N3—C16—N2 6.2 (3) Zn—S2—C38—N6 −1.62 (18)
C17—N3—C16—S1 −172.37 (17) Zn—S2—C38—N7 176.80 (13)
Zn—S1—C16—N2 −5.44 (18) C38—N7—C39—C40 −12.1 (3)
Zn—S1—C16—N3 173.01 (14) C38—N7—C39—C44 164.5 (2)
C16—N3—C17—C18 165.8 (2) C44—C39—C40—C41 −2.2 (3)
C16—N3—C17—C22 −12.3 (3) N7—C39—C40—C41 174.3 (2)
C22—C17—C18—C19 1.0 (3) C39—C40—C41—C42 1.0 (4)
N3—C17—C18—C19 −177.24 (18) C40—C41—C42—C43 1.2 (4)
C17—C18—C19—C20 0.6 (3) C41—C42—C43—C44 −2.0 (4)
C18—C19—C20—C21 −1.2 (3) C42—C43—C44—C39 0.8 (4)
C19—C20—C21—C22 0.1 (4) C40—C39—C44—C43 1.4 (3)
C20—C21—C22—C17 1.5 (3) N7—C39—C44—C43 −175.4 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N7—H7N···O4i 0.87 (2) 2.17 (2) 3.019 (2) 165 (2)
C44—H44···O4i 0.95 2.49 3.305 (3) 144
C37—H37···O3ii 0.95 2.48 3.373 (3) 157
C14—H14···O1iii 0.95 2.54 3.462 (3) 164

Symmetry codes: (i) x, y−1, z; (ii) −x+3/2, y−1/2, −z+1/2; (iii) −x+1, −y+1, −z+1.

Funding Statement

This work was funded by Research University Grant Scheme grants 9199834 and 9174000; Malaysian Ministry of Science, Technology and Innovatio grant 09-02-04-0752-EA001; Sunway University Sdn Bhd grant GRTIN-IRG-01-2021.

References

  1. Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.
  2. Anjum, R., Palanimuthu, D., Kalinowski, D. S., Lewis, W., Park, K. C., Kovacevic, Z., Khan, I. U. & Richardson, D. R. (2019). Inorg. Chem. 58, 13709–13723. [DOI] [PubMed]
  3. Balakrishnan, N., Haribabu, J., Anantha Krishnan, D., Swaminathan, S., Mahendiran, D., Bhuvanesh, N. S. P. & Karvembu, R. (2019). Polyhedron, 170, 188–201.
  4. Barbosa, I. R., Pinheiro, I. da S., dos Santos, A. D. L., Echevarria, A., Goulart, C. M., Guedes, G. P., da Costa, N. A., de Oliveira e Silva, B. M., Riger, C. J. & Neves, A. P. (2018). Transit. Met. Chem. 43, 739–751.
  5. Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  6. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  7. Khan, A., Paul, K., Singh, I., Jasinski, J. P., Smolenski, V. A., Hotchkiss, E. P., Kelley, P. T., Shalit, Z. A., Kaur, M., Banerjee, S., Roy, P. & Sharma, R. (2020). Dalton Trans. 49, 17350–17367. [DOI] [PubMed]
  8. Kumar, L. V., Sunitha, S. & Rathika Nath, G. (2020). Mater. Today Proc. 41, 669–675.
  9. Lobana, T. S., Sharma, R., Bawa, G. & Khanna, S. (2009). Coord. Chem. Rev. 253, 977–1055.
  10. Malenov, D. P., Janjić, G. V., Medaković, V. B., Hall, M. B. & Zarić, S. D. (2017). Coord. Chem. Rev. 345, 318–341.
  11. Mathews, N. A. & Kurup, M. R. P. (2021). Appl. Organomet. Chem. 35, 1–16.
  12. Nibila, T. A., Soufeena, P. P., Periyat, P. & Aravindakshan, K. K. (2021). J. Mol. Struct. 1231, 129938.
  13. Prajapati, N. P. & Patel, H. D. (2019). Synth. Commun. 49, 2767–2804.
  14. Rapheal, P. F., Manoj, E., Kurup, M. R. P. & Venugopalan, P. (2021). Chem. Data Collect. 33, 100681.
  15. Rogolino, D., Bacchi, A., De Luca, L., Rispoli, G., Sechi, M., Stevaert, A., Naesens, L. & Carcelli, M. (2015). J. Biol. Inorg. Chem. 20, 1109–1121. [DOI] [PubMed]
  16. Savir, S., Wei, Z. J., Liew, J. W. K., Vythilingam, I., Lim, Y. A. L., Saad, H. M., Sim, K. S. & Tan, K. W. (2020). J. Mol. Struct. 1211, 128090.
  17. Şen Yüksel, B. (2021). J. Mol. Struct. 1229, 129617.
  18. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  19. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  20. Spek, A. L. (2020). Acta Cryst. E76, 1–11. [DOI] [PMC free article] [PubMed]
  21. Tan, M. Y., Crouse, K. A., Ravoof, T. B. S. A., Jotani, M. M. & Tiekink, E. R. T. (2017). Acta Cryst. E73, 1001–1008. [DOI] [PMC free article] [PubMed]
  22. Tan, M. Y., Crouse, K. A., Ravoof, T. B. S. A., Jotani, M. M. & Tiekink, E. R. T. (2018). Acta Cryst. E74, 151–157. [DOI] [PMC free article] [PubMed]
  23. Tan, M. Y., Ho, S. Z., Tan, K. W. & Tiekink, E. R. T. (2020). Z. Kristallogr. New Cryst. Struct. 235, 1439–1441.
  24. Tan, M. Y., Kwong, H. C., Crouse, K. A., Ravoof, T. B. S. A. & Tiekink, E. R. T. (2020a). Z. Kristallogr. New Cryst. Struct. 235, 1503–1505.
  25. Tan, M. Y., Kwong, H. C., Crouse, K. A., Ravoof, T. B. S. A. & Tiekink, E. R. T. (2020b). Z. Kristallogr. New Cryst. Struct. 235, 1539–1541.
  26. Tan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308–318. [DOI] [PMC free article] [PubMed]
  27. Tiekink, E. R. T. (2017). Coord. Chem. Rev. 345, 209–228.
  28. Turner, M. J., Mckinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer 17. The University of Western Australia.
  29. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  30. Yang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955–964. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989021007398/mw2178sup1.cif

e-77-00839-sup1.cif (555.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989021007398/mw2178Isup2.hkl

e-77-00839-Isup2.hkl (709.1KB, hkl)

CCDC reference: 2097106

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES